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1Department of Pharmacology and Physiology, Des Moines University, West Des Moines,
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Introduction: This study investigates the relationship between the gut

microbiome and voluntary exercise, focusing on wheel running activity in a rat

model. The gut microbiome plays a crucial role in host physiology, homeostasis,

and behavior. Alterations in the gut microbiome have been linked to various

pathological states and health conditions, including obesity.

Methods: Given the strong association between physical inactivity and obesity

development, our study aimed to identify microbiome factors associated with

elevated levels of voluntary exercise. Male Sprague Dawley rats were used in the

4-week exercise paradigm in which voluntary wheel running behavior was

monitored alongside weekly microbiome sampling from fecal pellets.

Results:We observed individual differences in running activity among the cohort.

Significant positive correlations in running distance were identified across the 4-

week time course, suggesting that running activity ranking was largely preserved.

Furthermore, earlier running activity emerged as a potential predictor for

subsequent running behaviors. Analysis of gut microbiome revealed that alpha

diversity was positively correlated with daily running distances, with significant

differences in beta diversity observed between high and low running groups.

Taxonomic analysis showed distinct abundance differences between running

and sedentary conditions, particularly in the Ruminococcaceae and

Peptostreptococcaceae families.

Discussion: Our results suggest that the microbiome composition changes

significantly early in exercise exposure, potentially influencing exercise

behavior. Ruminococcaceae, particularly R. bromii, was identified as a

significant contributor to exercise adaptation, while Peptostreptococcaceae

was inversely related to running performance as well as alpha diversity. This

study underscores the potential of the gut microbiome as a modulator of

exercise behavior. Future research should focus on the biological mechanisms
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linking microbiome changes to exercise adaptation, with R. bromii and

Peptostreptococcus as promising candidates for influencing exercise behaviors

through future interventional studies.
KEYWORDS

exercise behavior, microbiome, Ruminococcus, R. bromii, Peptostreptococcaceae,
alpha diversity
1 Introduction

The human gut microbiome (GMB) – composed of roughly 150

times the gene quantity of the human genome alone – is integrally

involved in host behavior, physiologic homeostasis, and

sympathetic nervous system activity through a reciprocal gut-

brain axis (Dinan and Cryan, 2017). Consequently, alterations in

the GMB can inhibit or promote numerous pathological states such

as diabetes, irritable bowel disease, depression, and various

au to immune cond i t ions (Ke l l y and Mulder , 2012) .

Unsurprisingly, specific GMB conditions are also associated with

obesity, demonstrating consistent compositional changes and

decreases in alpha diversity based on diet (Ribeiro et al., 2022).

This observation is further corroborated by the reduction in

microbes involved in regulating fat mobilization, carbohydrate

metabolism, insulin responsiveness and immune modulation with

high-fat diets and increased adiposity (Asnicar et al., 2021). For

example, the GMB has been proposed to influence adiposity

through the endocannabinoid (eCB) system (Muccioli et al.,

2010) and other mechanisms.

As obesity is of global interest in health populations, we should

consider its contributing factors. Limited physical activity has

consistently been shown to be a central contributor to the obesity

epidemic; conversely, increasing physical activity is crucial to

improving overall health (Swift et al., 2014). Other population

level health benefits of exercise find that moderate to high

physical activity alone is 40% more protective against

cardiovascular events than other risk factors such as blood lipids,

hypertension and diabetes (Joyner and Green, 2009). Given the

broad benefit of exercise on health, even factors with small effect

sizes influencing this behavior could have outsized population level

benefit. There is increasing evidence that a portion of exercise’s

protective effects are mediated by alterations in the GMB (Joyner

and Green, 2009; Monda et al., 2017; Taniguchi et al., 2018)}.

Consistently, exercise has been shown to enhance beneficial

conditions such as increased alpha diversity in obese rodent

models (Denou et al., 2016; Yang et al., 2021), as well as in

humans (Ortiz-Alvarez et al., 2020).

Multiple mechanisms have been proposed for GMB based

improvements in exercise capacity, such as exercise associated

increases in microbes producing anti-inflammatory producing
02
bioactives such as butyric acid (Yu et al., 2019). Similarly, there

are correlations between exercise performance and metabolomic

propionic acid production along with other short chain fatty acids

(SCFAs) (Muccioli et al., 2010; Sales and Reimer, 2023). Other

studies illustrate connections between physical activity and

increased microbiota metabolomic representation of tricyclic acid

cycle genes (Rojas-Valverde et al., 2023), glycolysis and oxidative

phosphorylation which directly enhance host metabolic

performance and capacity (Hintikka et al., 2023). Lastly, analgesic

effects of exercise, effecting tolerance, are also shown to be

potentially dependent on microbial communities, such as those

that stimulate peripheral cannabinoid receptor 1 (CB1)-mediated

signaling (Koltyn et al., 2014). As an example, increased CB1

receptor modulation has previously been identified as a potential

motivational factor in voluntary physical activity in mammal

models including humans and that microbiome knockout has a

similar effect as pharmacologic receptor blockade on exercise

behaviors (Raichlen et al., 2012; Dohnalova et al., 2022).

To date, it has been well established that exercise induces

changes in the microbiome in both human and non-primate

models. The next question in studying this domain is how well

microbiome variance associates with voluntary exercise behaviors.

In this investigation we sought to describe how microbiome

variance was associated with running activity in a voluntary

exercise animal model. This was accomplished by correlating the

composition of gut microbiota (GMB) with discrete running

distances. Additionally, we subdivided the experimental

conditions into high and low running based on their running

performance. This categorization distinctly differentiated between

two groups: high-distance runners and low-distance runners.
2 Methods

2.1 Animals

7-week-old male Sprague Dawley rats were obtained from

Charles River Laboratories (Wilmington, MA) and were housed

in temperature- (22°C) and light- (12/12 h dark/light) controlled

animal quarters. The rats had free access to standard laboratory rat

chow and drinking water. Experimental procedures were conducted
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in strict adherence to the National Institutes of Health Guide for the

Care and Use of Laboratory Animals of the National Research

Council of the (U.S.) National Academies and were approved by

Des Moines University Institutional Animal Care and Use

Committee (IACUC). A summary of the experimental design is

found in Results 3.1.
2.1.1 Voluntary wheel running
After a 7-day acclimation period, rats at the age of 8-week were

randomized into the sedentary control (n=3) and wheel running

group (n=8). Sedentary rats were individually housed in standard

rat cages. For the running group, rats were housed individually in

polycarbonate living chambers (40.64 x 50.80 x 20.96 cm) equipped

with stainless steel lids and running wheels with a circumference of

1.10 meters (Scurry Rat Activity Wheel with Living Chamber,

Lafayette Instrument, Lafayette, IN). Scurry Rat Activity Counters

were mounted to the wheels and connected to the Scurry Interface

for Animal Activity. The interface was connected to a computer,

and the use of each running wheel was reported in real time and

stored in the Scurry Activity Monitoring Software (Lafayette

Instrument, Lafayette IN). Wheel revolutions were recorded

continuously throughout the experiment and translated to

running distance based on the wheel size. The duration of

running (or time spent on running) is determined as the total

number of minutes with at least 1 wheel rotation. Speed is the

average distance per minute across all minutes with at least 1

wheel revolution.
2.2 Genomic DNA isolation & sequencing

For both sedentary and running rats, fecal samples were

collected aseptically at week 0 (before running rats were given

access to wheels) and then weekly for the next 4 weeks. Collected

fecal pellets were placed in individually labeled sterile tubes, then

stored at -80C until sample processing. Genomic DNA was isolated

using PowerSoil-htp 96 Well Soil DNA Isolation Kit (MoBio,

Carlsbad, CA). The protocol for DNA isolation provided by the

manufacture was followed with the exception that the initial vortex

step was extended to 20 minutes to thoroughly homogenize the

samples. PCR amplification of the V4 variable region of the 16S

rRNA gene using V4 region specific primers (515F-806R) and

amplicon sequencing were performed by the Institute for

Genomics & Systems Biology at the Argonne National Laboratory

(Argonne, IL) using the Illumina MiSeq platform.
2.3 Statistical approach

2.3.1 VWR analysis
Daily running behaviors between models reached an asymptotic

point within the final week of the study. The average daily distance

run during the final 7-day period was used to quantify terminal

running behaviors. This identified 3 animals that appeared to have

significantly higher terminal running behavior than the other
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models. Terminal behaviors of these high performing models

were tested with ANOVA to confirm that this subjective

difference demonstrated a significant separation of models into

‘high’ and ‘low’ running groups. Given that this was an exploratory

study, we applied both group comparisons using this high and low

runner assignment, as well as comparison between bacterial

abundance and continuous VWR distances to identify GMB

candidates associated with exercise behavior, as described below.

2.3.2 Pre-processing
Data was processed using QIIME2-2022.11. Reads were de-

noised and paired using DADA2, and further downstream analysis

was performed in R. Demultiplexed samples produced 100,965 ±

51,474 reads that passed filtering checks. Reads were trimmed at

base 5 for both forward and reverse reads and truncated at 238 and

230 bases respectively. Denoising and merging yielded 76,910 ±

39,049 reads per sample. Three samples were found to have below

threshold read counts and were discarded. After sample removal the

dataset included in analysis contained 81,194 ± 35,647 reads per

sample that passed denoising, merging and chimera checks.

Singleton features and those observed in only 1 sample were

removed, yielding 81,180 ± 35,655 features per sample.

Downstream feature composition processing was performed on a

dataset where microbiome features present in fewer than half of

samples were removed to avoid false positive results from outlier

low abundance/low frequency taxa.

2.3.3 Alpha & beta diversity
Alpha diversity metrics were produced within the QIIME2

environment for Shannon, Simpson and Chao1 metrics. Shannon

diversity was evaluated for its longitudinal change and relationship

with daily distance using fixed slope random intercept models. Beta

diversity was analyzed using QIIME2 ADONIS.

2.3.4 Generalized Least Squares modeling
Analysis was performed using the gls() function included in the

R nlme package evaluating the expression: GLS([abundance]baseline
~ final distance run) (Pinheiro Jc and R Core Team, 2023).

Generalized Least Squares (GLS) was selected due to features

being non-normally distributed yielding heteroscedastic models

with repeated measures data containing high degrees of within-

individual correlation at every taxonomic level. GLS models used in

this study used the correlation structure Compound symmetry

correlation (form = 1/ratid), where ratid was the unique label

used for each animal. These models were also chosen as other

methods, such as T-test or ANOVA, (while able to detect group

effects and interactions), are less powerful in accounting for within

individual autocorrelation and do not detect the direction of an

interaction; especially in our dataset which involves the testing of

multiple continuous variables.

2.3.5 Baseline analysis
Baseline analysis used GLS model to compare microbiome

abundance at the start of the experiment (time 0) with VWR

distances averaged from the final week of the experiment. This
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was iterated across all observed taxa from the phyla to genus level to

identify what baseline feature variance was associated with

terminal behavior.

2.3.6 Compositional comparison between
running and sedentary conditions as well as high
and low runners

To differentiate features which had a temporal effect across both

running models and sedentary controls, we evaluated GLS

([abundance] ~ condition(sedentary/running) *time) accounting for

within individual autocorrelation in the model and treating time

as ordinal factors. Acknowledging that this decision has limitations,

this was done to identify which features were significantly different

and at which specific timepoint these changes occurred. If time were

to be treated as a continuous variable, we would not have been able

to identify at what timepoint condition or temporal effects occurred.

Features which were significant for their time*condition interaction,

but not for time alone are identified as meaningful. Features

meeting this criterion are identified as relevant, as this criterion

demonstrates that the effect is not attributable to a confounder

affecting both conditions. This same approach was taken to

compare GLS([abundance] ~ run group(low/high)*time).

2.3.7 Compositional variance associated with
daily running distances

To identify how variance within the GMB affected observed

variance in running behavior, GLS([abundance] ~ daily running

distance) on the day of fecal pellet collection was evaluated. Given

that multiple comparisons were being made across taxa with

different magnitudes of abundance, predictor variables were

centered and scaled with Z-score using scale([abundance]) in the

base R package, which were calculated within each taxon (R Core

Team, 2022). This was done so effect sizes between features with

different baseline abundances could be compared. Results were then

filtered to exclude models which did not reach the threshold for

significance (p<0.05). Significant models were reported. For higher

taxa which were able to be classified at lower levels, the lowest level

of classification reaching significance was described in the results

section but included in the figures.
3 Results

3.1 Voluntary wheel running behavior

Voluntary wheel running (VWR) is a natural and rewarding

behavior to rodents (Greenwood et al., 2011; Meijer and Robbers,

2014), serving as a model of voluntary exercise that primarily occurs

during the dark phase (Yamanaka et al., 2013). Previous studies

reveal that over a 6-week exposure to running wheels, running

distance initially increases for around 3 weeks (acquisition phase)

and then stabilizes for the next 3 weeks (maintenance phase)

(Greenwood and Fleshner, 2019).

In our study, we implemented a 4-week voluntary wheel

running (VWR) regimen (Figure 1A), monitoring the daily

running distance of each rat. Sedentary rats without access to
Frontiers in Microbiomes 04
running wheels served as controls. Fecal pellets were collected

weekly, with Week 0 representing the period just before initiating

VWR exposure. As seen in other studies (Yamanaka et al., 2013),

there were individual differences in running activity within

the cohort.

Male rats provided free access to running wheels exhibited low

initial running activity, but after four weeks, running distance

varied substantially between cohort members (Figure 1B). Using a

6 km/day threshold based on final week running performance, we

categorized the VWR group into high and low running sub-groups

for future microbiome analysis. Positive correlations in running

distance were consistently observed over the 4-week time course

(Figures 1C–E). Notably, the average daily running distance of the

final week (week 4) strongly correlated with that of weeks 2, 3, or 4

(n=8, p<0.05). These findings collectively suggest that running

activity ranking remains relatively consistent over time, with

earlier running activity emerging as a potential predictor for

subsequent running behaviors.
3.2 Alpha diversity correlates with daily
running distance

Kruskal Wallis pairwise comparisons were performed between

sedentary, high, and low running groups. Pooling all timepoints,

there was no significant differences between the alpha diversity of

these groups. Temporally, there was a significant increase across

running & sedentary conditions at timepoints 3 and 4. Shannon

diversity was correlated with daily distances run on the day of

sample collection (GLS, Int. -204±1800, Est. 606±299, RSE =3197,

p<0.05), however baseline alpha diversity was not correlated with

final running distances.
3.3 Beta diversity reveals significant
differences between high and low runners

Pairwise permanova was used to compare pooled timepoints

using Weighted UniFrac which found significant differences

between high and low run groups (F = 3.8, p-value < 0.001) as

well as the high run group and sedentary group (F = 4.7, p-

value < 0.01). Low running & sedentary groups were not

significantly different from each other.
3.4 Taxonomic abundance differences
between running and sedentary models

GLS was used to evaluate the effects of [Abundance] ~

conditionrunning/sedentary * time1,2,3,4 (Figure 2). We were interested

in features with significant interactions between predictors and

without significant time effects at the same period. Features with

only a condition*time interaction are those in which a true running

effect is observed, instead of a temporal confounder common

between conditions. This method showed that across timepoints

the running condition had lower levels of B. Bifidobacteria,
frontiersin.org
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however, at weeks 3 & 4 the abundance of this taxa increased

relative to its change within the sedentary models.

Various subclassifications of the Streptococcacea family were

also significantly decreased at week 2 in the running condition.

Various subclassifications of Erysipelotricaceae were decreased in

week 1 of the running condition. Temporal effects, irrespective of

running, were observed mostly in growth of Firmicutes, represented

mostly features of the Clostridiales order over the course of the

study (Figure 3).
3.5 Baseline biome abundance prediction
of terminal running distance

For each microbiome feature observed in our dataset we

performed a series of models evaluating [terminal week distance] ~

[abundance] to identify if baseline abundance predicted future

running behavior (Figure 4). Only one taxonomic feature, B.
Frontiers in Microbiomes 05
Rikenellaceae, was found to be nearly significant (Pearson

Correlation, R2 = 0.54, P <0.05; final 7-day average distance run =

8.21*[Rikenellaceaebaseline] + 103). Baseline microbiome condition,

possibly apart from B. Rikenellaceae abundance, does not predict

terminal running behavior. In further analyses we explored whether

adaptive changes in the GMB better explain running behavior.
3.6 Microbiome comparison between high
and low runners reveals differential
abundance early in exercise exposure

We ran a series of models evaluating [abundance] ~ run group

low/high * time1,2,3,4 and present features which were significantly

associated with those predictors (Figure 4). The most important

results are those with significant interactions between high runners

and time which were not shared with the time predictor. Features

with significant interactions which were decreased in the high
B
C

D E

A

FIGURE 1

Voluntary running behavior of male rats. (A) Summary of experimental design. Rats were subjected to a 4-week voluntary wheel running (VWR)
regimen, during which the daily running distance of each rat was monitored. Sedentary rats without access to the running wheels served as controls.
Fecal pellets were collected from individual rats at the end of each week, with Week 0 representing the timepoint just before the initiation of VWR
exposure. (B) Average daily running distance of individual rats over the experimental duration (week 1, 2, 3, and 4). Each line represents an individual
rat. Based on the final week running performance, the VWR group was further divided into high vs. low running groups. (C–E) Correlational analysis
depicting the relationship between the average daily running distance of individual rats in week 4 against that of week 1, week 2, and week 3.
Trendlines indicate statistically significant relationships, with R- and p-values specified on each plot.
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running group included: E. Allobaculum at week 1, C.

Peptostreptococcaceae at weeks 1-3, T. turicibacter at week 2, and

P. cellulosimcrobium at weeks 2 & 4. Interactions which showed

increased abundance in the high running group included: R.

flavefaciens at weeks 2 & 4, R. bromii at week 3, C.

Ruminococcaceae at weeks 2 & 3, B. ovatus at weeks 1-3. All

microbiome features which were different between run groups

were consistent in the direction of their effect (positive or

negative direction) across all timepoints.
3.7 Microbiome variance associated with
daily running distances

Numerous taxa were identified by GLS models as significantly

associated with daily running distances. Of those identified, we report

those which were observed to be significant at the deepest level of

taxonomic assignment for the significant feature (Figure 5). Features

with the largest positive effect on daily distances largely belonged to the
FIGURE 2

Longitudinal effects of exercise on microbiome abundance. Taxa (rows) which are significantly affected by at least 2 periods of time, running
exposure vs. sedentary models, or their interaction (columns) are shown in this figure. Cells correspond to features effected by running exposure
(controlled against the sedentary group) across time (columns labeled “running”), running exposure at discrete timepoints (columns showing
predictor interactions labeled run group:timen), and temporal effects irrespective of running exposure (columns labeled timen). Cells are shaded by
whether the effect of the predictor on feature abundance is in the negative (blue) or positive (red) direction, and fill intensity reflects the magnitude
of the effect size.
FIGURE 3

Baseline relative abundance of Rikenellaceae predicting final running
distance. Relationship between individual final 7-day running
average plotted and relative abundance value of Rikenellaceae
shows significant correlation between baseline abundance and
terminal running distances. (Pearson Correlation, (y = 8.21*103 x –

3.3*105), R2 = 0.54, P<0.05).
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Ruminococcus genus. Features associated with increased distance run

were R. bromii, gnavus and collides and various other subclassifications

from the orders: Clostridiales (Ruminococcaceae, Clostridiaceae

(subclassified as 02d06), Lachnospiraceae, Mogibacteriacea),

Coriobacteriales (Coriobacteriaceae, Coriobacteriales), Actinomycetales

(Micrococcaceae), and Verrucomicrobiales (Verrucomicrobiaceae).

The feature with the greatest inverse association with daily

distance run was C. Peptostreptococcaceae. Other features included

families of the orders: Erysipelotrichales (Erysipelotrichaceae),

Bifidobacteriales (Bifidobacteraceae), and Clostridiales [Clostridiaceae

(subclassified as clostridium)]. Features which were able to be more

deeply classified from the family level associated Erysipelotricheae to

its Allobaculum genus. C. clostridium and Actinobacteria were

subclassified to the Bifidobacterium genus. All features found to be

associated with daily distance originated from the Firmicutes,

Actinobacteria & Verrucomicrobia phyla.
3.8 Feature selection of microbiome
predictors of daily running distance

Having identified family level features associated with daily

running distances, these features were included in stepwise feature

selection model using exhaustive predictor selection. The initial

model, as shown in Figure 1B, found that only Ruminococcaceae

(Est. 2110±531, p<0.001) and Peptostreptococcaceae (Est. 694±294,
Frontiers in Microbiomes 07
p<0.04) were significant predictors. Feature selection produced a

final model including 4 predictors: Ruminococcaceae (Est. 2414

±484, p<0.001), Peptococcaceae (Est. -1258±379, p<0.001),

Clostridicaeae (Est. 381±438, p>0.05), and Micrococcaceae (Est.

740±387, p<0.1). The final model was significant but not superior

to the initial model (ANOVA, L. Ratio 2.4, p=0.9) despite 80%

reduction in predictors. Final model Rho=0.69, residuals were

evenly distributed, and ran as a linear model with these same

predictors had an adjusted R2 value was 0.494. For this dataset,

daily running distances were best explained by the following 5-

predictor model:

Daily distance = 2414*Ruminococcacea + 381*Clostridicaeae

+ 740*Micrococcaceae + 381*Clostridicaeae

− 1258*Peptococcaceae + 3049
3.9 Ruminococcaceae and
Peptostreptococcaceae as
behavioral predictors

Given that our analysis to this point has identified

Ruminococcaceae and Peptostreptococcaceae as prominent

contributors to both run group and daily running distance, we

focused our next set of analyses on these two families. Comparing
FIGURE 4

Differential abundance between high and low runners. Taxa (rows) abundance which are affected by either time, runner type (high or low), or their
interaction (columns) are shown in this figure. Columns correspond to differential abundance between run groups irrespective of time (column 1,
labeled “run group high”), group effects at each week (columns 2-5, showing predictor interactions labeled run group:timen), and temporal effects
irrespective of runner type (rightmost 4 columns labeled timen). Cells are shaded by whether the effect of the predictor on feature abundance is in
the negative (blue) or positive (red) direction, and fill intensity reflects the magnitude of the effect size.
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Ruminococcocus abundance over time between sedentary and

running groups we found that there was a significant temporal

effect, but that running exposure did not significantly affect

abundance. Within the running models, by evaluating

Ruminococcus ~ time*running group, we identified a significant

time effect and significant increase in abundance among the high

running group at week 2.

Across both running groups, Ruminococcus abundance

significantly increases incrementally from baseline at timepoint 2-

4, with the greatest difference observed between timepoints 2 (Est.

0.05±0.02, p<0.02) and 3 (Est. 0.10±0.02, p<0.001) representing a

doubling in abundance (Figure 6A). Notably, it is the change in

running distance between timepoints 2-3 that was shown earlier to

be the most predictive of terminal running behavior. Ruminococcus

abundance at various subclassifications was also greater in the high

running group across timepoints 2-4 (Figure 4). Describing the

temporal relationship between running behavior and time, the

increase in Ruminococcus is not dependent on running behavior

alone and increased more rapidly in the high running group

(Figure 7A) and presents itself as a candidate for increasing

spontaneous exercise behavior during exercise adaptation.

Evaluating this relationship between daily distance ~

Ruminococcus, we found a highly significant relationship (GLS,
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Int. 1672±707, Est. 21771±3645, RSE 2139, p < 0.001) with high

within-individual correlation (Rho=0.46). Recognizing the

limitations of testing repeated measures with simple Pearson

Correlation, we found this correlation was highly significant by

this measure as well (Pearson Correlation, R2 = 0.54,

p < 0.001) (Figure 6B).

Temporally, Peptostreptococcaceae ~ time*condition found that

abundance decreased over time in both running and sedentary

models. Within the running condition, a temporal effect was only

observed within the high runners (Figure 5) and decreased

significantly over time (Figure 7A). Peptostreptococcaceae showed

a highly significant inverse relationship with daily distance (GLS,

Int. 4605±902, Est. -26722±7506, RSE 2987, p<0.001) (Figure 7B).
4 Discussion

4.1 Evidence of microbiome composition
influencing voluntary exercise behavior

Over the 4-week study, we observed variable running behaviors

between individuals. Group separation into high and low running

groups occurred within the first 2 weeks of adaptation and running
FIGURE 5

Effect of microbiome features on daily distance. Effect estimates of centered & scaled taxa abundance on daily running distance (x-axis) shown in
descending order where red bars identify features associated with increased daily distances and blue bars identify features associated with decreased
distance run. Estimate effect size is shown in column tips.
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distance changes between the first 2 weeks (rather than later

differences) best predicted terminal running behavior. This finding

implies that the early phase of exercise adaptation, especially the first 2

weeks, is themost important period of GMB adaptation predicting the

degree of terminal behavior given unstructured, unprompted exercise.

Other work has shown that most adaptation occurs within the first 3

weeks of exposure; adaptation occurs quickly after starting exercise

before reaching a plateau (Murias et al., 2010). Our study showed that

GMB changed most drastically early in exercise exposure coinciding

with this period of rapid physiologic adaptation. Future studies may

consider interventional designs to test whether fecal transplant of high

and low runners influences running behaviors in the receiving

animal models.

During exercise, intraluminal niche conditions change rapidly

with increases in IgA production and pH due to anaerobic

metabolism of the endothelium and adjacent tissues, while bile acid

release, blood flow, and oxygen availability decrease (Wegierska et al.,

2022). The downstream effect is an alteration in microbiome

composition and metabolism. The extent of how these stressors

change the microbiome are dependent on pre-existing composition

and function, with some population structures being more resilient

than others. Gut permeability is an example of this and is elevated

when microbiome states exist that are either 1) more susceptible to

disruption caused by changes in the environment, or 2) more
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inflammatory and harmful to the host at baseline. Consistently,

research has shown that exercise causes such increases in

permeability, even immediately after exercise (Chantler et al., 2021).

Exploring regulation of gut permeability by GMB composition,

we propose that exercise-induced increase in AMPK signaling may

be a possible candidate for future research (Macinnis and Gibala,

2017) as AMPK signaling has been found to increase on a similar

timeframe as exercised induced increases in gut permeability

(Gibala et al., 2009). The connection between these systems may

be through lipopolysaccharide (LPS, a biomarker of gut

permeability) activation of skeletal muscle TLR4 receptors,

resulting in downstream AMPK activation (Fujiyoshi et al., 2022).

Preceding biologic events such as AMPK that trigger the cascade of

exercise adaptation have so far been under-explored. The multi-

directional relationship of host physiology and microbiome

structure poses an opportunity to identify novel contributing

factors of exercise behaviors.
4.2 Biologic relevance
of Ruminococcaceae

Ruminococcaceae is a significant contributor to the abundance

of the human microbiome (and in other animal models) and is
B

A

FIGURE 6

Relationship of Ruminococcus with outcome measures. (A) Relative Ruminococcus abundance increases significantly in both high (Pearson
Correlation: y = 0.023 + 0.049x, R2 = 0.36, P<0.05) and low run groups over time (Pearson Correlation: y = 0.012 + 0.026x, R2 = 0.34, P<0.01).
Relative abundance is also strongly correlated with daily distance run (Pearson Correlation: y = 0.021 + 2.24*10-5, R2 = 0.54, P<0.001) (B).
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commonly found in the mucosa, where it plays a key role in forming

a ‘mucosal biofilm’ barrier that shields the host endothelium from

luminal activity (De Weirdt and Van De Wiele, 2015).

Ruminococcaceae actively produces butyrate (Gu et al., 2022),

neuropeptides including angiotensinogen, leptin, fibroblast

growth factor (FGF), glucagon-like peptide-1 (GLP1) in the

metaproteome, and metabolic regulators such as adiponectin

(Blanco-Miguez et al., 2019; Galie et al., 2021).

Two Ruminococcaceae subclassifications are highly represented

in the microbiome: R. bromii and R. gnavus. The metabolic

functions of these two species are very distinct. Adaptive

behaviors associated with Ruminococcaceae in this study were

almost entirely attributable to R. bromii abundance.

R. bromii is one of the dominant strains in the microbiome and

serves the important function of degrading particularly resistant

starches (RS) using highly specialized and unique amylases that

liberate glucose for host metabolism (Ze et al., 2015). In RS rich co-

culture with R. gnavus, R. bromii is also found to be a strong

Tryptophan (Trp) synthesizer (Crost et al., 2018).The R. bromii is

the Ruminococcaceae subclassification which produces large

amounts of butyrate, and unlike its neighbor R. gnavus, may be

protective against atopic disorders (Sasaki et al., 2022).

Biologically, R. bromii presents three promising mechanisms of

interest regarding the relationship between exercise behavior and its
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abundance: 1) increased Trp bioavailability due to increased de-

novo synthesis, 2) increased butyrate and acetate SCFA, and

3) increased energy bioavailability through greater liberation of

glucose from resistant starches. Further work evaluating the effects

of R. bromii may consider whether R. bromii abundances may

impact Trp levels in host peripheral and CNS tissue. R. bromii,

while a difficult commensal microbe to produce at scale may be a

target of future commercial interest. Given the mechanisms

described above of Ruminococcaceae metabolism, we found

compelling evidence that Ruminococcaceae is a candidate for the

meaningful mechanistic relationship between the microbiome

and exercise.

On the other hand, R. gnavus serves as an irritant mucin

degrader (Crost et al., 2018) and a proposed superantigen,

activating the adaptive immune system and found to be up

regulated in allergic and autoimmune disorders (Bunker et al.,

2019). In the large cohort HUNT study, body fat and C-reactive

protein (CRP) were significantly greater in individuals with higher

R. gnavus abundances (Grahnemo et al., 2022). Across studies

spanning inflammatory pathologies, R. gnavus is identified as a

strong candidate biomarker for having a maladapted microbiome

state. In this study, we hypothesize that the increase in R. gnavus in

the high running group is due to its opportunistic relationship with

R. bromii.
B

A

FIGURE 7

Daily distance correlates with Peptostreptococcaceae. Peptostreptococecae abundance significantly decreases over time only in high runners
(Pearson correlation, y = 0.086 - 0.18x, R2 = 0.4, P<0.05) (A), and is inversely correlated with daily distance run (B).
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1389103
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Rusling et al. 10.3389/frmbi.2024.1389103
4.3 Peptostreptococcaceae as a potential
modulator of exercise behavior

Peptostreptococcaceae is located within the colonic mucosa and

is a lactic acid producing bacteria (De Weirdt and Van De Wiele,

2015). In probiotic studies, Peptostreptococcaceae abundance has

been inversely correlated with the establishment of the

supplemented species, as well as the catabolism of amino acids

(Zaccaria et al., 2023). Peptostreptococcaeae may decrease alpha

diversity and protect its niche from competition by shifting local

metabolism from glucose to amino acid catabolism, in particular

committing Trp to the Indole pathway, reducing host Trp

bioavailability (Wlodarska et al., 2017; Zaccaria et al., 2023).

Peptostreptococcaceae has also been positively correlated with

weight gain in obese individuals (Acharya et al., 2023). We

hypothesize that such competition against exercise-related

microbiome adaptation may have reduced biologic exercise

tolerance. While the evidence for Peptostreptococcaceae being an

adaptive or maladaptive component of the microbiome is mixed,

our results suggest that this family may have a negative effect on

exercise behavior.

Notably, our alpha diversity results have important consistencies

with previous literature. We found that daily running distance was

correlated with higher alpha diversity, which is consistent with previous

findings that exercise exposure increases alpha diversity (Yang et al.,

2021). Peptostreptococcus has been shown to be negatively correlated

with alpha diversity in other studies (Zaccaria et al., 2023). Therefore,

we evaluated this concept in our current study, also finding a negative

correlation between Peptostreptococcus and alpha diversity. In this

dataset, Peptostreptococcaceae was also inversely correlated with

Shannon alpha diversity (Figure 8), suggesting a reproducible

relationship worth further investigation. When comparing the impact

on daily distance between Alpha diversity and Peptostreptococcus, we

observe that the variance in Peptostreptococcus, rather than alpha

diversity, has a more pronounced effect on daily distance.

Additionally, Peptostreptococcus exhibits a more significant model

and a relatively narrower confidence interval estimate. In conditions

where increasing alpha diversity may improve outcomes, suppression

of Peptostreptococcaceae may prove to be a valid target. While we

cannot rule out co-linearity as the cause of this observation, it is possible

that Peptostreptoccocae impairs the effect of exercise in part by

suppressing alpha diversity. Our modeling results suggest that

Peptostreptococcaceae abundance itself may have a direct effect on

exercise behavior. Future GMB research which observes a significant

change in alpha diversity in their outcomes could explore whether this

Peptostreptococcaceae relationship is further conserved.
4.4 Limitations of this study

Due to the specific setup of the running wheel cages, we were

unable to accurately measure and monitor the daily food intake.

Therefore, our study was unable to account for changes in food

intake that might accompany voluntary wheel running, which may

significantly contribute to variation in gut microbiome.
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We recognize the significance of sex as a biological variant and

acknowledge that only including male rats in this study is a

limitation. Existing literature and our own data indicate that

while the running distance of rats largely increases over time,

female rats run significantly more than males under the same

conditions and exhibit estrus cycle-dependent variation in

voluntary wheel running (VWR) activity (Jones et al., 1990;

Lightfoot, 2008; Konhilas et al., 2015; Rosenfeld, 2017; Mathis

et al., 2024). This difference has been linked to the female sex

hormone estrogen and its receptors (Ogawa et al., 2003; Gorzek

et al., 2007; Mathis et al., 2024). However, in practical conditions,

the female estrus cycle is not synchronized within a cohort, which

serves as a potential confounding factor. We have recently adopted

a method (Borjeson et al., 2014) to synchronize their estrus cycle in

female rats. Given that female rats outperform males in VWR, we

anticipate identifying even more pronounced and robust

microbiome changes associated with wheel running. Additionally,

it is possible we may identify female-specific changes in the gut

microbiome that are linked with estrogen.
5 Conclusion

This study identifies that changes to the microbiome occur

within the same timeframe as exercise adaptation. This suggests that

the early exercise period is the most crucial timeframe for GMB

remodeling, and that adaptation during this period is the best

predictor of terminal behavior. Future works should continue to

characterize the biologic and microbiome cascade which occurs in

this early period to identify pathways that can be up regulated to

enhance performance. R. bromii was identified as a candidate for

augmenting the adaptive period. Consistent with previous research,

Peptostreptococcaceae was identified as a detrimental feature of the

GMB which both reduced alpha diversity and was associated with

decreased running behavior. It is not clear whether the presence of

Peptostreptococcaceae itself contributed to this observation, or

whether it was decreased alpha diversity was the greater
FIGURE 8

Alpha diversity inversely correlates with Peptostreptococcaceae.
Alpha diversity found to inversely correlate with Shannon diversity
(Pearson’s correlation, y = 6.08 – 12.7x, R2 = 0.3, P <0.001).
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contributor, though our modeling suggests Peptostreptococcaceae

may be the greater contributor. These results suggest that

microbiome adaptation during voluntary exercise behavior is an

important factor in adaptation.
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