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Advice-giving has been long explored in the artificial intelligence community to build robust 
learning algorithms when the data is noisy, incorrect or even insufficient. While logic based 
systems were effectively used in building expert systems, the role of the human has been 
restricted to being a “mere labeler” in recent times. We hypothesize and demonstrate 
that probabilistic logic can provide an effective and natural way for the expert to specify 
domain advice. Specifically, we consider different types of advice-giving in relational 
domains where noise could arise due to systematic errors or class-imbalance inherent in 
the domains. The advice is provided as logical statements or privileged features that are 
thenexplicitly considered by an iterative learning algorithm at every update. Our empirical 
evidence shows that human advice can effectively accelerate learning in noisy, structured 
domains where so far humans have been merely used as labelers or as designers of the 
(initial or final) structure of the model.
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1. intrOductiOn

Machine learning and data mining have made significant progress in recent years, but most supervised 
learning techniques learn only from labeled data (Mitchell, 1997; Cristianini and Shawe-Taylor, 2000; 
Schapire and Freund, 2012). Hence, in spite of the successes in several real tasks, most of these methods 
consider the human (domain) expert to be a mere “labeler”. They fail to utilize the rich (possibly 
general) domain knowledge that experts are capable of providing. A key reason is that these methods 
employ an underlying propositional representation, i.e., they learn from a set of flat feature vectors. 
However, much of domain knowledge is typically more general. For example, when providing advice 
about driving, it is natural to say something like “do not change lanes if there is no vehicle in front 
of you”. Note that this advice can be easily represented in first-order logic using quantifiers. Similar 
advice can be provided in a variety of inherently relational domains such as Electronic Health Records, 
streaming data, organizational or social networks, and many more.

It must be mentioned that incorporating prior knowledge in machine learning has been explored 
by a small community. Most closely related to our work are knowledge-based neural networks (Towell 
and Shavlik, 1994), knowledge-based support vector machines (Fung et al., 2002) and their recent 
adaptations (Kunapuli et  al., 2010; Kunapuli et  al., 2013) that have explored the combination of 
knowledge and data to handle systematic noise. While specific adaptations differ, all these methods 
take as advice propositional horn clauses and convert them to their corresponding representation. 
These systems thus restrict the advice to a specific set of features instead of quantifying over all/some 
objects in the domain. In contrast, we aim to better exploit the advice (as horn clauses) in its natural 
formulation, i.e., as first-order logic statements.
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To this effect, we employ the recently successful (probabilistic) 
methods that can directly operate on relational data called 
Probabilistic Logic Models (Getoor and Taskar, 2007) (PLMs). 
The advantage of PLMs is that they can succinctly represent 
probabilistic dependencies among the attributes of different related 
objects, leading to a compact representation of learned models. 
While effective, these algorithms for PLMs are mainly either data 
or knowledge-intensive. Data-intensive learning for PLMs learns 
purely from the data and effectively reduces the domain expert 
to simply providing training examples. Alternatively, knowledge-
intensive learning can be inflexible as only the quantitative 
parameters are learned while the entire qualitative structure is 
generally defined by the expert. In this work, we aim to learn PLMs 
in both a data-intensive and a knowledge-intensive manner.

As mentioned earlier, domain experts are capable of providing 
significantly more expressive advice that can not be expressed in 
propositional frameworks. One of the key attractive features of 
PLMs is that the relationships between objects are specified using 
first-order logic. This could potentially allow for domain experts 
to express generalized knowledge (advice) about the domain. 
Examples include “People with family members that have a high 
risk of a disease  d  are also more likely to have a high risk of  d ” and 
“Movies with comedians are more likely to be of the genre comedy”.

Specifically, we consider a recently successful PLM learning 
algorithm called Relational Functional Gradient Boosting (RFGB) 
(Natarajan et al., 2012) as the underlying base learner and provide 
a framework1 for incorporating human advice. Our advice consists 
of preferred (labels that should have higher probability than other 
labels) and avoided target labels defined over spaces of examples. 
The space of examples where the advice applies is given by horn 
clauses which can be thought of as if-then rules specified by experts. 
Since our underlying representation is also based on first-order 
logic, the system can more faithfully exploit the advice compared to 
converting it to a different representation internally by the learning 
algorithm.

We show the versatility of our proposed framework along two 
directions. Firstly, we show that the proposed framework is not 
restricted to a particular type of PLM model. Specifically, we show 

1 This work extends our previous work (Odom et al., 2015b) by generalizing the 
advice, and providing more types of advice for class-imbalance and qualitative 
constraints. We also provide new experiments for these advice. The work on label 
preferences and privileged information also appears in Odom (2017).

that several formalisms such as Markov Logic Networks (MLNs) 
(Domingos and Lowd, 2009) and Relational Dependency Networks 
(RDNs) (Neville and Jensen, 2007) and tasks such as relational 
imitation learning (Natarajan et al., 2011) and relational transfer 
learning can benefit from this framework. Our framework uses 
both the advice and the data throughout the learning process and 
allows for sequential interaction where the expert could potentially 
add more advice as learning progresses.

Secondly, we demonstrate (both theoretically and empirically) 
that our formulation is applicable across different types of advice.

1. Preferential advice, inspired from preference elicitation approaches 
(Boutilier, 2002) that can improve learning in domains with 
systematic noise (where certain types of examples are consistently 
mislabeled possibly due to human or sensor error).

2. Cost-based advice that has been demonstrated to improve learning 
in domains with class-imbalance (essentially all relational domains 
since most relations such as friends of, advised by, married to are 
false).

3. Qualitative constraints such as monotonicity that have previously 
been shown to accelerate learning of probabilistic models in data-
scarce and knowledge-rich domains (Altendorf et al., 2005; Yang 
and Natarajan, 2013).

4. Privileged information, a formulation developed by Vapnik and 
Vashist (2009) for SVMs where there are some features that are 
observed during training but not during testing and hence these 
features should be used to guide the learning algorithm to a better 
model.

Several types of advice, capturing different information, are 
graphically depicted in Figure 1. The key idea here is to note that 
each type of advice can be understood as defining a constraint 
over the space of examples (in a manner similar to the original 
knowledge-based neural networks [Towell and Shavlik, 1994) and 
knowledge-based support vector machines (Fung et al., 2002)]. This 
interpretation allows us to develop a unifying framework based on 
preferences that can be effectively combined with the gradient-
boosting learning technique.

As mentioned earlier, we evaluate the approach on different 
models and tasks. As far as we are aware, ours is the first work 
to explore the use of these advice types in the context of learning 
PLMs.

Figure 1 |  Three types of advice. Filled-in circles show positive examples while open circles show negative examples. General advice (a) is given over an 
arbitrary space of examples, false positive/false negative trade-off (B) is given over false positives and false negatives, and monotonicities (c) vary in strength across 
a single variable.
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There has been a few successful adaptations of our proposed 
approach, specifically in the context of relation extraction and some 
healthcare problems. Odom et al. (2015a) adapted the preferences-
based advice to extract the mentions of adverse drug events from 
medical abstracts. Soni et al. (2016) extended this work to a more 
general relation extraction task from text documents. MacLeod 
et al. (2016) adapted the class imbalance approach for learning 
to predict rare diseases from survey data. A similar approach was 
taken by Natarajan et al. (2017) to predict postpartum depression 
from survey data.

In summary, we make the following contributions - (1) We 
present the first work on exploiting human advice while learning 
several PLMs; (2) We outline a natural framework for the human to 
provide general advice about the domain as well as specific advice 
about particular examples; (3) We demonstrate the generality of our 
approach by presenting four types of advice that our framework is 
able to capture; (4) We show that our method naturally integrates 
human input with examples in a boosting formalism; and (5) Finally, 
through our experiments on a several data sets, we demonstrate 
that the framework efficiently exploits the human advice in learning 
effective models.

The rest of the paper is organized as follows: Section 2 
introduces the background of PLMs/advice and discusses related 
work, Section 3 presents our advice-based framework for PLMs, 
Section 4 validates our framework empirically, and finally, Section 
5 concludes and discusses future research directions.

2. BacKgrOund/related WOrK

2.1. structure learning of PlMs
Early approaches (Getoor et  al., 2001a; Getoor et  al., 2001b; 
Kersting and Raedt, 2007) to learning PLMs used two stages (Raedt 
and Kersting, 2004): the first step involved learning ‘pure logic’ 
(non-probabilistic) rules, which were unweighted as they had 
no probabilities associated with them. The second step involved 
learning the parameters (i.e., the weights or probabilities) of 
these rules. These two steps were initially performed separately, 
with the former typically based on rule-learning approaches 
such as Inductive Logic Programming (Lavrac and Dzeroski, 
1993; Kersting and Raedt, 2007) or a graph search (Getoor et al., 
2001b), and the latter based on graphical model techniques 
such as expectation maximization and gradient descent (Koller 
and Pfeffer, 1997; Kameya and Sato, 2000; Getoor et al., 2001b; 
Kersting and Raedt, 2007; Jaeger, 2008). Recently, there is an 
emphasis in adapting the “structure learning” methods from 
propositional graphical models for PLMs, specifically for the case 
of Markov Logic Networks (MLNs) (Mihalkova and Mooney, 
2007; Biba et  al., 2008; Kok and Domingos, 2009; Kok and 
Domingos, 2010). All these methods obtain the candidate clauses 
first, learn the parameters, score the weighted clauses given 
data and modify the clauses accordingly. This is a cumbersome 
process, as it requires repeated parameter learning which in turn 
requires repeated inference in its inner loop.

Consequently, there has been research on efficient structure 
learning (Natarajan et  al., 2012) called Relational Function 

Gradient Boosting (RFGB) that seeks to learn the structure and 
parameters simultaneously which we present next.

 2.2. relational Functional-gradient 
Boosting
Recall that the standard gradient descent learning algorithm 
starts with initial parameters  θ0  and computes the gradient of 
the log-likelihood function [ ∆1 = ∂

∂θ logP(X; θ0) ]. Friedman 
(2001) proposed an alternate approach to perform gradient 
descent where the log-likelihood function is represented using 
a regression function  ψ  over the examples x   and the gradients 
are performed with respect to this  ψ(x) .

Functional gradient boosting starts with an initial function  ψ0  
and iteratively adds gradients  ∆m . Each gradient term ( ∆m ) is a 
regression function over the training examples and the gradients 
at the  mth  iteration can be represented as  ⟨xi,∆m(xi)⟩  where  xi ∈  
training examples. Also, rather than directly using  ⟨xi,∆m(xi)⟩  as 
the gradient function, functional gradient boosting generalizes 
by fitting a regression function  ψ̂m  (generally regression trees) 
to the gradients  ∆m . The final model  ψm = ψ0 + ψ̂1 + · · · + ψ̂m  
is then a sum over these regression trees.

This method has been extended to various relational models 
for learning the structure (Kersting and Driessens, 2008; Karwath 
et al., 2008; Natarajan et al., 2011; Natarajan et al., 2012). The 
examples are ground atoms of the target predicate [for example, 
workedUnder(x, y)]. The  ψ  function is represented using relational 
regression trees (RRTs)(Blockeel, 1999). Since these are relational 
models, the  ψ  function depends on all the ground atoms and 
not just the grounding of the target predicate. For example, the 
probability function used by Natarajan et al. (2012) to learn the 
structure of Relational Dependency Networks (RDNs) (Neville 
and Jensen, 2007) was:  P(xi) =  sigmoid(ψ(xi;Pa(xi)))  where  Pa(xi)  
are all the relational/first-order logic facts that are used in the 
RRTs learned for  xi . They showed that the functional gradient 
of the likelihood for RDNs is

 
∂P(X = x)
∂ψ(xi)

= I(yi = 1)− P(yi = 1; xi,Pa(xi))  
(1)

which is the difference between the true distribution (I   is the 
indicator function) and the current predicted distribution. For 
positive examples, the gradient is always positive and pushes 
the  ψ  function value ( ψ0 +∆1 + · · · +∆m ) closer to ∞  and the 
probability value closer to 1. Similarly the gradients for negative 
examples is negative and hence the  ψ  function is pushed closer 
to  −∞  and probability closer to 0. While effective, this method 
is still data-intensive and treats humans as mere “labelers”. We 
use this method as our underlying learning method and show 
how to exploit human advice while learning.

2.3. Advice-Based Learning
Incorporating advice in propositional domains to improve the 
learning process has a rich history and has been explored in 
several directions (Towell and Shavlik, 1994; Kunapuli et  al., 
2010; Kunapuli et al., 2013). While specific adaptations differ, in 
all these methods, a single piece of advice is defined over some set 
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of the ground features or example space. This space can then be 
labeled much like traditional examples. For example, Kunapuli 
et al. (2013) apply this idea to inverse reinforcement learning 
- where the goal is to learn a policy, a mapping from examples 
to actions. Intuitively their advice specifies a set of preferred 
actions that an agent should prefer selecting over a different 
set of avoided actions that the agent should avoid selecting for 
particular states.

Traditionally advice in PLMs has not been expressive and 
mainly consisted of hand-coding the structure and possibly even 
the parameters of the model. Such techniques have been used 
mainly in natural language processing tasks (Riedel et al., 2009; 
Yoshikawa et al., 2009; Poon and Vanderwende, 2010). While 
such techniques have been successful, the learning algorithm 
does not modify the structure of the model. As a result, they do 
not introduce potentially novel interactions based on the training 
data. A related method by Natarajan et al. (2013) used learned 
models from a source domain as initial models in the target 
domain and boosted the gradients based on examples from the 
target domain. However, if the training data is sub-optimal, it is 
possible that the learning algorithm will refine the model away 
from the advice (which is precisely the goal in transfer learning 
as the target domain is different from the source domain). On 
the other hand, we seek to use the advice throughout the learning 
process and thereby handle noisy examples.

Recently, the boosting algorithm was modified to handle class-
imbalance using human advice (Yang et al., 2014). The key idea 
is to use human advice to specify the trade-off between false 
positives and negatives compared with the standard method of 
sub-sampling or over-sampling examples of a particular class 
(Chawla, 2005). This advice was then converted into constraints 
for the learning algorithm. This work is quite similar to our 
proposed approach. However, our advice is more general in terms 
of preferences and as we show both empirically and theoretically, 
our proposed formalism can subsume the class-imbalance trade-
off case.

We go beyond this trade-off and demonstrate how more types 
of advice such as qualitative constraints (e.g., monotonicity or 
synergy) can be modeled in our formalism. While there has 
been work on learning with qualitative constraints for Bayesian 
networks (Altendorf et al., 2005; Yang and Natarajan, 2013), they 
have not yet been applied to the relational case. Our approach 
is the first-of-its-kind advice-taking method for general PLMs.

A different, but related type of advice that we consider is the 
use of privileged information (Vapnik and Vashist, 2009; Vapnik 
and Izmailov, 2015), where some advice is available during 
training time that is not present during evaluation/deployment 
or testing times. The idea is that this is similar to learning in a 
classroom where the teacher could provide subtle hints while 
teaching the classes but these hints may not be directly used 
during the exams. These hints however guide the student to 
learning a better model. While the original work employed these 
hints as constraints when learning a SVM, we extend this to the 
relational setting.

Our work can be seen as an unifying approach that entails 
different types of advice - preferences, class imbalance constraints, 
qualitative constraints and privileged information. We build upon 

the successful gradient-boosting technique to build this framework 
that treats human as more than a mere labeler.

3. advice-Based learning in 
relatiOnal PrOBleMs

As mentioned earlier, learning in PLMs in spirit is similar to 
propositional graphical models and has two components - 
parameter learning and structure learning. Structure learning 
identifies the presence of a qualitative (influential) relationship 
between logical predicates while the parameters quantify the 
strength of these relationships. Most of the structure learning in 
literature uses an initial model from the expert and uses the data to 
fix the mistakes in these models. This essentially fixes the mistake 
in the advice and does not explicitly model the systematic errors 
in the training instances. This can lead to an inferior performance 
on noisy examples.

To address this issue, we now present a unifying framework for 
advice-based learning that is able to effectively exploit multiple types 
of advice to fix noisy training data in the form of label preferences, 
qualitative constraints, class imbalance and privileged information. 
One of the key contributions of this work is to demonstrate that 
label preferences can subsume many other types of advice. Our 
label preferences consist of a set of preferences over the labels 
specified by the user and motivated by the successful preference 
elicitation (Boutilier, 2002; Walsh, 2007) for propositional domains. 
In relational domains, as we show, obtaining these preferences is 
quite natural due to the generality of the underlying representation. 
Similar elicitation of other types of constraints such as qualitative 
constraints and class imbalance are natural and have been 
demonstrated considerably in propositional domains. We extend 
these to the relational setting. A related and different type of advice 
is that of privileged information (Vapnik and Vashist, 2009) that 
consists of a set of additional features specified (potentially by the 
user) over the training examples. These privileged features can 
potentially guide the learning process to better generalize over 
the standard features that will be incorporated into the model. 
We formalize a unifying framework that is able to integrate these 
different types of advice. To this effect, we adapt the function 
boosting approach with a modified objective function to utilize 
the human advice. We first introduce label preferences (which can 
easily model the qualitative constraints and class imbalance) and 
privileged information before discussing the learning algorithm. 
We use the term preferences to broadly consider label preferences, 
class imbalance and qualitative constraint advice pieces.

3.1. advice via Preferences
We employ the use of first-order logic to capture the expert’s 
knowledge as a set of preference rules on the space of labels/
actions as a function of the attributes of the object or related objects. 
Formally, our advice is defined as,

DEFINITION 1.  A relational advice set (RAS),  R  is specified 
as a set of relational advice rules (RAR),  r1, r2, . . . , rA  and 
weights for labels that are preferred ( βt  ) and avoided ( βf  ) by the  
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advice2. Each RAR,  ra  is defined using the triple  ⟨F, l+, l−⟩  where  F   
is the relational advice constraint (RAC) clause specifying the subset 
of examples,  l+  is the weighted preferred label and  l−  is the weighted 
avoided label.

DEFINITION  2.  A relational advice constraint (RAC),  F   is 
defined using a Horn clause  ∧ifi(xi) ⇒ label(xe) , where  ∧ifi(xi)  
specifies the conjunction of conditions under which the advice applies 
on the example arguments  xe .

EXAMPLE  1.  Consider imitation learning in the driving 
domain, as used in Figure 2, where the task is to learn a policy to 
control a vehicle. This challenging task has a large potential state 
space and represents a stochastic problem where advice could be 
useful. A potential advice could be that if any car  c  passes an agent  
(car a) on the right, then it should move into the right lane. In 
this case, the advice set contains one rule,  r1 = ⟨F, l+, l−⟩  with  βt =  

 βf = 1 . Here  F = agent(a) ∧ car(c) ∧ right_of(c, a) ∧ faster_than(c, a),  
 l+ = move_right   and  l− = stay .

Given the label preferences, the goal is to learn a model that 
has higher probabilities for the preferred labels as compared to the 
avoided labels. Consider  s  to be the set of training examples for 
which the advice is applicable, i.e.,  s = {si | B, F ⊢ label(si)} , where 
B is the background knowledge and F   is the advice constraint. The 
learned model should have a higher probability of the preferred 
target than the probability of the avoided target in the training 
examples, i.e.,  ∀si ∈ s,P(l + (si)) ≥ P(l− (si)) . The magnitude of 

2 It is trivial to extend this definition to define a βt and βf for each advice rule 
separately by defining this to be a vector.

this constraint is determined by the weights on the preferred ( βt  ) 
and avoided ( βf  ) targets.

EXAMPLE 2. For the example presented earlier, when any car  c  
passes car  a  on the right,  P(move_right(a)) ≥ P(stay(a)) .

Our advice can also handle sets of preferred and avoided labels 
by converting them into multiple advice rules for every pair of 
preferred and avoided labels. In our example, being passed on the 
right also suggests that the agent should not move into the left lane, 
i.e.,  l− = {stay,move_left} . We can also use RRTs (Blockeel, 1999) to 
specify the regions of the example space where advice is applicable. 
Since every path from root to leaf can be viewed as a Horn clause, a 
tree is a decision-list of Horn clauses. Figure 2 shows the relational 
advice constraints as a relational tree for our earlier example. The 
advice is applicable on examples which reach the green node and 
not applicable for examples reaching the red node.

We show the versatility of label preferences by showing how they 
can be used for cost-based learning as well to specify qualitative 
constraints.

Class-Imbalance: Class-imbalance is a common problem in 
relational learning as most relationships (e.g., friends or supervisors) 
are not true. These large imbalances can lead to predicting only the 
majority class. Recently, an algorithm was proposed (Yang et al., 
2014) that showed how to incorporate advice about class-imbalance 
as a cost function inside the RFGB framework, quite similar to our 
approach here. While that particular approach can only handle 
the trade-off between false positives and false negatives, we show 
that our approach is more general and can handle their case too.

Advice for class-imbalance problems can be thought of as 
providing advice over the false positive and false negative regions. 
In order to be more sensitive to false positives and less sensitive 

Figure 2 |  An advice model in the DRIVING domain for predicting lane changes on an interstate. Each node in the decision tree is a relational condition. The leaf 
nodes represent whether or not the advice will apply to examples that reach that leaf.
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to false negatives, we can simply provide advice to increase the 
probability of false positives and decrease the probability of false 
negatives. The  βt   parameter will give the weight for increasing 
the probability of false positives and the  βf   parameter will give 
the weight for decreasing the probability of false negatives. So by 
simply controlling the two  β s in our framework, one can weigh the 
impact of false positives and false negatives differently.

As an example, consider the problem of predicting whether an 
actor will finish a movie or whether he will quit. It is important for 
production company to select an actor that will stick with the movie 
after it has invested significant resources. The corresponding advice 
would contain two rules. The first would “prefer” false positives 
while the other would “avoid” false negatives. As we show in our 
experiments, this approach yields similar results to published 
work on soft margin for RFGB (Yang et  al., 2014). This clearly 
demonstrates that the preference-based advice can encompass the 
case of class-imbalance advice for PLMs.

Qualitative Constraints: Another rich type of advice, that 
we consider in this work, is the use of qualitative constraints 
(Kuipers, 1994) such as monotonicities and synergies. For instance, 
it is natural for a physician to explain that increased cholesterol 
levels elevate the risk of heart attack. This is a classic example 
of a monotonicity statement which essentially explains that 
 P(hA = true|chol = high) > P(hA = true|chol = low)  where  hA  is 
the risk of heart attack. These statements can be interpreted as 
rules that provide the interaction between a set of attributes and 
their influence on a single target attribute. Such knowledge can 
be obtained easily for many real-tasks and has previously been 
employed in the context of learning probabilistic models (Altendorf 
et al., 2005; Yang and Natarajan, 2013) in propositional domains 
where data is scarce. We consider learning from such rich advice 
in relational domains.

Advice on qualitative constraints can be viewed as providing 
multiple pieces of advice over a given feature. As the value of that 
feature increase (or decreases), successively more advice will apply 
causing  nt  (or  nf  ) to scale based on that feature. Considering advice 
in this way gives a more accurate way of understanding natural 
relationships. For example, while “a movie with an actor that is a 
comedian is more likely to be of the genre comedy” is an accurate 
statement, it is very noisy as comedians may also appear in action 
or other movies. “The more comedians that act is a movie, the 
more likely that the movie is a comedy” is a much more accurate 
statement. It is exactly this kind of statement that monotonicities 
hope to capture. In this example,  nt   will scale with the number of 
actors in a movie that are considered comedians.

3.2. advice via Privileged information
While preferences are easier to understand and model, privileged 
information takes a different form of additional features that are 
available at training time, but not during testing. This additional 
information can be used to better generalize to unseen instances. 
Formally,

DEFINITION 3. Relational privileged information (RP) is a set 
of features  xRP = xPF ∪ z  where  z ⊂ x  . The features are specified 
in first-order logic over the training examples, but not available 
during testing.

Unlike privileged information in propositional domains 
where privileged information (xPF ) and the standard features 
(x ) are mutually exclusive, relational privileged information may 
include information from the standard features set (represented 
by z ). This is due to the fact that some relational features do 
not provide much information themselves, but serve to “bridge” 
between other objects (e.g., friends or parent_of). When learning 
a clause, such relations by themselves will not increase the 
score of the search. Thus, these relations might never be picked 
when learning a relational model. Including them in the set of 
relational privileged information may be necessary to learn an 
effective model over the privileged features.

EXAMPLE  3.  Consider the same driving domain as in the 
previous section. Privileged information could include the local 
traffic patterns (e.g., rush hour, major/minor interchanges) or 
a description of the different nearby areas (e.g., demographics, 
business or residential).

Privileged information can potentially guide or bias the 
learning algorithm to select features that generalize these concepts 
to other areas of the feature space. Privileged information 
provides another way for domain experts to interact with the 
learner. The RAC used to define the label’s preference can be 
viewed as a user-defined binary feature. We will empirically 
explore the connection between these different types of advice 
in the experimental section.

3.3. Knowledge-Based Objective Function
We aim to incorporate both preferences and privileged 
information into a unifying framework for knowledge-based 
relational learning. As mentioned earlier, one common way of 
introducing knowledge into relational learning is to use advice 
to define the initial structure or parameters (in this case the first 
tree of the boosted model) and refine this based on data. The key 
issue is that this method, in the worst case, can undo the advice 
to better fit the (possibly noisy) training instances. If the training 
examples are noisy, we do not want to fit only to the training 
examples but also utilize the advice. Hence, there is a necessity 
to faithfully and seamlessly integrate the advice into the learned 
model. We achieve this by modifying the objective function and 
including a cost that can account for each type of advice, allowing 
the learner to trade-off between the data and advice.

To achieve this, inspired by prior work of Gimpel and Smith 
(2010), we introduce a cost function  c  in the denominator of the 
log-likelihood function. While in their work, this was employed 
as a regularization term for a log-linear model, we employ 
this as a penalty term for violating the advice provided by the 
expert. This modified log-likelihood (MLL) function using the 
functional representation is given as,

 
MLL(x, y) =

∑
xi∈x

log
exp

(
ψ(xi; yi)

)
∑

y′ exp
(
ψ(xi; y′) + c(yi, y′,ψ)

)
  

(2)

Different types of advice require different cost functions 
and affect the learning process in different ways. While label 
preferences alter the predictions over a set of potentially noisy 
training examples, privileged information aims to improve 
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generation by expressing similarities or differences among the 
feature space. We now explore the cost functions for both label 
preference  (cLP)  and privileged information ( cRP  ).

3.3.1. Label Preferences
In the case of label preferences, our cost function is used to 
penalize the model that does not fit to the advice. Since the cost 
function penalty depends only on the advice and the current 
model but not on the example labels  y  and  y′ , we can redefine 
it as  c(xi,ψ) . We define the cost function as

 cLP(xi,ψ) = −λ× ψ(xi)× [βt × nt(xi)− βf × nf(xi)]  (3)

We use  nt   to indicate the number of advice rules that prefer the 
example to be true and  nf   to be the number of rules that prefer it to 
be false. The  βt   and  βf   weigh the magnitude that the advice should 
increase (or decrease) the probability of an example. By default both 
 β  parameters are set to 1, but these parameters are particularly 
useful when specifying advice to correct class-imbalance where 
errors in one class are more significant than errors in other classes3. 
We use λ  to scale the cost function and  ψ(xi)  is the current value 
of the  ψ  function for the example  xi .

EXAMPLE 4. Consider two advice rules:

 

r1 = ⟨agent(a) ∧ car(b) ∧ right_of(b, a)∧, faster_than(b, a)
=⇒ label(a),move_right, stay⟩
r2 = ⟨agent(a) ∧ right_of(c, a) ∧ traffic_stop(c)
=⇒ label(a), {move_left, stay},move_right⟩  

examples  move_left  stay   move_right 

 nt  nf   nt  nf   nt  nf  

 efr1 ,fr2 0 0 0 0 0 0

 etr1 ,fr2 0 0 0 1 1 0

 efr1 ,tr2 1 0 1 0 0 1

 etr1 ,tr2 1 0 1 1 1 1

The preceding table contains the values of  nt   and  nf   for various 
classes of examples.  efr1 ,fr2  represents the examples where both 
conditions for rules  r1  and  r2  are false (i.e., no car passing the 
agent on the right and no police traffic stop in the right lane), 

 nt(efr1 ,fr2 ) = nf(efr1 ,fr2 ) = 0  for all labels.  nt  values are shaded green 
and  nf   red. This example demonstrates several properties of our 
formalism: (1) advice only applies when it is relevant, (2) label 
preferences can contain sets of labels, and (3) the formalism can 
handle contradictory advice ( nt  / nf   are both non-zero).

Assuming that both  βt   and  βf   are 1, then intuitively when the 
example label is the preferred target in more advice rules than the 
avoided target,  nt − nf   will be positive. Higher (positive) regression 
values will result in a lower (negative) cost function. Since a high 

3 For instance in many medical diagnosis tasks, it is important sometimes to 
reduce false negatives even at the cost of introducing a few false positives.

positive regression value corresponds to higher probability of 
example being true, the cost function is lower when the regression 
function aligns with the advice. On the other hand, if the regression 
value is negative, the cost is positive since the regression function 
does not fully align with the advice. We will discuss varying  βt   and 

 βf   values in detail later in this section.

 3.3.2. Relational Privileged Information
In the case of privileged information, we have two sets of examples. 
Thus, we learn a model over the standard features [ P(y|x) ] as well 
over the privileged features [ PD(y|xRP) ]. The cost function depends 
on the KL-divergence between predictions made using the standard 
features and predictions made over the privileged features. The 
KL-divergence represents knowledge in the privileged space that 
is not available in the standard feature space. This additional 
information can allow the learning algorithm to select better 
features from which to generalize. We define the cost function as

 cRP(xi,ψ) = −λ× KL(PD(yi|xRPi )||P(yi|xi))  (4)

Similar to the previous case, λ  can be used to scale the relative 
effect of the privileged information. We now show an example 
where privileged information is potentially useful.

EXAMPLE 5. Consider predicting whether a car will be pulled 
over in the driving domain. Two potential risk factors for being pulled 
over are speeding or driving a sports car.

Intuitively, speeding is more likely to generalize well across 
different vehicle models. However, a small sample of drivers in 
New York City might suggest that sports cars are more likely to 
be pulled over. Privileged information that includes the local area 
(e.g., Manhattan) may allow the learning algorithm to reduce the 
chance of selecting sports cars due to bias in the training set.

We now use functional-gradient boosting to maximize our 
modified objective function (MLL).

 

MLL(x) =
∑
i

log exp(ψ(xi; yi))− log
(∑

y′
exp

(
ψ(xi; y′)− c(xi,ψ)

))

=
∑
i

log expψ(xi; yi)− log
∑

y′
exp(c(xi,ψ))

=
∑
i

log P(yi, xi;ψ) + c(xi,ψ)
  

Note that  c  may be either  cLP ,  cRP  or a combination of the two. 
We derive the function gradients for each cost function separately.

 

∂MLLLP(x)
∂ψ(xi; yi)

=
∂

∂ψ(xi; yi)
log P(yi, xi;ψ) + λ · ψ(xi) · [βt · nt(xi) − βf · nf(xi)]

∆LP(xi) = I(yi = 1) − P(yi = 1;ψ) + λ ·
[
βt · nt(xi) − βf · nf(xi)

]
  

Intuitively, when a label for a given example has 

 βt · nt(xi) >> βf · nf(xi)  then the label is preferred by most of the 
advice for that example. Therefore, the gradient of that example 
will be increased. Conversely, when a label for a given example 
has  βb · nt(xi) << βf · nf(xi)  then the label is avoided by most 
of the advice for that example and the gradient of that example 
will be decreased. Examples where there is no advice will have 

 βb · nt(xi) ≈ βf · nf(xi)  and the gradient will only be calculated 
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from the data. In this way, we can also handle conflicting advice 
for the same example. We rewrite our gradients by setting  η = α  
and  λ = (1− α)/η  to get

 

η ·∆LP(xi) = α · (I(yi = 1)− P(yi = 1;ψ))
+ (1− α) ·

[
βt · nt(xi)− βf · nf(xi)

]
  

We learn RRTs stagewise as explained previously and shown in 
Figure 3. As shown in Algorithm 1, the strength of our approach 
not only comes from the concise way that our method is able to 
handle advice, but also that this advice is used to improve the 
model throughout the learning process. Using the advice just as 
the initial model will result in the learning algorithm undoing 
the advice if the examples are noisy. This can also be seen in our 
empirical evaluation.

More specifically, function GenExamples in Algorithm 1 
computes both the probability of each example having a particular 
label and the impact of the advice on that particular label and 
example. Then the gradient of each example that is included in 
the training set is a combination of the gradient with respect to 
the data and the advice.

In the case of privileged information, we are learning two 
separate models. We compute the gradient for the standard features 
(i.e.,  P(yi|xi) ),

 

∂MLLRP(x)
∂ψ(xi; yi)

=
∂

∂ψ(xi; yi)
log P(yi, xi;ψ) − λ × KL(PD(yi|xRPi )||P(yi|xi))

∆RP(xi) = I(yi = 1) − P(yi = 1;ψ) − α ·
(
P(yi = 1|xCFi ) − PD(yi = 1|xRPi )

)
  

Intuitively, if the learned distribution has a higher probability of 
an example belonging to the positive class compared to the RP  
distribution,  P(yi = 1|xCFi )− PD(yi = 1|xRPi )  would be positive 
and the gradient would be pushed lower. Hence the additional 
term would push the gradient (weighted by α ) towards the true 
distribution as predicted by RP . Thus, we are using the privileged 
features to guide the model to better generalization by biasing the 
algorithm to select features that make similar predictions to those 
made over the privileged features.

The high-level idea is illustrated in Figure  4. The process is 
inherently iterative. A tree is first learned in the privileged space 
which is used to guide the learning in the observed feature space. 
Now the tree learned in the observed feature space will then be 
used to guide the next tree in the next privileged feature space 

Figure 3 |  Standard RFGB is shown inside the black square (advice penalty equal to 0 for all examples) where relation regression trees are learned in a 
stage-wise fashion. When provided expert advice, the gradients for each example for which the advice applies are pushed in the direction of the advice (positive if 
the advice corresponds to the probability of the target being higher and vice versa). Figure appears in Odom et al. (2015b).
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along with the data. This process is repeated until convergence in 
the observed feature space. After learning the set of trees in the 
privileged feature space can be discarded while the trees from the 
observed space are treated as the final model.

The parameter α  controls the influence of the privileged data 
on the learned distribution. In the extreme case of  α = 0 , RP  are 
completely ignored, i.e., RP  is a noisy expert and we end up with 
the standard functional gradient. While it is potentially possible 
to choose α  via some experimental method such as cross-
validation, given the intuition that it represents the importance 
of privileged information, we define α  for the classifier model4 as,

 α ∝
∑

i I(PD(yi = y∗i |x
RP) >= P(yi = y∗i |x

CF))
N   

which is proportional to the fraction of the number of examples 
where the privileged features yield a better distribution over 
the observed labels ( y∗ ) than the classifier features. As a better 
classifier model is learned, the value of α  goes down giving more 
importance to the data.

3.4. Multiple adaptations
Note that the objective function that we modified is a general one 
used in prior literature for relational domains. Thus we can use 
our knowledge-based RFGB for any model that uses RFGB. First, 
we discuss the generality of the approach by demonstrating how 
to use our advice for class-imbalance and qualitative constraints. 
Then, we show the versatility of our work in two directions: (1) 
what can be learned, and (2) what problems can be solved. To 
this effect, we show that we can learn the structure of both RDNs 
and MLNs, and that we can apply these models for relational 
policies and transfer learning.

3.4.1. What Relational Models Can Be Learned?
RDN: Based on prior work for RDNs (Natarajan et al., 2012), we 
can learn the structure of RDNs by learning a sequence of relational 
regression trees (RRT) for every predicate independently. This 
is due to the fact that the easiest way to learn a dependency 
network and consequently its relational extension is to simply 
learn a set of local conditional distributions and then combine 
them using Gibbs sampling. We boost each local distribution. We 
use the modified gradients to calculate the regression values for 
each ground example and use the modified regression examples 
to learn the RRTs.

MLN: There has been previous work on learning MLN as a 
series of RDNs (Khot et al., 2011). This is possible since MLNs 
make the conditional independence assumption only during 
learning, prior work (Khot et al., 2011) iteratively learned one 
tree for each predicate and used the previous trees for all the 
predicates for calculating the gradients. We also used the same 
approach with the modified gradients presented here.

4 α can be likewise defined for the privileged model.

algorithm 1 arFgB: advice for relational Function gradient Boo-
sting (Odom et al., 2015b). 

function AdviceBoost( Data , Advice )

 for 1 ≤ k ≤ K  do    ▷  Iterate through the predicates 

  for  1 ≤ m ≤ M  do   ▷  Iteration through the gradient steps 

    Sk  =GenExamples ( k , Data , F
k
m−1 , Advice )

    ∆m(k)  =FitRelRegressTree ( Sk ,L )

    F
k
m = Fkm−1 +∆m(k) 

  end for

   P(Yk = yk| Pa (Xk)) ∝ ψk
   ▷   ψ

k
  is obtained by grounding  F

k
M  

 end for

end function

function GenExamples ( k , Data ,F  , Advice )

  S = ∅ 

 for 1 ≤ i ≤ Nk do  ▷  Iterate over all examples 

  Compute  P(y
i
k|x

i
k,Pa(X

i
k))   ▷  Probability of the predicate being true 

  Compute 
 
Ci = βt · nt(xi)− βf · nf(xi) 

  

 

r∆(yik, x
i
k,Advice) = (1− α)[I(yi = 1)− P(yik = 1)|Pa(xik))]

+α.Ci 

   S = S
∪
[(yik, x

i
k,∆(yik, x

i
k,Advice)] 

 end for

 return  S 

end function
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3.4.2. What Relational Problems Can Be Solved?
Relational classification: By relational classification, we refer to 
classifying examples based on relational features. To this effect, RFGB 
learns a model (set of trees) to predict each class and then normalizes 
the resulting distribution to compute the posterior probabilities 
(Natarajan et al., 2012).

Relational policies: Imitation learning uses expert trajectories to 
directly learn a policy that best fits the expert trajectory. For relational 
domains, RFGB has been used to learn the relational policy by learning 
RRTs for every action (Natarajan et al., 2011). Since our trajectories 
can be noisy, we use advice to compute the modified gradients for 
every action to learn a knowledge-based relational policy.

Transfer learning: Transfer learning can be viewed as learning 
from a source task that has systematic differences with the target 
task. Previous work used RFGB to learn a model for a target domain 
by using the model from the source domain as an initial model 
(Natarajan et al., 2013) and refining the model with target examples. 
We, on the other hand, can learn a model from only source examples 
which can potentially be from a simpler domain. Expert advice can 
make source examples more applicable to target domain by focusing 
on key differences between source and target tasks.

4. exPeriMents

Given that our approach is a general framework for advice-giving to 
PLMs that encompasses different types of advice, we present empirical 
analysis that focuses on our two key directions:

(1) How effective are label preferences for noisy/uncertain data? 

(2) Can we exploit privileged information to improve learning? 

4.1. results for label Preferences
We present results for general label preferences, focusing on the 
breadth of problems (models and tasks) to which our framework 

can be applied. Then, we explore cost-based learning where there 
is a different cost for false positive and false negatives. Finally, we 
present initial results for qualitative constraints.

4.1.1. Preferential Advice
Our empirical evaluation of preferences aims to answer the 
following questions: (Q1) how effective is advice for relational 
classification, (Q2) can we employ advice in sequential problems 
(imitation learning), (Q3) does our method leverage knowledge 
across domains (transfer learning), and (Q4) how does advice 
help in standard domains for learning the popular PLM models 
(MLNs)? Each of these problem presents unique challenges where 
our advice-based framework can have significant impact.

For this set of experiments, we use two baseline approaches to 
compare against our method (presented as ARFGB-LP). To evaluate 
the importance of advice in our approach, we compare against 
RFGB without using any advice rules (RFGB). Also, we compare 
our approach against using the advice as initial model for RFGB 
(Adv-Initial) to demonstrate the effectiveness of our approach for 
incorporating advice. As the advice itself rarely specifies enough 
information to build a complete model, we show the relative 
influence of the advice in Table  1, which gives the fraction of 
training examples to which the advice applies. Although our advice 
only covers a part of the example space, the key intuition is that 

Figure 4 |  ARFGB-PI with privileged information. As can be observed, this is an iterative procedure. First, a small tree in the privileged feature space is learned. 
Next, a small tree in the classifier feature space is learned that combines the minimization of the error due to the data and the KL divergence to the privileged model. 
In the next step, a privileged tree is learned that minimizes the data gradients w.r.t. privileged features and the KL divergence to the observed features. This tree is 
added to the privileged model to calculate the gradients due to privileged features and the KL divergence. This process is repeated until convergence in the 
observed feature space.

taBle 1  | Appears in Odom et al. (2015b). The percentage of examples 
covered by each advice for tasks:

domain
drosophilia 

(rc)
driving (il) drosophilia 

(tl)
iMdB (rc 

using Mlns)

Advice 
Coverage

27.2 55.3 38.0 85.3

Relational Classification (RC) - Drosphilia; Imitation Learning (IL) - Driving; Transfer 
Learning (TL) - Drosophilia;
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there are several small yet important regions where good advice 
might be crucial, which we also show empirically.

We show the advice across several tasks in Table  2. 
Note that the complete advice is stored as a decision-list of 
clauses. To compare the approaches, we use test-set accuracy 
averaged over multiple folds. We evaluate the results across 
three data sets. We use a different number of folds (4/5) in 
different experiments as they are natural for the particular  
domains.

Relational Classification:
We first evaluate our approach on relational classification in an 
image labeling domain where the goal is to label the segmented 
regions of an image. We use the Drosophila dataset (Cardona et al., 
2010), which has 20 stacks of microscopic images of fruit flies 
ventral nerve cord. The possible labels include extra-cellular region, 
intra-cellular region, mitochondria, and membrane. This domain is 
naturally relational as the different regions have spatial relationships, 
e.g., membrane surrounds the cell (intra and mitochondria) and 
the number of segments can vary across images. We assume that 
we are given a perfectly segmented image (each region corresponds 
to one and only one object). Our features include region properties 
including color, color variance, area, perimeter, circularity, number 
of neighbors and edge features (representing boundary between 
regions) such as length, shape, area and color difference between 
regions.

We divide the dataset into 4 train and test sets, where each 
training set consists of 3 layers, while each test set consist of 2 layers 
that are 10 layers away from the training set. We introduced targeted 
noise in the membrane labels to emulate the natural mistakes in 
segmentation (for instance, missing small minute segments). Thus 
it is difficult to classify membrane regions in the noisy space. Our 
advice is then given on the noisy space to mimic a human expert.

In addition to relational models, we also compare against 
propositional models learned with a limited set of features 
(Prop) which do not have the spatial or relational neighborhood 
information, while the relational (Rel) models have the full feature 
set. We compare models learned without advice to ones with advice 
with our method (ARFGB-LP) and our baseline method (Adv-
Initial). All the boosting approaches learn five trees in this domain.

In Table  3, we show the overall accuracy over all the labels 
where the label distribution is heavily skewed towards membrane. 
All advice methods are able to outperform those that did not have 

access to the advice. When comparing the advice models, our 
ARFGB-LP method is able to outperform the baseline Adv-Initial 
method. Even the ARFGB-LP (Prop) model which was learned 
from propositional feature space outperforms the Adv-Initial 
(Rel) method which had access to the neighborhood information. 
Recall that this is due to the Adv-Initial method starting with the 
advice and then refining the model away from the advice, while 
our ARFGB-LP method enables refining the models towards the 
advice at each step. Our method ARFGB-LP is able to combine 
information from both the training data and the advice model; 
thus, it achieves performance gains from both and answers Q1 
affirmatively.

Imitation Learning:
We next consider a sequential learning setting using the driving 
simulator extended from Judah et  al. (2014). The goal in this 
domain is to navigate on a 5-lane highway, changing lanes in order 
to avoid other cars that are traveling at various speeds. The driver 
may either stay in the current lane, or move to the right or left lane. 
This domain is also relational as the spatial information is crucial 
to making driving decisions and the number of cars change across 
different scenarios. For example, if there is a car in front of an agent 
and a car to the right of the car in front, then moving into right 
lane might not be the correct action.

We learn from 10,000 training examples (100 trajectories) of 
an expert acting in the domain but choosing a sub-optimal action 
in certain states (like always driving in the left lane) and test on 
another 10,000 (100 trajectories) examples of another expert driving 
correctly. This is averaged over 5 runs. A sample advice could be 
to drive in the rightmost lane when possible, even though human 
drivers often prefer to drive in the left lanes. In our experiments, the 
advice was to stay in the current lane unless there are cars ahead.

taBle 2 |  Examples of label preference advice used in the respective experimental domains.

domain advice description  Preferred label

Drosphilia (RC) Cell regions with many neighbors and do not have a 
small perimeter or a particular color

  Membrane

 ⟨numNeighbors(img, region, 4),membrane, {mit, intra, extra}⟩  
Driving (IL) If no car exists in front   Stay in lane

 ⟨¬in_front(carA, agent, time), stay, {moveRight,moveLeft}⟩  
Drosphilia (TL) Cell regions with many neighbors   Membrane

 ⟨numNeighbors(img, region, 4),membrane, {mit, intra, extra}⟩  
IMDB Actors work under other people in the same movie   WorkedUunder

 ⟨movie(movie1, per1) ∧ movie(movie1, per2) ∧ genre(per2, g),workedUnder,¬workedUnder⟩  

taBle 3  | Appears in Odom et al. (2015b). Relational Classification - 
Drosophila.

Model acc

FGB (Prop) 68.6 ± 0.4

RFGB (Rel) 69.3 ± 0.5
Adv-Initial (Prop) 68.8 ± 0.6
Adv-Initial (Rel) 91.6 ± 0.4
ARFGB-LP (Prop) 97.0 ± 0.5
ARFGB-LP (Rel) 99.1 ± 0.4
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The results, Table 4 show that our method is able to significantly 
outperform the work of Natarajan et al. (2011) which learns without 
advice. In sequential learning problems, we are able to successfully 
leverage data and advice to make more accurate predictions and 
thus positively answer Q2.

Transfer Learning:
We next verify how our advice framework can improve transfer 
learning in a relational domain. This could be especially useful if 
there is a related (possibly simpler) domain whose data points could 
be useful but the label space either has an incorrect distribution 
or the space is simply different (i.e., the domain contains similar 
features but different distributions or even different labels). Our 
advice can make the data in this form more applicable to the target 
domain, thus increasing the value of these examples for the target 
problem.

We use a version of the Drosophila dataset from the previous 
section. However, we assume that the source data has a limited 
label space. The source data is over whether a region is inside a 
cell or outside a cell. For our training data, we assume that intra-
cellular and mitochondria regions are inside the cell, while extra-
cellular and membrane regions are outside of the cell. However, 
the target problem is determining whether or not a region belongs 
to the mitochondria class. Notice that while the source data has 
a relationship with the target problem, it is not sufficient to build 
a model for mitochondria detection as there are a significant 
number of other objects inside a cell. Hence, advice is used to 
distinguish interesting (mitochondria) from non-interesting 
objects in the cell.

The results (shown in Table 5) show that the advice is able 
to filter out many of objects that are non-interesting (not 
mitochondria) and thus significantly improve the model. This 
is shown in the ARFGB-LP models improved accuracy on the 
non-interesting classes (other). While these results confirm that 
Q3 is true when the source and target domain share the same 
state space, it is an interesting future direction to show that a 

similar result can be achieved when transferring across different 
state spaces.

Learning MLNs
Finally, we also evaluate our advice framework in learning MLNs on 
a standard relational dataset, IMDB. The IMDB dataset (Mihalkova 
and Mooney, 2007) has information about movies, actors, 
and directors represented with five predicates: actor, director, 
genre, gender and workedUnder. We predict the workedUnder 
relationship between the people in this dataset. We performed five-
fold cross-validation on this domain. We apply uniform noise (5, 
10, 25%) to this dataset repeated five times for each fold and average 
the results. Unlike other domains, the IMDB dataset has a relatively 
large number of negative examples and hence even with 25% noisy 
positive examples, the impact on the negative examples is marginal. 
Hence, we also reduce the number of negative examples in all our 
approaches in this domain.

Table 6 shows the accuracy of our approaches on this domain for 
learning MLNs. Our approach (ARFGB-LP) outperforms learning 
without advice (RFGB), showing that our approach can be useful 
even when dealing with noisy examples and not just systematic 
noise. Also, it answers Q4 that advice can be used to learn MLNs.

4.1.2. Cost-Based Learning
So far, we have considered the impact of advice on different types of 
tasks such as imitation learning, transfer learning and classification 
and on different types of models such as RDNs and MLNs. We 
now address the generality of the framework for different types 
of advice. To this effect, we first consider the common class-
imbalance problem in relational problems. This occurs because 
there is a combinatorial explosion in the number of relationships 
between objects that are false. For instance, most people are not 
friends with each other, most authors do not publish together, 
most people do not own multiple houses. Consequently, there is 
an order-of-magnitude difference between the number of examples 
in one class vs another. While this problem has been addressed 
in propositional domains as class-imbalance, there is not much 
work inside the PLM community. More importantly, since most 
of the learning algorithms use conditional log-likelihood as the 
underlying optimization function, they tend to either ignore this 
problem or sub-sample one class to avoid the explosion. Recently, 
Yang et al. (2014) presented a more faithful approach of elicitation 
of the importance between the different classes and modified 
the objective function to include this advice while learning the 
boosted model. As we show in the previous section, our work can 
theoretically model this advice (class-imbalance) as preferential 
advice. In this section, we evaluate it empirically by answering the 
following questions: (Q1) can our method faithfully incorporate 
advice on class-imbalance and (Q2) how does our method compare 

taBle 6 | Appears in Odom et al. (2015b). Relational Classification - IMDB.

Model 5% noise 10% noise 25% noise

RFGB 55.5 ± 9.3 55.9 ± 7.6 57.6 ± 9.0

ARFGB-LP 84.5 ± 6.0 81.0 ± 2.3 75.9 ± 4.4

taBle 4  | Appears in Odom et al. (2015b). Imitation Learning - Driving.

Model acc 

RFGB 52.5 ± 5.0 
Adv-Initial 52.2 ± 5.9 
ARFGB-LP 96.0 ± 0.4 

taBle 5  | Appears in Odom et al. (2015b). Transfer Learning - Drosophila.

Model mit other total 

FGB (Prop) 73.0 92.1 92.0± 0.9 
RFGB (Rel) 79.7 91.7 91.6± 0.4 
Adv-Initial (Prop) 84.3 90.1 90.0± 0.7 
Adv-Initial (Rel) 86.3 90.3 90.3± 0.6 
ARFGB-LP (Prop) 83.6 99.8 99.7± 0.2 
ARFGB-LP (Rel) 75.2 99.5 99.4± 0.1 
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to state-of-the-art learning methods that correct class-imbalance? 
We compare our method (ARFGB-CI) to several baselines 
including learning an MLN (Khot et al., 2011), learning a single 
relational regression tree (RRT) and learning 20 trees using RFGB. 
We also compare our method to a previous method Soft-Margin 
Relational Functional Gradient Boosting (SMRFGB) by Yang 
et al. (2014) which alters standard RFGB to account for skewed 
data. Note that while they showed a range of different parameter 
settings, we compare to the best (or near-best) from among all the 
parameters settings. By comparing to this specialized method, we 
demonstrate the versatility of our approach. Accuracy is not used 
as a performance metric in this section as class-imbalance makes 
this metric less informative. This is due to the fact that methods 
that predict all examples as the majority class can achieve very high 
performance without learning anything useful. Instead, we focus 
on problems where correctly predicting the positive minority class 
outweighs the negative class. To this effect, we follow previous work 
(Weng and Poon, 2008; Yang et al., 2014) and use weighted-auc 
that weights the high-recall areas of the ROC curve more than 
the low-recall areas. This makes sense in domains like medical 
predictions where it is extremely costly to not predict a heart attack 
but is less costly to predict a heart attach where one is not likely to 
occur. Similarly, we compare weighted f-score and the false negative 
rate. We refer to the previous work on class-imbalance (Yang et al., 
2014) for more details on these evaluation measures. We perform 
experiments in several standard relational domains including cora 
(Poon and Domingos, 2007) - a publication and citation dataset, 
heart - a heart attack dataset, uw (Mihalkova and Mooney, 2007) - a 
dataset of professors and students, and webkb (Richardson et al., 
2006) - a course dataset. All of these experiments have parameters 
set as 0.9 for α , 4.0 for  βt   and 0.0 for  βf  . The optimal parameters 
settings may depend on the skew of the dataset among other factors, 
but these were selected as well performing parameters across all 
domains. The results, shown in Table 7, clearly demonstrate that 
our method is able to outperform standard learning methods that 
do not incorporate advice. Our method captures advice about class-
imbalance as well as the state-of-the-art method for PLMs by Yang 
et al. (2014). This result answers Q1 and Q2 both positively as we 
are comparable or better with the best alternative for PLMs.

4.1.3. Qualitative Constraints
We now consider the final type of advice that is most commonly 
used in probabilistic learning systems called qualitative advice 
(Altendorf et  al., 2005; Yang and Natarajan, 2013). More 
concretely, we consider providing monotonicity advice between 
the features and the target predicates. For example, in medicine, it 
is useful to provide an advice such as “increase in blood pressure 
increases the risk of heart attack”. Note that this type of advice is 
not providing any quantitative assertion about the probabilistic 
interactions but merely points out the qualitative relationship 
between blood pressure and risk of heart attack. To be precise, 
this statement specifies how the probability mass function shifts 
in the conditional table. Previous work have demonstrated the 
effectiveness and efficiency of this type of advice when learning 
propositional probabilistic models such as Bayes nets (Altendorf 
et al., 2005; Yang and Natarajan, 2013). There is not any work on 
using such knowledge for richer models such as PLMs for us to 
compare as baselines. 

Consequently, to further empirically evaluate the generality 
of our approach, we consider qualitative advice in this section. 
Specifically, we focus on the following questions: (Q1) can our 
framework incorporate more expressive advice, and (Q2) what is 
the significance of this type of advice? As mentioned earlier, there 
are few methods that can incorporate monotonic advice in PLMs. 
So we compare it against our method that incorporates simple label 
preferences. One way to understand monotonicity is that the more 
general the advice, the coarser it is likely to be. For instance, simply 
stating high BP causes higher risk of heart attack is more general 
than specifying that as BP increase, the higher the risk of heart 
attack. The first case simply states a label preference for a particular 
region of the feature space but the second is more informative in 
explaining how the label changes over the region of features. The 
proposed approach for monotonicities in this paper is of the latter 
case (ARFGB-Mono in Table 8) while the alternative general advice 
(ARFGB-LP in Table 8) is the former case. As a standard baseline, 
we employ RFGB without any advice.

As a proof of concept, our test domain is a synthetic heart 
attack prediction domain. It is created with high cholesterol as an 
indicator of a heart attack. The higher the cholesterol, the higher 
the chance of having a heart attack. The models were learned 
from small training sets (50 examples) and tested on much larger 
training sets (5,000 examples). We repeated the experiment 10 
times and report the average accuracy. The results, shown in 
Table  8, show that our method incorporating the monotonic 
advice significantly outperforms all other methods. As expected, 
AFRGB-LP outperforms not incorporating any advice. However, 
it can not take full advantage of the relationship between blood 
pressure and heart attacks. As shown, Q1 and Q2 are answered 
affirmatively.

taBle 7 | Appears in Odom et al. (2015b). Results for Class-Imbalance advice.

Mln rrt rFgB sMrFgB arFgB-ci

cora
WAUC 0.233 0.709 0.723 0.712 0.717
FNR 0.626 0.663 0.481 0.0 0.02
WF 0.832 0.867 0.864 0.974 0.957
heart
WAUC 0.026 0.302 0.295 0.353 0.324
FNR 0.386 0.641 0.354 0.0 0.09
WF 0.569 0.351 0.622 0.91 0.843
uw
WAUC 0.044 0.765 0.886 0.892 0.924
FNR 0.047 0.113 0.006 0.0 0.017
WF 0.701 0.877 0.95 0.733 0.935
webkb
WAUC 0.004 0.484 0.489 0.466 0.469
FNR 0.43 0.612 0.501 0.0 0.0
WF 0.429 0.378 0.451 0.742 0.79

taBle 8 | Appears in Odom et al. (2015b). Results for monotonicity advice

rFgB arFgB-Pi arFgB-Mono

ACC 64.0 74.9 82.0
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4.2. results for Privileged information
We now discuss the results when learning with privileged 
features. Our evaluation focuses on a NLP dataset of football 
games.

The NFL dataset (Natarajan et al., 2014) contains information 
about games during the 1995–2000 seasons. We consider two 
problems from this dataset: (1) learn from home games (seasons 
1995–1997) of a particular team to predict winners all games of 
that team (seasons 1998–2000) and (2) learn from homes games 
of all team in a particular division (1995–1997) to predict the 
winner of all games played by that division (1998–2000). These 
two problems allow for investigation of the impact of privileged 
information with different quantities of training data.

We define natural privileged information in this domain. The 
 CF  features include information about when the game was played, 
if the game is regular or post season, the number of turnovers/
yards and whether the final score was within one possession. 
The RP  features included the number of points (discretized to 
multiples of seven so it is not a perfect predictor) and which team 
had more turnovers. The aim is to use the privileged information 
to generalize from home games of three seasons to all games 
of subsequent seasons. As these features represent high-quality 
privileged information, the α  value when learning the privileged 
model is 0. The proportionality constant for α  when learning 
the classifier model is  

1
2 .

Figure  5 shows the difference between ARFGB-PI (with 
privileged information) and RFGB training and testing on 
individual NFL teams. This dataset is particularly challenging 
as teams could have varying success in different seasons. The goal 
is to generalize from a teams home games to all their games in 
subsequent seasons. Note that predictions for 18 of 31 teams are 
improved with the use of privileged information.

The results are shown on all home games from teams in 
a division (4 teams to a division) and testing on all of those 

teams subsequent games. Even with an increase in number of 
training examples, ARFGB-PI (the relational functional-gradient 
boosting with privileged information) is able to outperform 
RFGB (the standard functional-gradient boosting) for 6 of the 
8 NFL divisions. Experiments on the NFL domain suggest that 
our privileged approach ARFGB-PI can improve performance 
in noisy, real-world tasks.

4.3. discussion
The experimental results demonstrate a few aspects of 
probabilistic logic models - first is that they are capable of 
employing rich human inputs beyond simple labelled examples. 
Second is that, the gradient boosting technique for learning 
PLMs makes it possible for developing a unified framework 
based on preferences. Third, the results clearly show that the 
preference based learning method is indeed useful across many 
real tasks. It must be mentioned that while the results of using 
privileged information is not as impressive as the other forms 
of advice, this is consistent with the results from the original 
privileged information framework (Vapnik and Izmailov, 2015). 
Note that the key difference between the privileged information 
and the preference based framework is that in the latter, the 
advice is employed as a constraint which if violated incurs a 
penalty. Privileged information on the other hand is merely used 
to guide the examples. It is interesting direction to combine the 
two frameworks which we intent to pursue in the future and is 
beyond the scope of the current work.

5. cOnclusiOn and Future WOrK

We propose a novel method for allowing rich interaction between 
experts and PLMs. The key insight of our approach is that it 

Figure 5 |  Following Sharmanska et al. (2013), we show a direct comparison between the ARFGB-PI and its standard learner counterparts (RFGB). Each bar 
represents the difference between the privileged and standard learner. The NFL dataset for individual teams (LEFT) and divisions (RIGHT) are shown separately. Note 
that the blue bars indicate the datasets where the privileged learner outperforms the standard learner and red bars indicate the inverse.
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continuously leverages advice provided by domain experts while 
learning as against traditional methods that consider it as an initial 
model. The approach obtains advice in the natural form of first-
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that the generality of our formalism by adapting it for four types 
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privileged information. Empirically, we show that our approach is 
effective when learning with the proposed advice from noisy training 
examples or when dealing with few examples. Our framework allows 
for controlling the magnitude of an individual piece of advice as well 
as the relative impacts of advice and training data on the learned 
model.

There are several possible extensions for future work. First, we 
will work on providing a theoretical understanding of our update to 
the gradients. Second, currently our approach considers all advice 
to be equal, but this may not always be the case. We will work on 
associating weights with the expert advice which can either be 
learned or provided by the expert. Next, while we have some initial 
results suggesting that the trade-off between advice and data is robust 
to reasonable values of α , we propose to study the impact of this 
trade-off with noisy advice. Extending this work to other types of 
relational problems such as planning, sequential decision-making and 
possibly inverse reinforcement learning is a fruitful direction. Finally, 
we assume all the advice to be given before learning commences. 
Relaxing this assumption to provide advice as necessary (in an active 
manner) if an interesting area of future research.
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