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Many medical screenings used for the diagnosis of neurological, psychological or

language and speech disorders access the language and speech processing system.

Specifically, patients are asked to fulfill a task (perception) and then requested to give

answers verbally or by writing (production). To analyze cognitive or higher-level linguistic

impairments or disorders it is thus expected that specific parts of the language and

speech processing system of patients are working correctly or that verbal instructions are

replaced by pictures (avoiding auditory perception) or oral answers by pointing (avoiding

speech articulation). The first goal of this paper is to propose a large-scale neural model

which comprises cognitive and lexical levels of the human neural system, and which

is able to simulate the human behavior occurring in medical screenings. The second

goal of this paper is to relate (microscopic) neural deficits introduced into the model to

corresponding (macroscopic) behavioral deficits resulting from the model simulations.

The Neural Engineering Framework and the Semantic Pointer Architecture are used to

develop the large-scale neural model. Parts of twomedical screenings are simulated: (1) a

screening of word naming for the detection of developmental problems in lexical storage

and lexical retrieval; and (2) a screening of cognitive abilities for the detection of mild

cognitive impairment and early dementia. Both screenings include cognitive, language,

and speech processing, and for both screenings the same model is simulated with and

without neural deficits (physiological case vs. pathological case). While the simulation

of both screenings results in the expected normal behavior in the physiological case,

the simulations clearly show a deviation of behavior, e.g., an increase in errors in the

pathological case. Moreover, specific types of neural dysfunctions resulting from different

types of neural defects lead to differences in the type and strength of the observed

behavioral deficits.

Keywords: neurocomputational model, spiking neural networks, detailed computer simulations of natural

language processes, behavioral testing, brain-behavior connection, medical screenings
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INTRODUCTION

From the viewpoint of computational neuroscience, a
medical screening can be seen as a specific task that a subject–or
in this case a neural model–has to perform. The result of the
task (i.e., the behavior of the subject) is then checked on the
basis of a performance scale in order to see whether the subject
behaves pathologically in accordance with a specific cognitive,
language, or speech disorder, or whether the person behaves
normally (physiologically). The task or scenario involved in a
screening is always shaped in a way that the screening is effective
for detecting a specific impairment or disorder, here a specific
cognitive or a specific language or speech impairment disorder.

Why is it advantageous to simulate a medical screening using
a biologically inspired neural model, which is basically a specific
sequence of actions to be executed by a patient or here by a
biologically inspired neural model? The answer is that the neural
deficits leading to neural dysfunctions can be clearly defined in
a neural model while also being targeted to specific functional
modules of the model. The behavior resulting from a simulation
of a model like this can then be analyzed as suggested by
the screening. Thus, the simulations done by using the neural
model clearly identify the relations between microscopic neural
deficits—like deficits occurring within neural buffers or on neural
connections—andmacroscopic behavioral deficits. Neural models
can accordingly help address longstanding research questions
regarding the relationship between low-level properties of neural
systems and the high-level behavioral patterns.

To provide context, physiological (i.e., normal) speech
processing is described briefly below. Speech processing involves
a range of cognitive, motor, and sensory skills that involve
numerous neural subsystems. The cognitive system comprises
pragmatic, semantic, syntactic and phonological components
and interfaces with sensory and motor systems through a
phonetic component. The mental lexicon (Dell and O’Seaghdha,
1992; Levelt et al., 1999; Indefrey and Levelt, 2000; Elman,
2004) is an important part of the cognitive system as it serves
as a basic knowledge repository for word forms and their
meanings. As described in well-established models of language
and speech production (Garrett, 1980; Stemberger, 1985; Dell,
1986; Butterworth, 1989; Levelt, 1989; Caramazza, 1997; Dell
et al., 1997; Levelt et al., 1999; Indefrey and Levelt, 2004;
Indefrey, 2011) the mental lexicon comprises three levels: The
concept level stores the meanings of words; the lemma level
stores the language-specific grammatical status of words; and
the phonological form level stores the sound sequence of
words (Friedmann et al., 2013). Conceptual knowledge stored
in the mental lexicon can be separated with respect to specific
attributes such as size, shape, and color, along with more general
category information. For example, dogs and cats belong to the
category animals, buses and bicycles to the category objects for
transportation, and so on. A lexical concept is a concept for which
a word must exist (Indefrey, 2011). The lemma-level contains
lemmata that store grammatical attributes of words, e.g., that
chair is a noun and singular. The phonological form level contains
phonological and morphological information; for example, it
would store the fact that chair includes the phonemes /t

∫
/, /e/,

/@/, and it would also store morpho-phonological variants as well,
such as the plural /chairs/. For effective processing, lexical entries
must contain adequate information within all three levels, and
these levels must communicate with each other. Further, within
the different levels (conceptual, grammatical, phonological)
many associations exist between entries (Brackenbury and Pye,
2005). These associations are intrinsic (Levelt, 1989) and based
on similarities at the semantic, grammatical or phonological
level. For example, chair and table are linked by the fact that
they both belong to the furniture category and are often used
together. In language acquisition, children use these relations
between words as a basis for developing connections between
lexical items (Landau et al., 1998).

Speech processing comprises speech production and speech
perception. In both cases, humans need to retrieve information
from the mental lexicon. In the case of speech production,
concepts are activated for the intended utterance, and associated
lemmas and phonological forms are subsequently retrieved from
the mental lexicon during the process of utterance formulation.
Motor plans are then activated and retrieved from a second
repository, the mental syllabary (Cholin, 2008; Brendel et al.,
2011; Kröger and Cao, 2015), which contains sensory and
motor information used during speech articulation. It is known
that at all levels in the mental lexicon (concept, lemma, and
phonological form), more than one item may be activated at
one time to different degrees. Consequently, in speech processing
a related lexical item can be erroneously named instead of the
target item (Indefrey, 2011). In the case of speech perception,
the mental syllabary and mental lexicon play important roles as
basic knowledge repositories both for recognizing syllables and
words from the speech signal, and for activating phonological
forms, concepts and subsequently the meaning and intention of
an utterance.

Language processing is a complex cognitive function and it
interacts with attention and memory (Poirier and Shapiro, 2012).
For this reason, linguistic testing should not only analyze the
nature of the entries and associations of the mental lexicon
(e.g., with picture naming), but also verbal short- and long-term
memory (to remember and reproduce a certain number of words
immediately and after some time), as well as cognitive flexibility
through word generation tasks (e.g., name all terms that come to
mind about supermarket; Kalbe et al., 2004; Indefrey, 2011).

To analyze the neural basis of speech processing, Indefrey and
Levelt (2000, 2004) and Indefrey (2011) performed meta-analysis
of imaging studies of the regional cerebral brain activation
patterns observed in different lexical tasks. For every stage of
speech processing, different activated parts of the brain with fast
processing stages could be found. These findings indicate that the
model assumptions of speech processing are neurobiologically
inspired and therefore, models can be used to derive real-
world findings.

This knowledge has already been incorporated into various
computer-simulated models in order to verify the assumptions
of speech processing and to gain knowledge about pathological
language processing. Roelofs (1992, 1997) implemented the
theory of a three-level mental lexicon and a spreading activation
theory of conceptual driven lemma retrieval in a connectionist
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computer model (WEAVER). The model produces valid results
for naming, object categorization, and word categorization in
a picture-word-interference task. Further, semantic facilitation
showed valid results in comparison to natural data. Levelt
et al. (1999) further presented the computer model WEAVER
++ which analyzes real-time processing in normal word
production. The model includes the stages from lexical selection
to phonological encoding with access to the mental syllabary.

Another connectionist computer-simulated model has been
developed by Dell (1986). It comprises the three levels
(conceptual, lemma, and lexeme level) and word retrieval based
on intra- and interconnections between these levels. Errors in
speech production are modeled by a pathological increase in
the rate of decay of primed nodes in the semantic-lexical-
phonological network. Two simulated experiments were used
to analyze how the theory can be applied to phonological
coding processes. The first experiment showed the basic
types of phonological errors and their relative frequency. The
second experiment was performed to adapt data produced
with a technique designed to generate these errors under
controlled conditions.

A more biologically inspired computational model of speech
acquisition and production is the DIVA model (Guenther,
1995; Guenther et al., 1998, 2006). DIVA is a neural network
that models the sensorimotor interactions during articulator
control in speech production. The model has been used to
analyze behavioral and functional imaging studies of speech
processing (e.g., Tourville et al., 2008), and is intended to
allow for comparisons between simulated and empirical data.
Model simulations produce expectations of acoustic data (e.g.,
formant frequencies), somatosensory data (e.g., articulator
positions), learning rates, and activity levels within specificmodel
components. Further, GODIVA provides an extension for speech
production at a suprasegmental level (Bohland et al., 2010).

In summary, in order to cope with the complexity of
language processing, the simulation of a linguistic medical
screening which includes language processing and verbal short-
termmemory requires a large-scale neural model. Thismodelmay
include perceptual input processing, motor output processing,
and intermediate cognitive processing. Our approach tries
to model these components in a biologically inspired way
(e.g., Stewart and Eliasmith, 2011; Golosio et al., 2015a,b;
Kröger et al., 2016). Large-scale neural models are generally
comprised of cognitive processing modules, short-term and
long-term memory modules, sensory input, and motor output
processing modules, as well as a central executive unit for
the temporal coordination of cognitive, perceptual, and motor
actions (Stewart et al., 2010a; Eliasmith, 2012; Civier et al., 2013;
Golosio et al., 2015a).

One approach, which enables the creation of large-scale
neural models, is the Neural Engineering Framework (NEF,
Eliasmith and Anderson, 2004; Stewart et al., 2012a). The
NEF provides a comprehensive mathematical framework for
modeling spiking neurons and neural networks on the basis of
three principles: the representation of states as neural activation
patterns, the transformation of neural activation patterns through
weighted connections between neurons, and the treatment

of neural representations as control-theoretic state variables
governed by particular dynamics. Neurons are grouped in
neuron ensembles that represent simple states which can be
mathematically represented as scalar or vector values. The
representational state of a neuron ensemble is realized by a
specific pattern of spiking across all neurons within the ensemble.
The semantic pointer architecture (SPA, Eliasmith, 2013; Stewart
and Eliasmith, 2014) builds on the NEF to allow the modeling
of complex cognitive processes by grouping neural ensembles in
sophisticated functional units (Eliasmith, 2012; Eliasmith et al.,
2016) controlled by a central executive (Stewart et al., 2010b,
2012a,b). The central executive of a SPA model, here called a
task control module, is designed to emulate the basal ganglia-
thalamus-cortex loop for cognitive action selection (Stewart et al.,
2010a, 2012a).

Previous work with large-scale models and speech production
revealed insightful results concerning physiological word
production and pathological speech in the case of certain speech
dysfluencies. Kröger et al. (2016) showed that in a picture
naming and halt paradigm (picture presentation is followed
by an auditory stop signal for halting speech production) it is
possible to build a NEF and SPAmodel of the neural mechanisms
governing self-detection of speech errors in the inner speech
loop. The results of this work indicate that speech errors are
successfully detected by a monitoring module in the inner
speech loop. Furthermore, the model correctly reproduces
human behavioral data on the picture naming and halt task. In
particular, the halting rate in the production of target words was
lower for phonologically similar words than for semantically
similar or fully dissimilar distractor words. Senft et al. (2016)
simulated a syllable sequencing tasks using a NEF and SPA
model of the basal ganglia-thalamus-cortical action selection
loop in order to investigate the freezing effect of patients
with Parkinson’s disease (PD) in more detail. By decreasing the
dopamine level parameters in themodel’s action selection loop by
50%, the freezing effect of patients with PD could be replicated.A
further example comes from Civier et al. (2013). They used an
impaired form of the computational speech production model
GODIVA to examine two hypotheses concerning the neural
basis of stuttering: (1) white-matter irregularities interrupt
cortico-striatal projections, producing duplicates of executed
motor commands; and (2) dopaminergic irregularities interrupt
the next syllable’s motor program, which leads to dysfluency.
The model may also consider the results of brain imaging studies
of stuttering.

To evaluate large-scale neural model with respect to its overall
cognitive and sensorimotor capabilities, well-established medical
screenings are highly useful, since they limit the scope of relevant
human actions to a well-defined behavioral scenario. For many
screenings, standard data are available with large samples that
include both physiological and pathological cases. These data
can be used to analyze certain results, either patient-produced or
model-simulated. Thus, the tasks defined in medical screenings
enable large-scale neural models to be used for the analysis of
both normal (or physiological) and pathological behavior of the
sort that occurs if a subject suffers from a specific impairment
or disorder. In the case of dementia, the DemTect (Calabrese
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et al., 2004; Kalbe et al., 2004) can be simulated easily, as we
show in the following. This specific screening tests cognitive
abilities involving speech and language processing. Screenings
developed for detecting specific speech and/or language disorder
can also be used to examine the language and speech processing
components of a neural model (Stille et al., 2017, 2018). Parts
of a linguistic test for lexical storage and lexical retrieval in
Standard German (WWT 6-10, Glück, 2011) and a screening
for the detection of dementia (Calabrese et al., 2004; DemTect,
Kalbe et al., 2004) were selected accordingly for simulation in our
large-scale neural model.

It is the first goal of this paper to introduce a large-
scale model based on the NEF and SPA which is capable
of simulating both the WWT and DemTect screening. The
second goal of the paper is to simulate parts of both screenings
using the normal neural model (i.e., the physiological case)
and by using the neural model including neural deficits within
different modules of the model (i.e., the pathological case).
This allows us to associate deficits in simulated behavior with
neural deficits.

METHODS

Neural Model and the Tested Medical
Screenings
Within our computational model we use neural buffers, which
are a SPA-specific concept (see Stewart and Eliasmith, 2014).
A neural buffer consists of D neural ensembles and is able
to represent (complex) neural states which can mathematically
be represented as a D-dimensional vector of numerical values.
The neural activity in a buffer is represented on the one
hand mathematically as a D-dimensional vector, and on
the other hand as a compressed representation that can be
selectively decompressed to retrieve different kinds of cognitive,
sensory, andmotor information. Semantic pointers can represent
cognitive states (e.g., concepts), higher level perceptual states
(e.g., complex auditory impressions), or higher-level motor states
(e.g., a motor plan for the articulation of a syllable). Thus,
a semantic pointer as defined in the SPA is a compressed
representation implemented by the activities of a collection of
spiking neurons within a neural buffer and is mathematically
characterized as a high-dimensional vector (Eliasmith, 2013;
Stewart and Eliasmith, 2014). Neural buffers are often non-
recurrent and represent neural states which vary quickly in
response to different inputs. But neural buffers can also be
recurrently connected and then represent short term memories
capable of holding information for a longer time period.

Neural representations, including semantic pointers, can
be transferred from one buffer to another by a simple
neural connection. Neural connections between buffers can
implement arbitrarily complex associations of the sort that
convert representational state “a” activated in buffer “A” to a
representational state “b” activated in buffer “B.” Thus, a neural
state “a” is now associated with a neural state “b.” To give a
concrete example of this process, it is a central task of the mental
lexicon to associate the concept of a word (activated in the

concept buffer within the production or perception pathway)
with the phonological form of the same word (activated in a
second buffer within the perception or production pathway,
called the phonological form buffer). The neural connection
between those two buffers contains knowledge, and in the SPA
such connections implement an associative memory (Voelker
et al., 2014; Crawford et al., 2016). A special subtype of an
associative memory is the cleanup memory which is needed if
the association in buffer B is designed to select the most relevant
semantic pointer as a result of a neural association process
(Crawford et al., 2016). Other types of connections between
buffers may realize the binding of two representational states
occurring in buffer A and buffer B, to form structured neural
representations of arbitrary complexity. In its most basic form,
this binding operation produces an output representational state
in some buffer C that encodes the pairing of the representational
states in A and B (Eliasmith, 2013).

The representational state of a buffer as a function of time
can be visualized by using plots that depict the similarity between
the current state of the buffer and other states corresponding to
defined semantic pointers (Eliasmith, 2013). To explain, because
the neural activity of a buffer can always be characterized as
a high-dimensional vector, this vector can be compared to the
vectors corresponding to any number of semantic pointers.
Taking the dot product between the vector currently represented
by the activity in a buffer and the vectors corresponding to
a set of semantic pointers will accordingly produce a set of
values indicating the degree to which each semantic pointer
is activated by the current state of the buffer. This results in
a display of all semantic pointers that exhibit some degree of
similarity to the pointer represented by the current activity of the
buffer (ibid).

Dot products can be computed via the connections between
neural ensembles and can also be used to perform action selection
by comparing the representational states in particular buffers
with states that are associated with particular cognitive actions.
Action selection is performed by the task control module (central
executive), and within this module all potential actions are coded
by semantic pointers; dot products between each of these action
pointers with a pointer representing the current state of other
neural ensembles allows the selection of the most promising
action at a specific point in time. This action is then represented
as a semantic pointer that gets encoded in an action control
buffer. A detailed description of this process of action selection
and action sequencing is given in Stewart et al. (2012a), Eliasmith
(2013), Kröger et al. (2016).

Neural models based on the NEF and SPA approach are
implemented using a Python based scripting language called
Nengo (Bekolay et al., 2014; Sharma et al., 2016). In Nengo,
high-level commands are available for configuring and running a
neural model, i.e., for defining neuron ensembles, neuron buffers,
and all neural connections between ensembles or buffers. The
implementation of the task control module (central executive)
can be realized easily in this framework by defining all actions in
the form of semantic pointers and by providing this information
to the neuron ensembles and buffers defining a submodel of the
basal ganglia and thalamus (Stewart et al., 2018).
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Parts of a linguistic test for lexical storage and lexical retrieval
in Standard German (WWT 6-10, Glück, 2011) and a screening
for the detection of dementia (DemTect, Calabrese et al., 2004;
Kalbe et al., 2004) were selected for simulation in our NEF-SPA
large-scale neural model.

The whole WWT (Word Range and Word Retrieval Test for
6- to 10- Year Old Children, Glück, 2011) is a standardized
test for: (1) measuring the size of the vocabulary stored in
the mental lexicon of a subject; (2) measuring the stability of
word naming; (3) measuring the effects of facilitation of word
naming by adding semantic and phonological cues; and (4)
measuring word comprehension. The test is developed for the
Standard German language vocabulary. The standardization was
based on test results from 880 German children of appropriate
age. Data are available for the WWT naming task, the WWT
comprehension task, and task response times. For measuring
vocabulary size and stability of word naming, subjects have to
twice produce 95 words one after the another on the basis of
95 pictures. These 95 words are mixed with respect to four
categories: (1 and 2) 49 nouns or verbs which are presented
visually while accompanied by a question given by the instructor
(e.g., “what is that?” in case of nouns or “what is he/she/it doing?”
in case of verbs); (3) 23 superordinate concepts which have to be
named after deducing the appropriate word from four pictures
showing objects which belong to one superordinate category and
which are accompanied by the question “what are these all?”
(e.g., pictures of “chair,” “closet,” “bed,” and “couch” lead to the
naming of the superordinate concept “furniture”); and (4) 23
antonyms of adjectives or adverbs (e.g., “old,” “kind”) which
express the opposite of a word presented orally by the instructor
and embedded in the question “what is the opposite of . . . ?” (e.g.,
“old” should be named if “new” is said by the instructor). The test
must be done four times in direct temporal succession (run R1 to
run R4).Within the first and second run (R1 and R2), all 95 target
words must be named, while in the third and fourth run only
items that were not named correctly in the two preceding runs
are queried. In the third run (R3), semantic and phonological
cues are given in order to facilitate word naming. These cues
can be semantic associations (e.g., “wheelbarrow” is facilitated
using the verbally given cue “this is a type of vehicle used to
push and transport something, in a garden or on a construction
site”) or the cues can also be auditory presentations of the first
sounds of the target word as a phonological facilitation (e.g., “the
word we are looking for starts with ‘wh. . . ”’). In the last run
(R4), word comprehension is measured. After a verbal request,
the children should point the mentioned item from a selection of
four pictures.

The DemTect (Calabrese et al., 2004; Kalbe et al., 2004) allows
the detection of mild cognitive impairments that may occur
in early dementia. Five tasks are included: (1) Repetition of a
word list (i.e., word repetition task for nouns), (2) transcoding
of numbers from digits to text and from text to digits by
writing (i.e., number transcoding task, adapted to speaking
in our simulations), (3) enumeration of words answering the
question “what things can you buy in a supermarket?” (i.e.,
semantic word fluency task), (4) reverse repetition of two to
six digits (i.e., reverse repetition task), and (5) delayed recall of

the initial word list of task one (i.e., delayed word repetition
task for nouns). The DemTect has been standardized by testing
145 healthy control subjects, 97 patients suffering from a mild
cognitive impairment and 121 patients suffering from beginning
Alzheimer’s disease and thus classified as candidates for mild
dementia. The evaluation of the subjects on the basis of the
DemTect leads to a clear separation of these three groups (normal
with respect to age, mild cognitive impairment, and dementia).
The evaluation is based only on the maximum number of points
reached by each subject over all five tasks.

The functional architecture for our large-scale neural model
used for these medical screenings (DemTect andWWT) is shown
in Figure 1. This large-scale model can be subdivided in fivemain
modules: (1) a central executive or task control module; (2) a
cognitive processing module including short-term memories; (3)
a production pathway including a hand-arm pathway for writing,
and a speaking pathway; (4) a perception pathway including
an auditory pathway, a visual pathway, and a somatosensory
pathway; and (5) a central long-term memory including world
knowledge, a mental lexicon and a mental syllabary.

World knowledge includes all acquired concepts and their
relations, e.g., a “man” (object) “is a” (relation) “human”
(object), or: a “human” (object) “has a” (relation) “nose” (object)
(Eliasmith, 2013; Blouw et al., 2016; Crawford et al., 2016; for
further information see Kröger et al., 2016). Concepts form the
highest layer of the mental lexicon. Each concept is associated
with one word which is specified with respect to its phonological
form as well as with respect to its grammatical attributes (noun,
verb, etc.; gender; number). Lemmata realize the middle layer
of the mental lexicon and specify these grammatical attributes
while phonological forms realize the lowest layer of the mental
lexicon (Levelt et al., 1999). Superordinate concepts (e.g., “days”
for concepts like “Monday,” “Tuesday,” etc.; or “months” for
concepts like “January,” “February,” etc.) are defined within the
deep concept network, and superordinate phonological forms
(e.g., for two forms which have the initial sound in common)
are defined within the deep phonological network (Kröger et al.,
2016). Grammatical knowledge concerning the formation of
sentences is still beyond the scope of our current model and thus
no grammatical attributes are associated with the lemmata here.
However, lemmata are represented by semantic pointers and can
be activated in our model in the production pathway as well as
in the perception pathway (Figure 1). While the phonological
representation is the low-level representation within the mental
lexicon, it is also the high-level representation within the mental
syllabary. Here, each syllable is associated with a motor plan and
an auditory or somatosensory state for syllables (Kröger et al.,
2009; Kröger and Cao, 2015), or with motor plans, visual, and
somatosensory states for hand-arm gestures (Kröger et al., 2010).
The semantic pointers defined here can be activated in neural
buffers within the production and perception pathways as well as
in the cognitive processing module as is indicated by the dashed
lines in Figure 1.

Within the speaking pathway of the production module
neural representations of concepts, lemmata, and phonological
forms are activated in the neural buffers concept_prod via
word_prod down to phono_prod. The further association of
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FIGURE 1 | The functional architecture for our large-scale neural model used for two medical screenings (DemTect and WWT). Arrows indicate neural associations

between buffers. Buffers within the perception and production pathways allow neural realizations (i.e., neural activation patterns) of S-pointers defined in the mental

lexicon and mental syllabary (dashed arrows). S-pointer activity is passed from one buffer to the next within pathways and modules as well as between modules

(normal arrows). Short-term memories (recursive buffers) are marked by cursive letters, while all other non-cursive black colored words label non-recursive buffers.

Neural associations including cleanup are marked by an extra word attached to the arrow. Different gateways (see green marked word “or”) are controlled by the task

control module. The underlined words within the task control module represent specific neural submodules like basal ganglia and thalamus.

phonological forms with motor plans is not implemented in
detail in this model. Currently, the speak_out forms are realized
as phonological forms. The same is true of the hand-arm
movement pathway. This pathway is not implemented in detail in
the current version of our model and if writing is demanded in a
subtest scenario of the DemTect, it is replaced in our simulations
by oral answering.Within the auditory pathway of the perception
pathway, concepts, lemmata, and phonological forms can be
activated within the neural buffers phono_audio via word_audio
up to con_audio (concept activated in auditory pathway). The
lower level auditory pathway is not modeled in detail. In our
screening scenarios it is thus assumed that the model directly
activates the phonological form of an auditory input (audio_in is
set to the phonological form). The same holds for visual input.
Here a visual input (visual_in) directly leads to the activation
of a concept (e.g., “horse” or “ball” etc.) within the buffer
con_visual (visually activated concept). Visual and auditory
inputs are forwarded to the concept_perc (concept perception)
buffer which co-activates the semantic knowledge stored in the
mental lexicon and in the world knowledge repository (dashed
arrow in Figure 1). Because this leads to a co-activation of
many associated concepts (e.g., co-activation of “creature,” “man,”
women,” etc., if “human” is activated), a cleanup process is
introduced as a part of the association from buffer concept_perc
to buffer concept_in, i.e., as a part of forwarding concepts from
the perception pathway to cognitive processing. Further cleanup

processes are needed for the association from the concept_prod to
the word_prod buffer for the same reason.

The task control module (central executive) selects actions
and realizes the sequencing of actions in time. The input_control
buffer can be seen as a part of the central executive but is shown
in Figure 1 as an extra buffer not grouped with any other module,
because the temporal activation patterns occurring within the
input_control buffer are shaped with respect to the temporal
structure of the task under execution, and thus represent the
priming of the model with respect to the task that is currently
being executed. For example, in the case of a word production
task (part of WWT), a specific time interval is defined for the
presentation of audio and visual inputs (i.e., processing of the
acoustic signal produced by the instructor: “Which object do you
see in this picture?”). Then, the task control module selects one
of the “or”-pathways within the cognitive processing component
(the direct pathway from concept_in via concept_through to the
concept_out buffer in this case). Later, if the concept_out buffer
within the cognitive component is activated, the model starts
to output a word using the speaking pathway as a part of the
production pathway.

In the case of a repetition task (part of DemTect), the task
control is more complex. The model forwards the auditory input
one after the other to the concept_in buffer (listening), then binds
each word to its ordinal position (i.e., first word, second word,
etc.), and then forwards a semantic pointer representing these
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binding to a short-term memory (named mem in Figure 1).
If this process of listening is completed, a recall process starts
which comprises an unbinding of position and concept, and a
forwarding of the resulting concept to the concept_through and
concept_out buffer. Thus, the task control module controls the
activation of a position buffer as well. The concept_through buffer
is needed within the cognitive processing module for cases in
which a concept is not activated clearly and in which additional
cues are used in order to allow a complete activation of that
concept in the concept_out buffer (semantic and phonological
cue task in WWT, e.g., to name the category or an association
to facilitate word naming; see above).

Because the sequencing of neural activations from buffer
to buffer during cognitive processing and during production
(neural associations from buffer to buffer as indicated by arrows
in Figure 1)—i.e., because the time interval from activation
of concept_in to activation of concept_prod and further on of
word_prod and arite_out or speak_out—can be of different
lengths of time, a somatosensory output signal can be used as
a control signal for activating the next action within the task
control module (e.g., “look at the next picture,” or “listen to the
next advice given by the test instructor,” or “produce the next
syllable,” cf. Senft et al., 2016, 2018).

The buffers and associations included in the cognitive
processing module are shaped with respect to the tasks modeled
in this study. This module can be augmented in a straightforward
manner to account for further task paradigms. In the case of
this study, the cognitive component is shaped with respect to all
subtasks of the WWT and the DemTect. In the case of a simple
word production task (WWT R1 and R2, without semantic or
phonological cues) induced by visual input (e.g., an object on
a picture has to be named), the concept_in buffer is activated if
the model has processed the visual input. The neural activation
is directly forwarded to the concept_through and concept_out
buffer. A concept_through buffer is included because in the case
of additional semantic or phonological cues (WWT, R3), a word
candidate may be activated at the level of the concept_through
buffer but a high level of activation at the concept_out level only
occurs if additional cues are given via the path defined by the
cue_in and cue_out buffers. The cue_in to cue_out association
(arrow in Figure 1) is fed by specific semantic or phonological
knowledge (left dashed arrow from knowledge repository to
cognitive processing module in Figure 1), because all words
which are associated with a specific phonological or semantic
cue need to be activated in the cue_out buffer in order to help
to activate the correct output. In the case of word production
of an opposite or superordinate concept, the pathway via the
assoc_in and assoc_out buffer is used. The association between
input and output buffers in this pathway is fed as well by
specific world knowledge (right dashed arrow from knowledge
repository to cognitive processing module in Figure 1), and
the association leads to the activation of an opposite or of
a superordinate concept in the assoc_out buffer for a specific
auditory or visual input.

In the case of memorizing, recalling, and repeating words
(DemTect: repetition, reversed repetition, and delayed repetition
tasks), words and word positions are bound in a short term

memory (mem buffer) and later unbound before the words are
(re-)produced by the model (see binding and unbinding buffers
within the cognitive processing module in Figure 1). In the case
of the DemTect semantic word fluency task, which involves
producing a sequence of words based on a prompt, the output
within the association pathway (assoc_out buffer) needs to be
stored in short-term memory in order to prevent the repetition
of already mentioned words. The DemTect number transcoding
task can be solved by using the association pathway in tandem
with the binding and unbinding pathway.

The complete large-scale model comprising all tasks for both
screenings includes about 25 buffers and about 30 associative
memories of which five are cleanup memories. The semantic
pointers are of 64 dimensions. Thus, each neuron buffer includes
64 ensembles and each ensemble consists of 50 neurons leading
to 64 × 50 = 3,250 neurons per buffer. Because associative
memories contain twice as many neurons as buffers, the model
consists of 25 × 3,250 = 81250 neurons for buffers and 30 ×

6,500 = 195,000 neurons for associative memories including the
modeling of cleanup, binding, and unbinding processes. Each
neuron ensemble within basal ganglia and thalamus comprise 50
model neurons leading to 2,100 neurons in basal ganglia and 400
neurons in thalamus. The large-scale model is implemented in
Nengo (Bekolay et al., 2014) using default leaky integrate and fire
neuron model. All parameters concerning neurons and neural
connections are set to the Nengo default values. Simulations were
run on a normal desktop computer and took about 5min for the
simulation of one subtask for one item (thus 1 h and 40min for
the simulation of 20 items in run 1 of WWT), and about 30min
for the simulation of one subtask of DemTect (10 words).

The knowledge repository used for modeling DemTect as
well as WWT comprises about 1,000 concepts comprising
the concept_net (Figure 1) and about 250 superordinate
concepts comprising the concept_net_deep. Thus, about 1,000
lemmata and about 1,000 phonological forms are included
and the phonological forms can be split into about 1,200
syllabic and subsyllabic parts (syllable initial and syllable
final consonant clusters and single sounds) comprising the
phono_net_deep (Figure 1).

Simulations
Two simulation experiments were performed. One experiment
involves a part of the WWT (picture induced word naming) and
one experiment involves a part of the DemTect (repetition of a
word list).

Simulations were done using the normal neural model
(physiological case) and using the neural model modified by
neural defects like ablation of the number of functioning neurons
in a buffer or in an associative memory. This introduces neural
dysfunctions with respect to the representations in specific
buffers or with respect to the associations implemented by
connections between buffers.

To simulate neural dysfunction in the neural network, we used
an ablate function which is implemented in Nengo (Bekolay et al.,
2014). This function silences a specific percentage of randomly
selected neurons within a chosen neural buffer. Ablating 0% of
the buffer leaves it unchanged, while ablating 100% of the buffer
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silences it entirely, meaning that no neurons in the buffer will
ever have any activity.

Ablations can be interpreted as neural dysfunctions that lead
to a partial disruption of the normal behavior of the respective
buffer. The ablate function works on normal neural buffers as well
as on associative memories (which themselves are neural buffers).
For associative memories, ablation is analogous to disrupting the
connections between buffers. Also, multiple buffers and several
associative memories can be ablated at the same time. However,
to build a direct connection between the neural dysfunction
and the high-level behavioral output, it is advisable to disrupt
the buffer and associative buffer individually. Neurophysiological
findings, however, do not rule out that in pathological cases
multiple buffers and connections are disturbed. An isolated
disorder is rather rare.

We simulate picture induced word naming for 20 nouns
included in the WWT. This is a simulation of a part of R1
of the WWT and called reduced R1 of WWT. Simulations are
done using the normal model and using a model in which
a specific percentage of neurons are ablated in the concept
production buffer (concept_prod in Figure 1) and in the concept-
to-word production associative cleanup memory (arrow between
concept_prod and word_prod in Figure 1).

We have chosen these ablations in keeping with the literature
on semantic-lexical developmental disorders. There are two
hypotheses of the underlying functional deficit in semantic-
lexical disorders, the storage hypothesis and the retrieval
hypothesis. Some researchers argue that word finding deficits
reflect underdeveloped storage of words and their meaning in
the mental lexicon (e.g., Kail and Leonard, 1986; McGregor
and Windsor, 1996). Well-developed word storage results in
permanent and complete entries (German, 2015). Children with
word finding deficits, according to storage hypothesis, may have
acquired fewer words, or have poorly organized conceptual
storage (McGregor and Appel, 2002; Gray, 2005; Seiger-Gardner
and Schwartz, 2008). This can be seen in poorer naming
performance by children with word finding disorders (Messer
and Dockrell, 2013). The retrieval hypothesis states that the
mental lexicon is comparable to that of a normally developed
child, but lexical processing (i.e., word retrieval) is less efficient
(Fried-Oken, 1987; Newman andGerman, 2002). This hypothesis
is supported by the fact that children with WFDs appear to
have momentary disruptions in retrieving a known word from
the lexicon (Gershkoff-Stowe and Smith, 1997), and by the fact
that retrieval errors are non-systematic and transient (Gershkoff-
Stowe, 2002).

Based on this prior research, we ablated the concept buffer in
accordance with the storage hypothesis and the concept-to-word
buffer in accordance with the retrieval hypothesis. These both
buffers are most sensitive for word processing and forwarding
within our computational model.

The simulation for picture induced word naming is performed
as follows, for the example of naming the word “wheelbarrow.”
The descriptions can be understood through reference to
Figure 1. Following is a running through example given for
naming the word “wheelbarrow,” divided into the individual
processing steps. Figure 2 shows a replicated photo, which is

FIGURE 2 | Exemplary replication of a WWT 6–10 image (Glück, 2011) which

serves as basis for the word naming task.

similar to a picture from WWT and is supposed to elicit the
word “wheelbarrow.”

1. Four visual inputs as target items activate the visual_in buffer
within the visual pathway. These different visual inputs are
given because the model may not directly focus on the target
object (i.e., the wheelbarrow), as opposed to other objects.
Examples of other objects in this case include the “grass
lawn” on which the wheelbarrow is placed, the “man” who
is pushing the wheelbarrow, and parts of the wheelbarrow
like the “wheel” (cf. Figure 2). Many other semantic pointers
are activated in the visual_in buffer to varying degrees.
This results from the fact that about 1,000 words were
coded with respect to their visual and auditory input forms,
their phonological forms (phono_audio and phono_prod),
as lemmata (word_audio and word_prod), and as concepts
(all buffers within the cognitive processing module and all
concept buffers within perceptual and production pathway).
These pointers are activated partially both because all the
pointers defined in the 64-dimensional vector space are not
totally orthogonal from one another, and because semantic
or phonological relations exist between different semantic
pointers which may affect other related semantic pointers as
well. Thus, a cleanupmemory is used tomap themost relevant
semantic pointer from the concept perception buffer to the
concept input buffer.

Because this task is focused on speech production deficits
with respect to the naming of visually recognized objects, the
perceptual side of the task is simplified that the last object
fed into the visual pathway of the model is the target object
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to be named. Therefore, the visual input “wheelbarrow” will
be passed on through concept_visual and concept_perception.
In the concept perception buffer other concepts are strongly
co-activated because of access to the mental lexicon. Thus, a
cleanup memory is used to map the most relevant semantic
pointer from the concept perception buffer to the concept
input buffer (concept_perc and concept_in in Figure 1).

2. Simultaneously, semantic pointers activated in the input
control buffer define and separate the time interval of auditory
and visual perception, labeled as Q_NOMEN (question for
noun: “Which object do you see in the picture?”). This time
interval is followed by the time interval of word production,
labeled as PRODUCE_NOMEN. The action control buffer
activates the action pointer PROCESS_NOMEN followed by
SPEAK for these two-time intervals.

3. Within the cognitive processing system, the concept input
buffer (concept_in in Figure 1) is activated by the semantic
pointer “wheelbarrow” which is forwarded to the concept
through, concept output, and concept production buffers
(concept_through, concept_out, concept_prod in Figure 1).

4. In the concept production buffer, other concepts are strongly
co-activated because of access to the mental lexicon. Thus, a
cleanup memory is used to map the most relevant semantic
pointer from concept production buffer to word production
buffer on the output side.

5. The word activation occurring in the word output buffer
then is associated with the corresponding phonological form
activated in the phonological form buffer (phono_prod in
Figure 1) on the production side of the model. Both buffers
have access to the knowledge of the mental lexicon and
mental syllabary.

The repetition of ten nouns is part of the first subtask of
DemTect and has been simulated using the normal model as well
as amodel in which a specific percentage of neurons are ablated in
the concept input buffer (concept_in, Figure 1), in the associative
memory between concept through buffer and the concept
output buffer (arrow between concept_through and concept_out,
Figure 1), and in the memory buffer (mem, Figure 1).

We have chosen these ablations to simulate short-term
memory impairments within the cognitive processing.
Impairments of short-term memory are the core symptom
of mild cognitive impairments (Petersen et al., 1999, 2001a,b)
and the most prominent impairment of dementia (American
Psychiatric Association, 1996), specifically in Alzheimer’s disease
(NINCDS-ADRDA criteria, McKhann et al., 1984; Kalbe et al.,
2004). A wordlist with immediate recall is a well-established
paradigm to test memory (Kalbe et al., 2004). We accordingly
ablated the short-term memory buffer, which are responsible for
memorizing concepts, concept input buffer which refers to the
ability to keep information and bind with the required position
and the concept_through to concept_out buffer which refers to
the ability to forward this information. We have chosen these
buffers because the memory and recall processes seem to be the
most sensitive processes in our computational model.

The simulation for repetition of a word list is performed
as follows. The descriptions can be understood with reference

to Figure 1. Following is a running through example given
for repetition of a word list, divided into the individual
processing steps.

1. The words produced by the test instructor and fed to the
auditory input buffer of the model are “plate,” “dog,” “lamp,”
“letter,” “apple,” “pants,” “table,” “lawn,” “drinking glass,” and
“tree.” These words are forwarded to the phono audio buffer
(phono_audio in Figure 1) and converted into phonological
forms. These phonological forms are then forwarded and
converted into lemmata in the word audio buffer, before being
forwarded and converted into concepts in the concept audio
buffer (cf. Figure 1).

2. Simultaneously, the temporal succession of actions occurring
in the task is predefined in the input_control buffer.
In the case of the repetition of a word list, semantic
pointers are defined for the input_control action “keep
the following words in your mind” (semantic pointer:
KEEP); followed by semantic pointers stating: “listen to
item 01,” “listen to item 02,” . . . , “listen to item 10”
(semantic pointer: LISTEN_I01,. . . , LISTEN_I10); followed
by a semantic pointer defining the switch to “now try to
repeat as many of the 10 words as you can” (semantic
pointer: RECALL); followed by 10 semantic pointers “try
to reproduce item 01 to item 10” (semantic pointer:
PRODUCE_I01,. . . , PRODUCE_I10).

The semantic pointers activated in the action control
buffer define the two main time intervals of this subtask
of DemTect, i.e., KEEP and RECALL. During the time
interval defined by KEEP, the audio input pointers are
associated with semantic pointers for concepts activated in
the concept audio buffer and forwarded to the concept
perception buffer.

3. The activated semantic pointer is then forwarded to the
concept_in buffer. As can be seen from Figure 1, a binding
of the neural activation occurring in the concept buffer with
the neural activation occurring in the position buffer is then
carried out in the model and forwarded to the memory
buffer (bind and mem in Figure 1). The semantic pointers
occurring in the position buffer (position in Figure 1) are
Pos_01 to Pos_10 and are activated by the task control
module. These semantic pointers occur in temporal synchrony
with the semantic pointers for the concepts of the 10
input words. The results of the binding process are 10
new semantic pointers, i.e., bindings of position pointers
and concepts, labeled as P01_Teller, to P10_Baum. These
bindings are stored in the short-term memory buffer (mem
in Figure 1 including short-term submemories not shown in
the figure).

4. During the RECALL time interval, all position pointers
are activated one after the other again for a second time
within the position buffer and an unbinding process takes
place using the representation in the position buffer and the
representation in the memory (see unbind in Figure 1). The
resulting neural representation is forwarded to the concept
through buffer, while exhibiting similarity to the semantic
pointers for concepts. Finally, during forwarding of these
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neural activation patterns to the concept output buffer, a
cleanup associative memory is used in order to clearly select
a most strongly activated semantic pointer at each point
in time.

5. At the level of the concept output buffer a
sequence of semantic pointers appears which
is further forwarded to the concept production
buffer and to further buffers within the speaking
pathway (Figure 1).

Source Code
The respective source code for the simulation of the picture
induced word naming (20 nouns) from the WWT and for
the simulation of the word list repetition from the DemTect
is provided as additional material. The source code for
the picture induced word naming (20 nouns) is labeled as
WWT_without_cues.ipynb. The source code for the repetition of
a word list is labeled as DemTect_repetition.ipynb. Simulations
were done using these ipython notebooks within an anaconda3
python environment.

RESULTS

Picture Induced Word Naming
The picture induced word naming task (R1 of WWT, reduced to
20 nouns) was simulated three times using the normal model
and three times for each of the two pathological cases including
different degrees of ablation (0 to 90%).

In the physiological case, all 20 nouns are named correctly
in all runs. Figure 3A shows an example of physiological word
processing with respect to image naming for “wheelbarrow”
(German: “Schubkarre”). In this simulation, the task is
“PRODUCE_NOMEN” (see Input Control buffer). The
target word is “Schubkarre” (“wheelbarrow”). Additional
visual concepts occurring as pictures at the WWT test sheet
for “Schubkarre” (“wheelbarrow”) are activated as well for
brief time periods: “Gras” (“grass”); “Mann” (“man”); “Rad”
(“wheel”; see Visual Input Buffer). The action control buffer
(not shown in Figure 3) indicates that the word is produced
(S-pointer “SPEAK”) after processing the input (S-pointer
“PROCESS_NOMEN”). The production of the word is displayed
in the Conceptual Production Buffer, Word Production Buffer
(not shown in Figure 3), and Phonological Production Buffer.
It can be seen that “wheelbarrow” is passed on reliably from
buffer to buffer. In the Conceptual Production Buffer, many other
entries are also activated. This is the result of semantic and
associative connections in the mental lexicon.

The overall performance of the model in the picture naming
task in terms of the number of correctly named words is given
in Figure 4 as a function of the percentage of ablated neurons
within the respective buffers [i.e., the concept production
buffer (Figure 4A) and the concept-to-word clean up associative
memory (Figure 4B)]. It should be kept in mind that an
associative memory which connects between two buffers itself is
a buffer.

It can be seen that in the case of ablation in the concept
production buffer, no effect occurs up to about 30% ablation, and

that the performance of correctly named items decreases down
to zero until about 60% of neurons are ablated. In the case of
ablation of the associative memory, the effect starts and ends
later. It starts at about 50% ablation of all neurons in this memory
and ends at about 80% of all neurons.

Figure 3 shows two more cases, as an example of incorrect
output. Only the Conceptual Production Buffer and Phonological
Production Buffer (Figures 3B,C) are shown as output, since
the input is identical to Figure 3A. Figure 3B shows the
case of 60% ablation in the concept production buffer. It
can be seen that the activation level of semantic pointers
(e.g., the semantic pointer representing the correct concept
C_Schubkarre) is already strongly reduced in comparison to
the normal case (see Conceptual Production Buffer in Figure 3B

compared to Figure 3A). In addition, many other concepts are
activated as well (see Conceptual Production Buffer). In the
case of the example displayed in Figure 3B, this results in no
word activation after the cleanup. Furthermore, no semantic
pointer is activated at the level of the phonological form
(see Phonological Production Buffer).

Figure 3C shows the case of 80% ablation in the clean-up
associative memory between the concept production buffer and
the word production buffer. It can be seen that the semantic
pointer of the correct concept C_Schubkarre is still the most
strongly activated concept in the concept production buffer
(Figure 3C), although other entries are also strongly activated.
However, the correct item cannot be passed on because of the
strong activation of other items. Therefore, the target concept
is no longer the most strongly activated concept in the word
form buffer (not shown in Figure 3C) and in the phonological
form buffer within the speech production pathway (Figure 3C).
A different (wrong) word is produced in the case of the displayed
example (Figure 3C).

The experimental data (standard data) of WWT for the
corresponding age category [7;6 to 7;11 (years;month)] and
nouns (95 children from the experimental group of standard
data ascertainment of WWT 6-10; Glück, 2011) revealed that the
number of 11 correctly named items is shown as a cut-off value.
Fifty percent of the children within the experimental group have
shown a performance (number of correctly named items) over
11 and 50% of the children under 11. This evaluation provides
information on whether children show age-appropriate results
or pathological ones. This is derived from the standard-normal
distribution. Eleven correctly named items is the median, and
within the standard deviation (SD)± 1 the children show normal
age-related performance.

Repetition of a Word List
The first subtask of DemTect, i.e., repetition of a word list, was
simulated three times using the normal model and three times
for each of the two pathological cases including different degrees
of ablation (0–90%).

In the physiological case, the repetition of ten nouns is the
first subtask of DemTect and has been simulated using the
normal model as shown in Figure 5A. In this simulation, the
task is “LISTEN” and “PRODUCE” in the given order (see
Input Control Buffer). The target words are “Teller” (“plate”),
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FIGURE 3 | (A) Similarity values of S-pointer activation occurring in different neuron buffers over time during simulation of a picture naming task of “Schubkarre”

(“wheelbarrow”) in the physiological case. Rows indicate neural similarity values of different neural state buffers of our neural model over time (t). Each S-pointer

similarity value over time is represented by a trajectory with specific color. A similarity value of an S-pointer at a point in time is the dot-product of that S-pointer with

the unity vector in the direction of the most active S-pointer at that point in time. The number of colors is limited, so the same color may occur for different S-pointers.

The height of the graph shows the amount of activation. All other buffers defined in the model are present but not shown in this figure for clarity. In the Phonological

Production Buffer, the target word is displayed in a phonetic form with the stressed syllable (phonetic transcription with SAMPA, 2005). In row five, words are

overlapped as the activation level is very similar. These are co-activation within the word corpus of our model. These items are linked by semantic or associative links

to the target item. Furthermore, there are similarity plots for semantic pointers activated in different output buffers of the neural model for the naming of “Schubkarre”

(“wheelbarrow”) in the cases of sample run with (B) 60% ablation for the neurons within the concept production buffer; and (C) 80% ablation for the neurons within the

associative memory, realizing the neural association from concept to word production buffer. Please use the input buffers of (A) because of the same task and input.

“Hund” (“dog”), “Lampe” (“lamp”), “Brief” (“letter”), “Apfel”
(“apple”), “Hose” (“pants”), “Tisch” (“table”), “Wiese” (“lawn”),
“Glas” (“drinking glass”), and “Baum” (“tree”) presented as
auditory input (see Audio Input Buffer). The action control
buffer indicates that the words are kept (“KEEP”) and to be
named (“RECALL”) (not shown in Figure 5A). In the buffer
concept_through, many other entries are also activated. A cleanup

memory is used to map the most relevant semantic pointer
from the concept_through buffer to the concept_out buffer
(not shown in Figure 5A). The production of the words is
displayed in the Conceptual Production Buffer. For the sample
simulation displayed in Figure 5A, the model was able to repeat
eight out of ten items correctly (see Conceptual Production
Buffer). The remaining semantic pointers occurring in the

Frontiers in Robotics and AI | www.frontiersin.org 11 August 2019 | Volume 6 | Article 62

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Stille et al. Large-Scale Neural Models for Medical Screenings

FIGURE 4 | Number of correctly named words (number of correct items) as function of percentage of ablated neurons (A) within the concept production buffer and

(B) within the concept-to-word clean up associative memory.

concept output or concept production buffers represent other
words, not belonging to the list of the ten target words (i.e.,
incorrect items).

The overall performance of the model for the repetition of
a word list task (i.e., the number of correctly named words)
is given in Figure 6 as a function of the percentage of ablated
neurons within the respective buffers, i.e., ablation of the concept
input buffer (Figure 6A), ablation of the concept through-to-out
cleanup associative memory (Figure 6B), as well as ablation of
the memory buffer (Figure 6C). It should be kept in mind that an
associative memory which connects between two buffers itself is
a buffer.

It can be seen that even in the case of the normal model
(physiological case, no ablation of neurons) the mean number
of words which can be recalled and repeated correctly is about
seven words (five to nine words, see Figure 6). In the case of
ablation of neurons within the concept input buffer, it can be
seen that number of correct words decreases only slightly up to
40% and then decreases down to about one correct word between
40 and 70% ablation (Figure 6A). In the case of the ablation
of neurons within the associative cleanup memory between the
concept through and concept output buffers, we see comparably
good performance up to 30% ablation but then a very fast and
strong decay of performance down to one or no correct words at
50% ablation (Figure 6B).

In the case of the ablation of neurons in the memory
buffer (mem in Figure 1), the situation is different. Here, the
performance of the model directly decreases if only 1% of the
neurons in the memory are ablated; the performance of word
repetition decreases down to zero or one correctly repeated word
at about 4% ablation in this buffer (Figure 6C). This may result
from the fact that (1) the memory must hold activation patterns
over seconds in order to allow for correct recall, or from the
fact that (2) the process of memorizing and recalling words is
modeled here using a complex binding and unbinding process.

Figure 5 shows four more cases, as an example of incorrect
output. Only the Conceptual Production Buffer (Figures 5B–E)
is shown as output, since the input is identical to Figure 5A.
In the case of 30% ablation in the conceptual input buffer, the
concepts still occur correctly but with a very low neural activation
(a factor of five lower in comparison to no ablation). It can be
seen that the activation of the semantic pointers is still clearly
visible and correct here for the ten words and that the activation
of these ten words has a clearly separable activation to other
semantic pointers. Even after the following clean-up process, the
ten words are still processed nearly correctly at this degree of
ablation. Thus, even for these low activation levels within the
concept input buffer, a clear activation of the bindings of position
and concept pointers occurs in the memory buffer, and does not
disturb the correct naming of six out of ten words in the sample
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FIGURE 5 | (A) Similarity plot for semantic pointers activated in different buffers of the neural model for word repetition (subtask 1 of DemTect) in the physiological

case. Rows indicate neural similarity values of different neural state buffers over time (t). Each S-pointer similarity value over time is represented by a trajectory with

specific color. A similarity value of an S-pointer at a point in time is the dot-product of that S-pointer with the unity vector in the direction of the most active S-pointer at

that point in time. The number of colors is limited, so the same color may occur for different S-pointers. The height of the graph shows the amount of activation. All

(Continued)
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FIGURE 5 | other buffers defined in the model are present but not shown in this figure for clarity. Furthermore, there are similarity plots for semantic pointers activated

in the Conceptual Production Buffer of the neural model for word repetition (subtask 1 of DemTect) in the cases of a sample run with (B) 30% ablation for the neurons

within the conceptual input buffer; (C) 30% ablation for the neurons within the associative memory associating the concept through and concept output buffer; (D)

50% ablation for the neurons within the associative memory associating the concept through and concept output buffer; and (E) 3% ablation for the neurons within

the memory buffer (mem). Please use also (A) because of the same task and auditory input.

FIGURE 6 | Number of correctly named words (number of correct items) as function of percentage of ablated neurons (A) within the concept input buffer and (B)

within the concept through-to-out clean up associative memory, and (C) within the memory buffer.

case displayed in Figure 5B. Higher degrees of ablation (about
70%) are needed in the concept input buffer in order to decrease
the performance down to nearly zero.

In the case of the associative cleanup memory between the
concept through and concept output buffers in the cognitive
processing module, ablation seems to have no strong influence
at low percentages. From Figure 5C, it can be seen that at 30%
ablation the concept output buffer still shows normal activity

similar to the activity of this buffer displayed in Figure 5A (seven
out of ten correctly named items). In Figure 5D it can be seen
that in the case of 50% ablation, a completely different activation
pattern occurs, leading to a non-sense output in the concept
production buffer. Only wrong words are activated in concept
production buffer in the example displayed in Figure 5D.

In contrast, ablations in the memory buffer have a
strong influence on the performance of the model even
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at low percentages. Figure 5E shows the performance of
the model at 3% ablation. The semantic pointer activity of
the memory buffer during the RECALL and REPEAT time
interval is about a factor of two lower than in the case
of no ablation. This leads to a strongly reduced rate of
correct word repetition (three out of ten correctly named
items; concept production buffer in Figure 5E compared
to Figure 5A).

The experimental data from DemTect shows that the mean
number of words that can be retrieved and correctly repeated
is 6.5 words (Calabrese et al., 2004; Kalbe et al., 2004). The
standardized test evaluation of the DemTect results in a full score
for 6.5 correctly named items for people under 60 years old,
and a full score for 5.5 correctly named in terms for people
over 60 years old. A full score means no limitations in memory
ability. Starting with 6 correctly named items under the age of 60,
there is already suspicion of mild cognitive impairment (5 or less
correctly recalled items for over 60s).

DISCUSSION

A large-scale neural model has been introduced based on
the NEF and the SPA frameworks. This model is capable of
simulating speech production and speech perception, as well as
the cognitive processing involved in two medical screenings: the
WWT and the DemTect. It has been demonstrated how a large-
scale model should be structured in order to simulate cognitive
tasks and speech processing. For this case, the knowledge
repository, i.e., the mental lexicon, associates phonological, and
conceptual forms of words. The concepts activated from the
mental lexicon are input or output of the cognitive processing
component. In our approach concepts are realized as semantic
pointers and are used as units for linguistic as well as for
cognitive processing (cf. Blouw et al., 2016; Crawford et al.,
2016). The skill repository which needs to be activated and
accessed in the case of associating phonological forms with
motor plans or with auditory representations is beyond the scope
of this paper but has been focused on in earlier publications
using our approach (Bekolay, 2016; Kröger et al., 2016). The
semantic and phonological knowledge repository is implemented
here as a predefined number of semantic pointers, associating
neural activation patterns with phonological forms, lemmata, and
concepts via mathematically defined vectors with a pre-defined
dimensionality. This is based on the concept of the Semantic
Pointer Architecture (SPA, Eliasmith, 2013) in combination with
basic ideas of the Neural Engineering Framework (NEF, ibid.).
This approach provides an elegant solution to the problem of
data processing in a large-scale neural model and has been used
in neural models of a wide range of other tasks (Eliasmith, 2012;
Choo, 2018).

We argued that it is helpful to simulate well-defined scenarios
for the purposes of testing large-scale neural models. Here, parts
of two subtests of two differentmedical screenings have been used
as well-defined simulation scenarios. The model was instructed
(1) to repeat a word list (part of DemTect, Kalbe et al., 2004) and
(2) to name 20 words on the basis of specific visual input (part of

WWT, Glück, 2011). Because behavioral data exist for medical
screenings, it is possible to check whether the neural model
behaves in a “normal human range” or behaves “pathologically.”
This allows us to rate the quality of the neural model.

Moreover, specific neural deficits can be introduced into the
model that lead to specific deviations in behavior. Deficits are
introduced here through the ablation of neurons in specific
buffers of the model. Our simulations indicate that ablations like
this can have different effects. In the case of a recurrent buffer
that is used as a memory and is involved in complex binding
and unbinding processes, the ablation of even a small percentage
of neurons leads to strong effects in the form of decreased test
performance. In other cases, neural ablation can be massive (up
to 30% of all neurons of a buffer) before effects occur at the
level of model behavior. Thus, the neural model here seems to
be relatively robust. The same holds for the associative memories
at the conceptual level of word production as well as those
for the association between words and lemmata at the end of
the cognitive processing component and within the production
pathway. Here, behavioral effects like the production of wrong
words or no words start to occur if the proportion of ablated
neurons goes above roughly 30%.

Even though an increase in the percentage of ablated neurons
in a buffer on the output side (production pathway) leads to
an abrupt change in model behavior, the same thing does not
occur on the input side (ablation in a concept buffer at the
procedural beginning of cognitive processing). In this later case
(input side), we see a slow decrease, e.g., a more continuous
decrease in test performance in the word repetition test. This
decrease starts at about 20% ablation and ends at about 70%
ablation. These effects of model behavior resulting from ablation
of neurons in different modules and different buffers within
the neural model need to be investigated in more detail in
further studies.

If we compare our simulated data with the experimental data
(standard data) of WWT for the corresponding age category
(7;6 to 7;11) and nouns (Glück, 2011) the simulation results
can be considered as similar. In the simulated physiological case
(0% ablation), all 20 items are correctly named in all cases.
The results of Glück (2011) also show that a few children in
the appropriate age category are able to name all 20 items
correctly. This is comparable to a richly filled mental lexicon
and intact language processing. But if all children are included
(also including children with language disorder), on average 11
of the 20 items were named correctly. Eleven is therefore a cut-
off value. If we summarize all simulated results (physiological
and pathological), the use of ablation in the concept buffer
shows the same effect. Fifty percent of the results are over
11 correctly named items and 50% at or below 11 correctly
named items. This shows that the performance of the children
in the experimental group is very heterogeneous (as in the
simulation results) reflected in the number of correctly named
items. These results address the storage hypothesis that they may
have acquired fewer words, or have poorly organized conceptual
storage (McGregor and Appel, 2002; Gray, 2005; Seiger-Gardner
and Schwartz, 2008). This can be seen in poorer naming (Messer
and Dockrell, 2013).
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A dysfunction in a connection buffer (e.g., the clean-up
associative memory between the conceptual and the word
production buffer) has less effect on the simulation results in
terms of a concept level disturbance. Here 70% of the results
are over 11 correctly named items and 30% are at or below 11
correctly named items. This supports the retrieval hypothesis that
the mental lexicon is comparable to that of a normally developed
child, but lexical processing (i.e., word retrieval) is less efficient
(Fried-Oken, 1987; Newman and German, 2002). Intact levels of
the mental lexicon seem to compensate longer for a disturbance
in the form of ablation.

If we compare our data with the experimental data (standard
data) of DemTect (Calabrese et al., 2004; Kalbe et al., 2004)
the simulation results can be considered as similar for the
physiological case. It can be seen in this case that the mean
number of words which can be recalled and repeated correctly
is about seven words (five to nine words, see Figure 6). As
mentioned, the standardized test evaluation of the DemTect
gives a full score for people under 60 with 6.5 correctly
named items and 5.5 correctly named items for people over
60. The results with ablation show that a dysfunction in
the memory leads to a rapid loss of recall abilities. The
both other dysfunctions show in comparison to that a slight
decrease. This is also shown by the standardized test evaluations.
Starting with six correctly named items (or five, depending
on the age category) there is already a suspicion of mild
cognitive impairment.

To clarify the nature of our modeling work, some
limitations will be discussed below. The present neural
computational model is biologically inspired and
rooted in known facts about the physiology of speech
processing. However, in the model buffers are not
assigned to specific regions but they are functionally
defined. Nevertheless, we can formulate hypothetical
assignments, since the localization of the mental lexicon
and language processing in the brain has been researched
sufficiently by several imaging studies (for a review see
Indefrey and Levelt, 2000, 2004; Indefrey, 2011).

Another limitation concerns learning processes, which are
not present in the current model. The neural connection
weights are calculated for the defined associations between
buffers (see Eliasmith, 2013; Stewart and Eliasmith, 2014).
Further, the task control for the individual tasks within
the WWT and the DemTect, which is simulated using the
basal ganglia thalamus model developed by Stewart et al.
(Stewart et al., 2010a,b, 2012a) is pre-defined in a task-
specific way. In case of our modeling, only the decision
processes required for our two tasks (WWT and DemTect) were
implemented which allows our neural model only to simulate the
exact tasks.

Furthermore, the input functions are prescriptive: visual and
auditory input is only allowed at given time intervals and
these inputs are processed within specific time intervals in our
model. Thus, the time interval over which certain processing

steps are performed is fixed in our simulations (e.g., see
PRODUCE_NOMEN in Figure 3).

Finally, the size of the vocabulary is still limited. The
vocabulary used in our simulations was created only for the
two specific tasks. This vocabulary can be interpreted as a basic
vocabulary that is needed by the mental lexicon in order to
perform the tasks successfully. However, it should be noted that
in the case of WWT, the vocabulary needed to perform the whole
WWT (R1-R4) has been included. This means that there are over
1,000 entries. Thus, the size is not representative of an entire
vocabulary, but it is still large enough for mistakes to arise.

CONCLUSIONS

A first long-term goal of our research is to discover the
underlying neural defects which cause specific behavioral deficits
as quantified in medical screenings. This association between
neural defects in specific modules or neural buffers of a large-
scale neural model and behavioral deficits displayed by the
model simulating a medical screening is important because it
allows us to associate neural deficits with specific disorders
and impairments. Our neural model provides a hypothesis
concerning which neural deficits or neural dysfunctions lead
to which cognitive or speech and language disorders or
impairments. Thus, our modeling work can be used as a research
tool to associate behavioral deficits, dysfunctions or disorders
with neural deficits or dysfunctions introduced within the model.

A second long-term goal of our research is to use neural
models and the resulting simulations in order to optimize
the sensitivity of screenings with respect to specific cognitive,
speech, and language disorders. This goal can be reached by
varying specific parameters of a screening (e.g., the length of
a word list, the selection of different types of test words, the
selection of different subtasks for a screening, etc.) for a defined
“pathological” neural model. Thus, neural models and computer
simulations might make it possible to check which modifications
of a screening are most effective for detecting a specific disorder
or impairment. Thus, our modeling and simulation tool is able
to check the change of sensitivity of a screening with respect to a
variation of different screening parameters. This goal is difficult
to reach if exclusively natural data are inspected because without
using neural models a huge number of subjects needs to be tested
using different versions of a screening.
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