
Threat modelling in Internet of
Things (IoT) environments using
dynamic attack graphs

Marwa Salayma*

Faculty of Engineering, Department of Computing, Imperial College London, London, United Kingdom

This work presents a threat modelling approach to represent changes to the
attack paths through an Internet of Things (IoT) environment when the
environment changes dynamically, that is, when new devices are added or
removed from the system or when whole sub-systems join or leave. The
proposed approach investigates the propagation of threats using attack
graphs, a popular attack modelling method. However, traditional attack-graph
approaches have been applied in static environments that do not continuously
change, such as enterprise networks, leading to static and usually very large
attack graphs. In contrast, IoT environments are often characterised by dynamic
change and interconnections; different topologies for different systems may
interconnect with each other dynamically and outside the operator’s control.
Such new interconnections lead to changes in the reachability amongst devices
according to which their corresponding attack graphs change. This requires
dynamic topology and attack graphs for threat and risk analysis. This article
introduces an example scenario based on healthcare systems to motivate the
work and illustrate the proposed approach. The proposed approach is
implemented using a graph database management tool (GDBM), Neo4j, which
is a popular tool for mapping, visualising, and querying the graphs of highly
connected data. It is efficient in providing a rapid threat modelling mechanism,
making it suitable for capturing security changes in the dynamic IoT environment.
Our results show that our developed threat modelling approach copes with
dynamic system changes that may occur in IoT environments and enables
identifying attack paths, whilst allowing for system dynamics. The developed
dynamic topology and attack graphs can cope with the changes in the IoT
environment efficiently and rapidly by maintaining their associated graphs.

KEYWORDS

IoT cybersecurity, dynamic attack graph, dynamic topology graph, reachability in
dynamic environments, threat modelling, risk assessment, graph database, Neo4j

1 Introduction

We live in a time where most aspects of life are becoming digital, relying on devices that
connect with each other and to the Internet, leading to the so-called Internet of Things (IoT).
Critical systems rely on the IoT, such as in healthcare (Saravanan et al., 2022; Sorri et al., 2022). It
is assumed that control over the installation, integration, and usage of IoT devices lies with the
user. In contrast to the traditional computers or cloud servers securely hosted in offices or
contained within secure physical locations, IoT devices have dynamic aspects and are deployed
in a physical environment that can be subjected to direct connections and both physical and
cyberattacks. In many cases, systems are composed of several devices that join and leave a

OPEN ACCESS

EDITED BY

Peter Novitzky,
University College London, United Kingdom

REVIEWED BY

Qinghua Li,
University of Arkansas, United States
Syed Rizvi,
The Pennsylvania State University (PSU),
United States

*CORRESPONDENCE

Marwa Salayma,
msalayma@gmail.com

RECEIVED 03 October 2023
ACCEPTED 10 April 2024
PUBLISHED 30 May 2024

CITATION

Salayma M (2024), Threat modelling in Internet
of Things (IoT) environments using dynamic
attack graphs.
Front. Internet. Things 3:1306465.
doi: 10.3389/friot.2024.1306465

COPYRIGHT

© 2024 Salayma. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in The Internet of Things frontiersin.org01

TYPE Original Research
PUBLISHED 30 May 2024
DOI 10.3389/friot.2024.1306465

https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/full
https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/full
https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/full
https://crossmark.crossref.org/dialog/?doi=10.3389/friot.2024.1306465&domain=pdf&date_stamp=2024-05-30
mailto:msalayma@gmail.com
mailto:msalayma@gmail.com
https://doi.org/10.3389/friot.2024.1306465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://doi.org/10.3389/friot.2024.1306465

network dynamically or that may be intermittently connected. Such
devices are often mobile, either because they are mobile themselves,
such as autonomous vehicles or drones, or because they are
instrumenting physically mobile objects, such as body sensor
networks for healthcare. The diverse and advanced capabilities
deployed by IoT devices, including the short-range communication
protocols, enable IoT devices not only to interconnect with each other
but also with other enterprise networks in the same environment,
allowing a device or a whole network to join or leave other networks on-
the-fly in an ad hocmanner (Agmon et al., 2019). When devices move
location, they become exposed to new threats and cyberattacks that
were not considered before, even if they had previously been thought to
be secure.

Therefore, understanding how to maintain the operation of a
system when it has been partially compromised is of critical
importance. The key to achieving this is to find ways to enable a
dynamic system to cope and respond to changes, which is a
significant challenge and has not been addressed in the literature.
Attack graphs are one way to model threats and propagation of
attacks in an IoT environment. An attack graph is an attack
modelling technique that depicts the attack paths followed by an
attacker across the network to compromise a target, taking into
account the vulnerabilities present in each device/host in the
network and other reachable devices/hosts. Attack graphs show
us the multistage of attacks and also help us decide on appropriate
countermeasures to mitigate the effect of the system compromise
(Jha et al., 2002). Legacy approaches of attack-graph modelling use
static algorithms that do not adapt to changes in network devices
and host configurations, their underlying topology, and/or security
objectives (Noel et al., 2010). Calculating the attack graph when the
system topology changes dynamically requires calculating the
transitive closure, that is, reachability over the graph on the
topology, to determine the reachable nodes. Although several
algorithms exist to handle such changes in large graphs (Jin
et al., 2012; Veloso et al., 2014), the problem does not have
known solutions for dynamic graphs. Having gained privileges
on a particular device, an attack can either exploit another
vulnerability to elevate privileges on the same device or exploit a
vulnerability on any other reachable host. It is, therefore, necessary
to calculate the reachability to all other hosts from a particular one.

Interactive modelling and analysis of an attack graph are crucial to
cope with changes in the network topology (we use topology as a
synonym for a system), such as when a new device/host is added or
removed from the system or when the configurations of host/devices
change along with the network security objectives. The need for
interactive modelling of rich and highly interconnected topologies,
which are prone to continuous updates and are typically associated
with large attack graphs, led us to consider the use of a graph database.
A graph database models information by storing the data in nodes and
connecting them through edges in a graph database, which is, as
opposed to the relational database that is strict in terms of data
modelling, more suitable to model, update, and query large, rich,
and highly connected data. Hence, a graph database is an efficient
methodology to model both the highly dynamic and interconnected
topologies such as IoT networks and their large associated attack graphs
(Barik and Mazumdar, 2014; Barik et al., 2016a).

Neo4j is a graph database management (GDBM) system that
provides optimised and native graph storage and processing

capabilities in which relationships attached to a node directly
connect that node to other related nodes, allowing an easy way to
traverse the graph and query graph paths and nodes. Neo4j adopts
Cypher, a Neo4j built-in graph database query language that is
specifically designed for graph-based reasoning. For example,
Cypher can query graph paths traversing the graph without the
need to use the index for joining data used in SQL relational
database query language, which is slower than the graph database
by many orders of magnitude (Chen et al., 2016). This is because the
relational database requires expensive Cartesian products (join
operations) with a complexity of O (nd) for traversing a graph of n
nodes and of depth d (Noel et al., 2014). In Neo4j, however, one can
traverse the graph through the direct edges that connect a node to other
nodes, whichmeans graph traversal complexity will depend only on the
size of the resulted sub-graph and is not related to the total graph (Yuan
et al., 2020). Using Cypher, one can query a graph database
implemented in Neo4j to look for data matching a specific pattern.
Neo4j has rich support for querying graph paths, allowing easy security
analysis of attack graphs.

In addition tomodelling the network topology graph existing in the
environment using Neo4j, in this work, we have developed seven
algorithms (implemented as Cypher queries) to investigate the
propagation of attacks when the IoT environment changes using
dynamic topology and attack graphs. These algorithms are
developed to (i) generate the reachability graph automatically from a
network-modelled topology graph, (ii) generate the attack graph from
the reachability graph, (iii) merge two topology graphs when an existing
network joins another one, which can be extended for multiple
networks join each other, (iv) update the reachability graph only for
the updated parts of the network, (v) merge two attack graphs when an
existing network joins another one, (vi) de-merge the merged topology
graphs when a network leaves, and (vii) de-merge the merged attack
graphs when a network leaves. Furthermore, we developed queries to
assess risk and attack propagation that allow us to re-evaluate the risk
of compromise to different parts of the system when the
environment changes.

This article is structured as follows: Section 2 discusses the few
works in the literature related to the proposed approach to model
threats in a dynamic IoT environment. We explain our proposed use
case scenario drawn from healthcare systems in Section 3, followed by
identifying and modelling our graphs, that is, the network topology,
reachability, and attack graphs and their implementation usingNeo4j in
Section 4. The proposed approach for maintaining the dynamic graphs
through the merging process is presented in Section 5; de-merging is
presented in Section 6. We illustrate the application to our use case in
Section 7 by running the queries for different scenarios related to our
use case, while Section 8 shows how attack-graph-based metrics can be
implemented to analyse the risk of compromise in the dynamic IoT
environment. Finally, we discuss our conclusions in Section 9.

2 Related work

2.1 Attack graphs

Different ways of representing attack graphs have been adopted
in the literature. Attack graphs were first defined as a state-based
approach where each node in the graph represents the state of the

Frontiers in The Internet of Things frontiersin.org02

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

system (Swiler et al., 1998; Barik et al., 2016b). This approach was
shown not to scale and is particularly unsuitable in IoT
environments as every change to the network topology, such as
adding a device, requires changing all the states in the model. In
contrast, we adopt the so-called logical attack graph representation
where nodes in the graph represent pre- and post-conditions and
exploits that can be performed by the attacker leveraging known
vulnerabilities (it is, in its strict sense, a bi-partite graph) (Jajodia
et al., 2005; Jajodia and Noel, 2009). This formulation is also
compatible with the application of Bayesian techniques as
described in Muñoz-González et al. (2017) and also with a
number of tools for attack-graph generation, such as Mulval (Ou
et al., 2006). Pre- and post-conditions, in this case, correspond to
expressions over the privileges required to exploit the vulnerability
and privileges obtained after the vulnerability exploit, respectively.
In their review article, Barik et al. (2016b) discuss the attack-graph
generation and analysis techniques proposed in the literature. A
more recent review on attack-graph generation is presented in
Konsta et al. (2024), which discusses three methods for
automatically generating both attack trees and attack graphs:
model-driven, analysis-driven, and vulnerability-driven
approaches. The review in Lagraa et al. (2024) addresses the
advantages of using graph-based methods in network security
and discusses a comprehensive quantitative and qualitative
graph-based approach applied in network traffic analysis and
botnet detection in particular. The survey also discusses the
potential of using graph database tools in network security, such
as Neo4j, and concludes that the benefits of using a graph database in
network security applications are not well-harnessed yet. Several
attempts that adopt attack graphs for risk and vulnerability
assessment in IoT environments have been proposed in the
literature. For instance, the work of Wang et al. (2018) uses an
attack graph for vulnerability assessment in industrial IoT to achieve
attack path finding and quantification. Although the proposed
approach achieves a fast attack path finding and avoids repeat
calculation, the work does not consider how the proposed
approach performs in a dynamic IoT context. Almazrouei et al.
(2023) discuss the state of the art of using attack graphs for
vulnerability assessment in IoT networks and highlight modelling
approaches for IoT vulnerability assessment, such as Markov
decision processes and K-means clustering, in addition to other
techniques that consider genetic algorithms, such as advanced
reinforcement-learning algorithms. The survey emphasises that
the dynamicity and continuous changes in the IoT typologies
impose a main challenge in using the current attack graph
methodologies for vulnerability assessment, which is the
challenge that this article addresses.

2.2 Graph modelling using Neo4j

Despite their usefulness in modelling and querying highly
connected and scalable data, very few works have considered
using GDBM systems to store and retrieve data related to
network systems and/or attack propagation. However,
information related to the network topology physical and logical
components, the services installed on those components, the
vulnerabilities of these services, the conditions to exploit the

vulnerabilities, and the propagation of the attack are all data that
can be stored and represented using graph database systems, one of
which is Neo4j.

An early work that used Neo4j to model attack propagation in
enterprise network topologies is presented in Barik and Mazumdar
(2014). The work exploits dependency graph representation and
assumes two types of nodes: entity nodes that represent the main
component of an enterprise network, such as hosts, services, and
their vulnerabilities, and fact nodes that represent interactions
among entity nodes. However, the modelling of the network
graph is troublesome due to the numerous types of fact nodes
and edges between them, and many of the edges and nodes are not
used or needed in the graph generation. This is because the work
does not harness a feature of edge properties supported by Neo4j,
which can help reduce the number of nodes and edges necessary to
model the graph. The work assumes static reachability between hosts
and between software services, whilst many details related to attack-
graph generation, such as vulnerabilities, pre-, and post-conditions,
are omitted. As a result, the generated attack graphs do not
completely capture the full semantics of the network topology
needed to analyse the attack paths, which leads to unrealistic
graph modelling and query results.

Barik et al. (2016a) present an attempt to improve Barik and
Mazumdar (2014) by introducing constraints that network
topologies must enforce to represent the network access controls
between machines necessary for the generation of the attack graphs.
The work proposes a graph constraint language (GCON) as an
extension over the standard property graph model, the model that
Neo4j is built upon. The work adopts the exploit dependency graph
representation. However, the constraint mechanisms are not clear,
especially when it comes to the firewall rules queries and their
impact on the reachability between hosts and their software services
(firewall rules seem to allow traffic in both directions). As a result,
the attack path was not a one-way directed path from the initial node
to the target node, which makes it difficult to query and visualise the
possible attack paths. Although information associated with
vulnerabilities such as pre- and post-conditions is mentioned,
they are not used in the attack-graph generation queries, and the
work does not explicitly model the accessibility information between
hosts in the attack-graph generation. As a result, the graph
generation process is complex, especially when the network
scales. How the firewall rules queries impact the reachability
between hosts and how the reachability is calculated and queried
are not clear in this work, which is similar to Barik and
Mazumdar (2014).

Although they did not use Neo4j itself to generate the attack
graph, Noel et al. (2014) used Neo4j Cypher queries to analyse an
attack graph generated using the TVA/Cauldron tool. This tool was
designed by George Mason University to generate and analyse attack
graphs leveraging host vulnerability scans and firewall
configurations, according to which it determines the reachability
between machines in different domains. The work proposes a shared
environment model with data ingested from other sources, such as
the MongoDB database, and Apache Spark for network events, in
addition to sources for network flows, IDS alerts, anti-virus logs, and
so on. This shared environment is used as a database input to create
a graph in Neo4j, which is then visualised, queried, and analysed to
determine the security state of a network and how attackers can

Frontiers in The Internet of Things frontiersin.org03

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

incrementally proceed with their attack. In Noel et al. (2016), the
same authors developed an extended version of the shared
environment—the CyGraph—to improve network security.

CyGraph leverages existing tools and data sources to build a
knowledge graph. Similar to Noel et al. (2014), CyGraph uses the
TVA/Cauldron tool to generate the attack graph for a network that
considers firewall rules, host configurations, and vulnerabilities.
CyGraph uses Neo4j to store the graph data (nodes,
relationships, and properties) as its backend database. Graph
pattern-matching queries are either expressed in Neo4j Cypher
query language or using the domain-specific CyGraph Query
Language (CyQL), complied by CyGraph to native Cypher.
However, both Noel et al. (2014) and Noel et al. (2016) must
import data from many sources to create the agnostic model.
Some of those sources are commercial tools such as the
Cauldron tool, which is used to generate the attack graphs, whilst
Neo4j itself can be used to generate the attack graph associated with
the network topology if it is provided with the means to consider the
actual firewall rules and routing paths in the network. CyGraph is
geared towards enterprise environments and does not consider IoT
environments and their dynamic nature. Getting data from various
data sources can be troublesome if the data related to network
topologies are dynamic and continuously changing. CyGraph would
need to update the data in all those input resources when the
environment changes, making the proposed shared environment
inconvenient for threat modelling in the dynamic IoT environment.

Yuan et al. (2020) use Neo4j to store information related to
network machines along with their vulnerabilities. The work uses
simple Cypher queries to investigate the directed attack paths
initiated by exploiting a vulnerability in an initial node towards
exploiting a vulnerability in the target machine. The attack graph is
similar to those in Barik and Mazumdar (2014) and Barik et al.
(2016a) and is generated over the topology graph. However, the way
firewall rules are implemented, adding a node for each accessible
port and adding edges between the nodes that can access each other,
is not practical, especially if the network size or the firewall
configurations change.

In all the studies discussed above, the graphs and queries
implemented to generate or analyse the topology and the attack
graphs consider static networks and do not account for what
happens when the network environment changes; that is, new
nodes are added or removed from the network or the network
configurations and firewall rules change. Additionally, all the
presented efforts that use Neo4j to generate the attack graph do
so by creating an attack graph over the network graph itself ending
in one graph, which makes it difficult to analyse and visualise both
the topology and its associated attack graph or query them. This also
makes it difficult to consider that multiple network graphs exist in
the environment along with their corresponding attack graphs.
Separate attack graphs and network topology graphs are required
for this purpose and for better visualisation, investigation, query,
and analysis. Most importantly, although few works considered
traffic configuration polices, such as the firewall rules in their
implemented static network topology, none of the work
presented above shows how such packet filtering policies impact
the reachability between hosts and how the attack graph is affected
accordingly. How reachability between devices and hosts is
calculated or how it changes when the environment changes is a

major issue to consider when generating attack graphs in order to get
sound query results.

2.3 Reachability graph

In essence, reachable nodes in a graph mean there is a directed
path between them, and this is typically computed by taking the
transitive closure (the reachability matrix) of the graph computed,
such as through the Floyd–Warshall algorithm, which states that
there is a path between any two nodes in a graph if and only if there
is an edge between the two nodes or there is a path between the two
nodes going through any number of hops (nodes) (Weisstein, 2008).
Xie et al. (2005) provided static modelling and representation for the
reachability between routers in a TCP/IP network as a graph where
the graph nodes represent the set of routers and the graph edges
represent the connectivity between the routers. The work provided
an attempt to compute reachability in a TCP/IP network that
includes packet filters implemented in the routers to control the
traffic between the routers. The work describes reachability between
two routers as a subset of packets that the network will carry between
the two routers, which can be computed using a set of union and
intersection operations to reduce complex operations of computing
the transitive closure. The work differentiates between instantaneous
reachability in a network at a single instant in time, the upper bound
reachability referring to the largest set of packets the network will
ever deliver between two points, and the lower bound reachability
referring to the largest set of packets the network will always deliver
between two points. The work then provided approximations to the
reachability bounds.

In this work, we are using Neo4j to query the reachability
between devices/machines in our proposed topology graph by
considering packet filtering rules implemented in routers. In
contrast to Xie et al. (2005), our reachability queries can be
considered instantaneous, assuming that the forwarding state is
known at a specific instant, which requires knowing the
configuration state of each router. However, not only can our
reachability query run with a low time complexity, but it also
can run only for the updated parts of the network whenever the
network is updated or configuration changes by harnessing the
Neo4j graph database features, as will be explained in Section 4.2.

3 Example of our use case drawn from
healthcare systems

As an example, we consider the scenario of a patient wearing a
body sensor network (BSN), including sensors and a gateway
(typically a mobile phone), visiting a clinic. This allows reasoning
about the patient’s devices connecting to the clinic and thus
acquiring reachability across the clinic’s system to other services
and devices. For example, health apps on the patient’s device may
need to connect to the services inside the clinic to uploadmonitoring
data and download prescriptions for diagnostic tests or medication.
The clinic may trigger re-calibration of the sensors on the patient.
The important point to model is that the devices and services inside
the clinic can become reachable from the patient’s devices and vice
versa, thus creating new possible attack paths. Considering that the

Frontiers in The Internet of Things frontiersin.org04

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

patient’s body sensor network comprises several devices and that the
mobile phone acts as a routing gateway allows us to also consider the
body sensor network as a ‘system’ and thus investigate what happens
to the attack paths when systems become interconnected in a
‘systems-of-systems’ approach.

We have considered in detail the topologies of the two networks
for the patient and for the clinic, as shown in Figure 1. For the clinic,
we have considered different points of access to the network and
access to a database and other network servers. We have also
considered the internal segmentation of the clinic’s network in
sub-networks, traffic filtering, and specific vulnerabilities on the
devices drawn from NVD (Booth et al., 2013). Thus, we can model
the attack paths originating from the patient’s devices that may lead
to the database using attack graphs (Noel et al., 2010). We have also
considered that the clinic has a connection to the Internet to
consider the propagation of external attack paths across the
combined systems. Similarly, we have considered vulnerabilities
in the devices part of the patient’s body sensor network to
consider attack paths from a clinic’s devices across the two
systems that may lead to a target device on the patient (a
Smartwatch). It is important to note that in contrast to the
method adopted in the literature of generating an attack graph
over the topology graph, we consider that the attack graphs for the
two systems, that is, the patient’s BSN and the clinic, are computed
independently and independent from their associated topology
graphs. This approach allows us to consider merging and de-
merging the attack graphs when topologies interconnect and dis-
connect, in addition to allowing us to analyse the security
characteristics of networks in the environment in a more efficient
and easier manner.

Two types of attacks can be conducted in our patient–clinic use
case scenario: (i) An external attack (the attacker is on the Internet)
that attacks clinic systems remotely, and (ii) an internal attack that
targets Bluetooth-enabled devices, and this attack is initiated
internally while the attacker in close vicinity to any Bluetooth-
enabled device, after which the attack can proceed remotely using
the Internet. In this work, we are investigating the propagation of

threats across both networks. To reason about that, we are
considering different attackers with different targets: (1) one
attack target, the Database Server, is located in the clinic
topology, and the attacker attempts to get a root privilege over
the Database Server; (2) the other attack target is located in the
patient topology, the Smartwatch, to get a user privilege on the
patient’s Smartwatch.

4 Graph definitions and modelling

4.1 Network topology

In our network topology, we have end devices such as IoT
devices and workstations, as well as other network devices such as
routers and switches. Each router can have different interfaces,
allowing it to attach to different subnets. The routers are
connected to each other, allowing communication between
different routers associated with the different subnets. For
example, in the clinic, all routers will be connected to Router1
(the aggregator), which connects the clinic to the Internet. Router
1 also has an interface that connects it to Subnet 1. We also have
Router 2 that connects Subnet 1, Subnet 2, and Subnet 3 together,
and Router 2 is connected to Router 1. Other routers can be created
in the same way, and direct edges can be created between the routers
and any end device if there is a direct physical connection between
them. We consider that all routers can implement packet filtering
rules that can deny access by default and only allow traffic flows that
are explicitly allowed. End devices located in the same subnet are
logically connected through the router. Hence, there is no direct
edge between them. End devices that are not equipped with IP
addresses can still communicate with each other, for example,
through direct wireless links such as Bluetooth if they are within
communication range. In such cases, we create a direct physical
connection between the end devices to reflect this direct
connectivity. This topology design leads to either direct
connections between end devices and routers (or switches) or

FIGURE 1
Example of our use case drawn from healthcare systems (patient and clinic).

Frontiers in The Internet of Things frontiersin.org05

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

direct connections between end devices. All connection links
between devices can also have additional attributes, such as the
type of protocol that the connection allows (e.g., TCP, UDP,
Bluetooth, and ZigBee). Without loss of generality, in our use
case, we have only considered communication via TCP
connections or direct communication via Bluetooth.

With this topology design and configuration, two assumptions
for the possible routes populated in the routers’ routing table hold:

• Each router implements a routing table only for the routes
associated with the networks to which the router is directly
attached (directly connected). As a result, all the end devices,
whether they are in the same subnet or in an adjacent subnet
connected to the same router, can communicate with each
other. In the latter case, they can communicate if and only if
there is a firewall rule that allows the reachability between
those two end devices, and this firewall rule can be
implemented in the router that connects the different
subnets directly.

• Each router in its routing table accounts for every single
network in the network topology. This includes routes for
the networks to which the router is directly attached (directly
connected), as well as routes for the indirectly connected
networks that can be either populated statically by the
network administrator or shared dynamically between the
adjacent routers through one of the networking protocols
(Buchanan, 1999; Xie et al., 2005). For example, we can
assume that each router in the clinic knows about the route
for its directly connected subnets and the routes for indirectly
connected subnets that are connected to the adjacent router
and so on. As a result, the end devices in adjacent subnets
connected to the same router or nonadjacent subnets
connected through multi-hop routes can communicate with
each other if and only if there is a firewall rule that allows the
reachability between those two end devices and firewall rules
are implemented in any router1.

In this work, we adopt the second assumption: that is, each
router in its routing table accounts for every single network in the
network topology through static or dynamic routing. As mentioned
in Section 3, we have considered end-device vulnerabilities for both
the clinic and the patient. In the clinic’s Floor 1/Subnet 1,
Workstation 1 machine uses Windows OS and runs a vulnerable
version of a web browser, which has CVE-2017-6753 vulnerability
that allows an unauthenticated remote attacker to execute an
arbitrary code and gain user privileges on that machine.
Workstation 1 is also equipped with a Bluetooth adapter that has
CVE-2017-8628 vulnerability in Microsoft’s implementation of the
Bluetooth stack, allowing the attacker to obtain access to higher-level

services and profiles and eventually obtain overall control. A kiosk
end device is also located in the clinic on Floor 1; we assume it
communicates and is managed directly by Workstation 1 through
Bluetooth. The kiosk runs Linux OS and, like Workstation 2, has the
Linux kernel stack overflow vulnerability CVE-2017-1000251 in its
Bluetooth adapter. Workstation 2 in clinic Floor 2/Subnet 2 uses
Linux OS and provides an FTP service that has CVE-2021-41635
vulnerability, allowing an attacker to abuse the machine
configurations and obtain access to the entire machine.
Workstation 2 is also equipped with a Bluetooth adapter, which
has CVE-2017-1000251 vulnerability, that provides an attacker with
a full and reliable kernel-level exploit for any Bluetooth-enabled
device running Linux. Workstation 3 in clinic Floor 3/Subnet 3 also
runs Linux and provides an SSH service with CVE-2022-30318
vulnerability, allowing an attacker to obtain overall control. The
Database Server, also located in Floor 3/Subnet 3, runs Linux with
kernel v.2.6 with MySQL RDBMS v.5, which has CVE-2009-2446
vulnerability that enables an attacker to gain user privileges on the
Database Server.

For this example, we consider the Database Server as the end
goal of an external attacker accessing from the Internet. The firewall
implemented in Router 1 allows only HTTP traffic from the Internet
to devices/machines in Subnet 1, that is, Workstation 1 and blocks
all other traffic. The firewall implemented in Router 2 allows FTP
and SSH traffic to Workstation 2 and to Workstation 3, respectively,
as well as access to the Database Server from Workstation 2 and
Workstation 3 and blocks all other traffic. The firewall rules for
Firewall 1 and Firewall 2 are listed in Tables 1, 2, respectively.

For simplicity, we refer to the devices by their names rather than
their IP addresses. Such topology examples, along with their physical
components, packet filtering configurations, software vulnerability
exploits, and associated pre- and post-conditions, which we will
explain in detail in the following sections, are expected to provide an
external attacker whose machine is on the Internet with two paths to
access the target, the Database Server: either by exploiting the
vulnerability in Workstation 1 from where the attacker can
launch an attack on Workstation 2, which eventually leads the
attacker to the database server, or the attacker can exploit the
vulnerability in Workstation 3 from Workstation 1, which leads
the attacker to exploit a vulnerability on the Database Server.

Our patient is wearing a Smartwatch that can connect to the
patient’s Smartphone and any other Bluetooth-enabled device in its
vicinity using a Bluetooth connection. The Smartwatch deploys
sensors that sense critical physiological information, such as the
patient’s heart rate, making it a target for another attacker who
wants to re-calibrate the sensors on the patient’s Smartwatch and
manipulate the sensed data. The Smartwatch runs a Bluetooth stack
in the Linux Kernel (BlueZ), which has CVE-2017-1000251
vulnerability, a stack overflow vulnerability that provides an
attacker with a full and reliable kernel-level exploit. The patient
also carries a Smartphone with an IP address that allows it to create a
TCP/IP connection with any router around it. The Smartphone also
has a Bluetooth connection, which allows it to connect with other
Bluetooth devices in its vicinity. The patient’s Smartphone runs
Android OS, which has a Bluetooth Android information leak CVE-
2017-0785 vulnerability, allowing the attacker to access the whole
phone filesystem, gain full control of a device, and use the victim’s
Bluetooth interface to attack other devices in its proximity. In the

1 The routers share their routes dynamically using routing protocols or

statically (manually) by the network administrator; as a result, any end

device in any subnet can reach any other end device in the clinic, even if it is

not in the same subnet. However, reachability between devices can be

limited by denying access between devices by default and using firewall

rules to explicitly state which devices can communicate with each other.

Frontiers in The Internet of Things frontiersin.org06

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

following section, we show how we can model the network
topologies of both the patient and the clinic.

4.1.1 Network topology graph
We can model the network topology of any network using a

graph GN = {V, E, A, C}, where V is the set of all the nodes in the
graph, E is the set of all the edges in the graph, A is a set of attributes
associated with nodes and edges, and C is a set of categories in which
nodes and edges can be grouped. We discuss each of these graph
elements in detail below.

• Graph nodes V = {Vd,Vv, Vr}, where Vd = {Ve, Vn} represents a
set of all the devices in the network, which can be end devices
Ve, such as IoT devices or workstations, or any other network
devices Vn, such as routers and switches. Vv is the set of
vulnerabilities that may exist in devices’ software services. Vr is
a set of firewall rules implemented in the routers.

• Graph edges E = {Ed, Ev, Ef} where Ed is the set of all physical
point-to-point connectivity links. This could be a direct
connection between an end device and a router or switch
(ve, vn), a direct connection between a router and a switch
(vni, vnj), or a point-to-point short range connection such as
Bluetooth connection between two end devices (vei, vej). Ev are
edges that associate end devices with their respective
vulnerabilities; hence, ∀ve ∈ Ve if ∃vv ∈ Vv, associated with
ve then ∃(ve, vv) ∈ Ev. Ef are the edges that associate routers
with the firewall rules deployed on them; hence, ∀vn ∈ Vn, if
∃vr ∈ Vr associated with vn, then ∃(vn, vr) ∈ Ef.

• Attributes A = {Av, Ae} represent properties of the graph nodes
and edges, where Av = {Ad, Avul, Ar} is a set of attributes that
annotate the graph nodes representing the network devices,
device vulnerabilities, and firewall rules, respectively. Ae, on
the other hand, is a set of attributes that annotates the graph
edges. For example, in our clinic topology graph, Ad = {name,
Subnet, floor, accessibility, privilege}. Apart from the
accessibility attribute, each of the attributes has a single
value. An accessibility list ae is a set of features that allow
an end device to access other devices. For example,
Workstation 1 has an IP address and software services that
allow access to other machines, such as the FTP and the SSH
servers. Note that although there would typically be multiple
user privileges on one device (e.g., for all the different users or

for accounts with superuser privileges), for simplicity, in this
work we assume that there is only one privilege on each device,
either a user or a superuser privilege. Hence, the privilege
attribute has a single value. Generally, we say ∀vd ∈ Vd ∃ad ∈
Ad. Another example, Avul = {preConditions, postConditions},
represents lists of pre-conditions required to exploit
vulnerabilities and post-conditions that result from
successful vulnerability exploits. Generally, we say ∀vv ∈ Vv

∃avul ∈Avul. On the other handAe = {via} is the set of attributes
that annotates the graph edges. The via attribute adds
additional information about the connection between two
devices, for example, specifying the protocol used, such as
TCP/IP or Bluetooth. Attribute values, including the lists, are
stored as strings.

• Categories C = {Cv, Ce} represent the sets of labels/types that help
us filter the query results, where Cv is a set of labels that can be
used to filter our query results for the graph nodes, such as by
providing a name for the network topology graph to which the
device belongs or by providing the type of the device whether it is
an end device or a router or a switch and so on. Ce is used to filter
query results for the edges. For example, it may indicate whether
the edge represents a point-to-point connection between two
devices (vei, vej) by setting the type of the edge as CONNECTS_
TO. It might also refer to an edge between an end device that has a
vulnerability and its vulnerability node (ve, vv) by setting the type
of the edge as HAS or to an edge of type ALLOWS between a
router and a firewall rule (vn, vr) implemented in the router.
Categories provide a form of identification for a group of nodes
that belong to the same category. Instead of querying each node in
the set of nodes by its name, if the set of those nodes belongs to
the same category, one can retrieve the nodes all at once by
querying their category. Categories provide a very helpful way to
identify the set of devices that belong to a certain topology (here,
we use topology as a synonym for a system) amongst other
network topologies available in the environment, which will
enable us to retrieve all the devices in that topology. This also
means that nodes in one set may or may not belong to the same
category. For example, a node vei ∈ Ve and vei ∈ C1 another node
vej ∈ Ve but vej ∈ C2. Moreover, each node may belong to more
than one category. For example, a device can belong to the
EndDevice category, and that end device may also belong to the
ClinicTopology category.

TABLE 1 Firewall 1 rule set.

Rule Source Destination srcPort dstPort Protocol Action

Rule1 Any Subnet 1 Any Any TCP Allows

TABLE 2 Firewall 2 rule set.

Rule Source Destination srcPort dstPort Protocol Action

Rule1 Subnet 1 Subnet 2 Any Any TCP Allows

Rule2 Subnet 1 Workstation 3 Any Any TCP Allows

Rule3 Subnet 2 Subnet 3 Any Any TCP Allows

Frontiers in The Internet of Things frontiersin.org07

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

To create a node in the network, we must first specify its
categories. For example, to create a node representing a device,
we must specify to which network topology it belongs, the type of the

device, that is, whether it is an end device or a network device, and to
which subnet it belongs. In addition, we must specify its attributes:
its name, which floor it is located in, and the accessibility features
that allow it access other devices in the network, such as whether the
device has an IP address and what other software services it supports
(HTTP, FTP, SSH, MYSQL, and so on). The topology graphs for the
systems in our use case scenario that refer to the clinic and the
patient are represented in Figures 2, 3, respectively.

4.1.2 Neo4j implementation for the network
topology graph

The following are examples of how we are using Cypher queries
to create nodes and edges in a graph to model the network topology
of the clinic depicted in Figure 2.

Creating topology devices: we are referring to the clinic
network topology graph GNC. By using the category
ClinicTopology, we will be adding everything depicted in
Figure 2 to this category starting from Workstation 1, for which
we will be setting a set of attributes. For example, Workstation
1 belongs to Subnet 1 and is located on Floor 1.

CREATE(n:ClinicTopology{name: ‘Workstation

1’, subnet: ‘Subnet 1’, floor: ‘floor 1’})

We can further specify that Workstation 1 is an end device by
adding the appropriate category to Workstation 1 as follows:

MATCH(n:ClinicTopology) WHERE n.name=

‘Workstation 1’ SET n:EndDevice

In this way, we are adding the node n, which refers to
Workstation 1, to the category/label cv = EndDevice, which also
means that we are adding Workstation 1 to the set of end devices Ve

in the set of devices Vd in GNC. We may then add accessibility
features as another property to Workstation 1, such as the software

FIGURE 2
Clinic topology graph.

FIGURE 3
Patient topology graph.

Frontiers in The Internet of Things frontiersin.org08

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

services that allow Workstation 1 to connect with other devices in
the networks. For example, in addition to having the basic network
protocol IP, Workstation 1 can launch an FTP connection, an SSH
connection, Bluetooth, and so on. This can be done by providing
Workstation 1 with a list of all the features it deploys, as follows2:

MATCH(n:ClinicTopology:EndDevice) WHERE

n.name =‘Workstation 1’ SET n.accessibility =

[‘IP’, ‘FTP’, ‘SSH’, ‘Bluetooth’]

Representing vulnerabilities in the graph: Workstation 1 is
found to have two vulnerabilities. We can create a node representing
one of those vulnerabilities as follows:

CREATE(v:ClinicTopology:Vulnerability

{name:‘CVE-2017-8628’})

In the above query, we are adding the node v that we created to
the set of vulnerabilities Vv that exist in the Workstation 1 software
services by creating a new category called Vulnerability, and we set
the name attribute of this vulnerability to CVE-2017-8628. A set of
pre-conditions must be satisfied to exploit this vulnerability. Those
conditions can be specified through the attribute preConditions
associated with the vulnerability node. For example:

MATCH(v:ClinicTopology:Vulnerability {name:

‘CVE-2017-8628}’}) SET v.preConditions =[‘User’,

‘HTTP’]

By setting the attribute preConditions for the vulnerability node
v, we represent that in order to exploit the vulnerability v, the
attacker must be a user on the device from where they are launching
the attack, and that device should support the HTTP protocol, that
is, the attacker device should have the HTTP protocol in its
accessibility list. A successful exploit of the vulnerability can lead
to post-conditions, and those can also be specified through the
vulnerability attribute postConditions. For example:

MATCH(v:ClinicTopology:Vulnerability {name:

‘CVE-2017-8628’}) SET v.postConditions =[‘User’]

By setting the attribute postConditions for the vulnerability v, we
state that after successfully exploiting the vulnerability v, the attacker
will acquire the privileges of a user on the device that has
vulnerability v. Then, in order to associate this vulnerability with
Workstation 1, we can create an edge of type (category) ‘HAS’,
which also means we are adding a new edge to the set Ev, as follows:

MATCH(n:ClinicTopology:EndDevice)

MATCH(v:Vulnerability)

WHERE n.name =‘Workstation1’ AND v.name =‘CVE-

2017-8628’

CREATE(n)-[:HAS]->(v)
If we want to add a router to the topology graph, we can create a

category/label called Router, to which we can add all routers that
exist in the topology, which also means that we are adding a router
with the name Router 1 to the set of network devices Vn in the set
of devices Vd.

CREATE(r:ClinicTopology:Router{name:

‘Router 1’}

Creating firewall rules: our firewall rules are implemented in
the routers and control communication between devices in different
subnets and with the Internet, and each router has its own firewall
rules. Therefore, in order to write queries to state the firewall rules
implemented in each router, we must first retrieve each router
individually in addition to retrieving all devices in all subnets
using the categories associated with them, as follows:

MATCH(i:ClinicTopology:Internet)

MATCH(s1:ClinicTopology:Subnet1)

MATCH(s2:ClinicTopology:Subnet2)

MATCH(s3:ClinicTopology:Subnet3)

MATCH(r1:ClinicTopology:Router{name:

‘Router 1’})

MATCH(r2:ClinicTopology:Router{name:

‘Router 2’})

We then can write the firewall rules listed in Tables 1, 2 using
Cypher queries:

MERGE(f1:ClinicTopology:Firewall{name:

‘Rule1’, source: i.name,

destination: s1.name, srcPort:‘any’,

dstPort:‘any’, protocol:‘TCP’})

In the above query, we are making each rule in the rules set in a
router firewall as a node belonging to the category Firewall with
attributes corresponding to each item in the firewall tuples presented
in Tables 1, 2 in Section 4.13. Rule 1 in the rule set of Firewall 1 states
that any host on the Internet can communicate with any host in
Subnet 1. Another way to do it is by creating rules associated with
each end device in Subnet 1 one by one, but in this case, each rule
requires a separate Cypher query. In this way, we are creating a node
of variable f1 with a category called Firewall that will include all the
firewall rules we have in the clinic topology, and we are adding f1 to
the set of firewall rules Vr that are implemented in Router 1. Note
that because there is only Workstation 1 in Subnet 1, one node
representing the firewall rule will be generated, and if there are other
end devices in Subnet 1, more than one firewall rule will be generated
at the same time. The name of the firewall rule is Rule 1, and it
addresses communication between devices located on the Internet
and devices located in Subnet 1 in the clinic topology. As this rule
allows devices on the Internet to reach devices in clinic Subnet 1, we
create an edge of type ALLOWS that associates this firewall rule with
the firewall implemented in Router 1, as follows:

MERGE(r1)-[:ALLOWS]->(f1)
Thus, we are presenting the action ALLOWS in each rule as an

edge between the router that implements the firewall rule set, which
also means we are adding a new edge to the set Er. We can do the
same for the rest of the firewall rule sets and create directional edges
of category ALLOWS between the routers and their rules. Although
our network settings state that all traffic is denied by default, we can
also implement less strict traffic restrictions by providing a mixture
of both allows and denies rules. Similar to creating ALLOWS edges,
we can easily add DENIES edges to our firewall rules queries. For2 For simplicity, we are considering IP, a basic network protocol, as an

accessibility feature in addition to the FTP and SSH, which are services that

run on top of the IP and allow the device to access other devices’ software

services. Some IoT devices do not have IP addresses to access other

devices’ software services, so those devices will not include IP in their

accessibility features.

3 MERGE clause works like CREATE but only creates a node as specified in

the query if that node does not exist already.

Frontiers in The Internet of Things frontiersin.org09

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

example, we can explicitly state that the firewall implemented in
Router 2 denies access between end devices in Subnet 1 and the
database in Subnet 3 by adding the following Cypher query to the
firewall rule set:

MERGE(f2:ClinicTopology:Firewall{name:

‘Rule2’, source: s1.name, destination:

‘Database’, srcPort:‘any’, dstPort:‘any’,

protocol:‘TCP’})

MERGE(r2)-[:DENIES]->(f2)
Creating connection links (edges):we can see from the network

topology in Figure 2 that Workstation 1 has a direct physical
connection with Router 1. In the topology graph, we can
represent this connection by creating bidirectional edges with
category/type CONNECTS_TO between Workstation 1 and
Router 1, as follows:

MATCH(n:ClinicTopology:EndDevice)

MATCH(m:ClinicTopology:Router)

WHERE n.name =‘Workstation 1’ AND

m.name =‘Router 1’

CREATE(n)-[:CONNECTS_TO]->(m)
CREATE(n)<-[:CONNECTS_TO]-(m)
In this way, we are adding connectivity edges in both directions

to the set of edges Ed that groups the physical point-to-point links
between both Workstation 1 and Router 1. We can provide
additional information related to these links by specifying an
attribute that states the protocol used for this connection:

MATCH(n:ClinicTopology:EndDevice{name:

‘Workstation1’})-[r]->
(m:ClinicTopology:Router{name:‘Router 1’})

SET r.via = ‘TCP’

The above query enables different types of CONNECTS_TO
edges. For example, if the devices communicate through other
protocols, such as the UDP, we can write the same query but
setting r. via = ‘UDP’. Because several different protocols can be
available over a connection, we can depict different types of traffic
communication protocols by using different categories/types of
connection edges, which eliminates the need to use the attribute
via. For example, we can write the following Cypher query to create
edges that represent a connection between two devices that exchange
traffic through a TCP protocol:

MATCH(n:ClinicTopology:EndDevice)

MATCH(m:ClinicTopology:Router)

WHERE n.name= ‘Workstation 1’ AND m.name=

‘Router 1’

CREATE(n)-[:CONNECTS_VIA_TCP]->(m)
CREATE(n)<-[:CONNECTS_VIA_TCP]-(m)
We can write the following Cypher query to create edges that

represent a connection between two devices that exchange traffic
through the UDP protocol:

MATCH(n:ClinicTopology:EndDevice)

MATCH (m:ClinicTopology:Router)

WHERE n.name =‘Workstation 2’ AND

m.name =‘Router 1’

CREATE(n)-[:CONNECTS_VIA_UDP]->(m)
CREATE(n)<-[:CONNECTS_VIA_UDP]-(m)
Without loss of generality, in our use case patient–clinic

scenario, we are assuming one protocol for exchanging traffic
between IP-enabled devices, which is the TCP protocol.

4.2 Reachability between end devices

Firewall rules determine reachability between devices, and
reachability is also controlled according to the construction of
the routing table on each router. A router uses a specific network
address to determine which out-link to use to reach a subnet.
Conceptually, this is called a route. Hence, routing can be
considered a kind of dynamic traffic filtering, which is why we
are jointly considering traffic packet filtering and routing to
determine reachability between end devices in our network
topology graphs. As stated in Section 4.1, a router can infer
about a route in multiple ways: (i) local routes that allow the
router to reach all directly connected subnets, (ii) through static
routes specified manually to map one or more router interfaces to a
destination subnet, or (iii) routes shared dynamically between
routers using a routing protocol, such as OSPF (Xie et al., 2005).
Accordingly, two devices can reach each other if one or more of the
following options apply:

• The two devices are in the same subnet.
• The two devices connect with each other directly, for example,
through a short-range communication protocol such
as Bluetooth.

• The two devices are indirectly connected through one or
several routers (if they have IP addresses) if and only if the
firewall rules allow. In this case, the devices can be in different
subnets directly connected to a router or in different subnets
connected to different routers that share the routes statically
or manually.

After modelling our network topology using a graph, we can
generate the reachability graph from the topology graph. This is
described in the following section.

4.2.1 Reachability graph
Let GR = {Ve, Er} represent our reachability graph. As is explained

in Section 4.1.1, Ve represents the set of end devices, such as IoT
devices or workstations, and Er describes the edges between end
devices that are reachable from each other. A device can either have an
IP address, which allows it to connect directly or indirectly with other
devices in the network if the firewall rules allow, or it may not have an
IP address if only direct communication is supported. However, not
having an IP address will not hinder the end device from connecting
and directly reaching other devices in the network using its unique
MAC address or any other identifier, depending on the device’s
communication technology. We can generate the reachability
graph from the topology graph by considering that two end
devices can reach each other if i) the two end devices are in the
same subnet, ii) the two end devices have a direct point-to-point
connection, or iii) the two end devices have an indirect connection.
Hence, we can say that two end devices vei, vej ∈ Ve can reach other iff
any of the following conditions apply: (i) vei.subnet � vej.subnet OR
(ii) ∃(vei, vej) ∈ Ed OR (iii) ∃ an indirect connection between vei and
vej such that ∀ed ∈ Ed between vei and vej ed.via � ′TCP′ AND there
exists a router with a firewall rule, that is, ∃vn ∈ Vn AND vr ∈ Vr AND
∃(vn, vr) ∈ Ef such that vr.source � vei .name and
vr.destination � vej.name. Note we have only one category of
edges ef ∈ Ef between a router and a firewall rule, ALLOWS.

Frontiers in The Internet of Things frontiersin.org10

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

4.2.2 Neo4j implementation for the
reachability graph

Our reachability graph includes only the end devices from the
topology graph and involves only one new category/type of edges Er,
that is, REACHES. We say that nodes in a graph are reachable if
there is a path between them, and this is typically computed by
taking the transitive closure (the reachability matrix) of the graph,
such as through the Floyd–Warshall algorithm, which states that
there is a path between any two nodes in a graph if and only if there
is a direct edge between them or there is a path between the two
nodes going through any number of hops (nodes) between the two
nodes (Weisstein, 2008). We can compute the reachability and
generate the reachability graph between devices by using the
Cypher query language in Neo4j.

Calculating the reachability from our network topology graph
requires looking at the edges between end devices in our topology
graph, as we assume our reachability graph includes only the end
devices. Nevertheless, as explained in Section 4.2.1, one reason for
reachability between end devices is that the two end devices are
located in the same subnet. However, as long as we do not create and
edge between nodes in one subnet in our topology modelling, we
need only to check the subnet property of the two end devices in our
network graph. Note that although the firewall rules presented in
Table 1 and Table 2 explicitly state what devices can reach each
other, we do not explicitly specify that devices in the same subnet can
reach each other as they do so by default. This is why we must add
this case as an individual case for reachability between end devices.
Moreover, after running different experiments, we realised that
considering nodes in the same subnet reach each other as an
individual reachability case helps reduce the number of database
hits4 as well the query response time compared to removing this case
and adding the firewall rule to show explicit access between end
devices in the same subnet.

Calculating the reachability for the rest of the cases presented
above is very similar to the way we calculate the transitive closure
following the Floyd–Warshall algorithm. As stated in Section 4.2.1,
having a direct edge between two end devices means those devices
are reachable through point-to-point connections, a case that can
happen between IoT devices. Another case is that a path between
two end devices through one hop can exist if the two end devices are
connected directly to a router; that is, they are located in two
different subnets to which a router is directly connected or
connected indirectly through any number of routers (hops).

In Neo4j, a path between two nodes can be expressed using the
asterisk (*). For example, (n)-[*2]- >(m) denotes exactly two
relationships and one hop between nodes n and m. [*] without
specifying bounds describes a path of at least one hop but of any
positive length, that is, any/infinite number of hops, allowing us to
query the existence of any indirect path between any two nodes.
However, due to the firewall rules that constrain traffic flows, the
existence of a path does not necessarily mean that those devices are
reachable. It is also important to check that the firewall rules allow
the respective traffic flows. Thus, finding the indirect path through

the * should be accompanied by checking that a firewall exists in any
router (by default, end devices are not allowed to communicate with
each other unless explicitly stated otherwise by the firewall rules).
Having said that, the reachability graph can be generated from our
network topology graph using the following Cypher query:

MATCH(n:EndDevice)

MATCH(m:EndDevice)

WHERE n.name <> m.name AND (n.subnet=m.subnet

OR EXISTS((n)-[:CONNECTS_TO]->(m))
OR EXISTS((n)-[:CONNECTS_TO*{via:‘TCP’}]->(m))
AND EXISTS((:Router)-[:ALLOWS]->(:Firewall
{source:n.name, destination:m.name})))

MERGE(n)-[:REACHES]->(m)
The query above finds all the end devices in all the networks, and

for any two different end devices n and m, creates an edge of
category/type REACHES between them if any of the following
conditions apply: 1. Two devices are in the same subnet; 2. The
two devices are connected directly, for example, via a point-to-point
link; 3. The two end devices are connected to each other indirectly
(e.g., they can communicate through TCP/IP), and there is a firewall
rule implemented in any router that allows communication between
n andm. The * operator means that starting from node n and ending
in node m, the graph is traversed to look for edges with the required
protocol attributes, in this case via = ′TCP′. According to the
reachability query results, we can add a new edge REACHES to
the set Er. We can also add a query to check the existence of a path
associated with a UDP protocol between any two devices; that is, we
can add the following query to the above reachability query:

OR EXISTS((n)-[:CONNECTS_TO*{via:‘UDP’}]->(m))
However, if we created different types of CONNECTS_TO

edges, for example, CONNECTS_VIA_TCP, CONNECTS_VIA_
UDP, we can write the following query that allows us to traverse
the graph for all types of edges associated with the traffic protocols
we are interested in all at once. For example, we can add
the following:

OR EXISTS((n)-[:CONNECTS_VIA_TCP | CONNECTS_

VIA_UDP*]->(m))
The above reachability query allows us to generate the

reachability graph between any two end devices across all the
network topology graphs that exist in the environment at once,
as we are not filtering the query to find end devices from a specific
network graph or with a specific category (we can filter as we
discussed in Section 1.1). However, this may slow the query
outcome when the graph in the environment is large. For
example, running the above reachability query for all the end
devices in all the networks used in our use case requires 272 ms
with 201,529 database hits in the Cypher query run time. Most of
those hits lie in finding the path comprising CONNECTS_TO edges.
We can limit the query by specifying which topology graph we are
interested in. For example, we can query the clinic topology graph
alone by providing the label ClinicTopology in the query as follows:

MATCH(n:ClinicTopology:EndDevice)

MATCH(m:ClinicTopology:EndDevice)

Focussing on the clinic topology alone, the query takes 191 ms,
with 49,598 database hits. We conducted an additional experiment
by gradually adding five more routers to the clinic topology, each
with one subnet and one machine connected with each other over a
chain of TCP connections. We ran the reachability query for the

4 A database hit is the abstract unit for retrieving or updating data to and

from the storage engine requested by the Neo4j operators.

Frontiers in The Internet of Things frontiersin.org11

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

clinic and checked the query performance, which was almost the
same in terms of the query running time and the number of database
hits as the original clinic topology. By specifying the end devices in
the patient topology alone, we achieved the query result in 300 ms,
with 87 database hits, because the patient topology does not involve
TCP connections. Although the pattern (n)-[*]- >(m) allows us to
query paths between two nodes connected indirectly through several
routers, the performance of a query involving this pattern could be
reduced as the network size scales. We can harness filtering by
specifying categories, and we can filter using appropriate attributes.
For instance, one does not need to query the whole network graph to
compute the reachability whenever the network changes, especially
if the network administrators know where the update/change

occurs, such as on a specific floor in the clinic. To find the
reachability between end devices located on Floor 1 in the clinic
topology, one can modify the first two lines of the reachability query
by specifying the floor attribute:

MATCH(n:ClinicTopology:EndDevice

{floor:’floor1’})

MATCH(m:ClinicTopology:EndDevice

{floor:’floor1’})

By specifying that we wanted to find reachability for end devices
located on Floor 1, we achieved the results in 10 ms, with only
204 database hits. We can also find the reachability between end
devices located on different floors, for example, Floor 1 and Floor 3,
by specifying the floors we are interested in as follows:

MATCH(n:ClinicTopology:EndDevice

{floor:’floor1’})

MATCH(m:ClinicTopology:EndDevice

{floor:’floor3’})

Our experiment to find the reachability between end devices
located on Floor 1 and Floor 3 took only 6 ms to run and
369 database hits. This is a significant improvement in the
reachability query performance compared to running the query
for the whole network. In fact, the reachability query is the only
query that traverses the graph searching for TCP connections as well
as checking the firewall rules, making the processing time of the
other queries used in this work negligible when compared to the

FIGURE 4
Clinic reachability graph.

FIGURE 5
Patient reachability graph.

Frontiers in The Internet of Things frontiersin.org12

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

reachability query, as the other queries require only checking
directly connected nodes, and none try to find out paths with
indirect nodes. If one wants to consider a mixture of ALLOWS
and DENIES firewall rules, then one can run a reachability query
that considers a firewall implemented in a router with a firewall rule
that denies access between two end devices. To do so, the
reachability query presented above can be easily amended by
adding one more condition that checks whether a firewall
connected to a router with an edge of category type DENIES
exists, as follows:

MATCH(n:EndDevice)

MATCH(m:EndDevice)

WHERE n.name <> m.name AND (n.subnet=m.subnet

OR EXISTS((n)-[:CONNECTS_TO]->(m))
OR EXISTS((n)-[:CONNECTS_TO*{via:‘TCP’}]->(m))
AND EXISTS((:Router)-[:ALLOWS]->(:Firewall

{source:n.name, destination:m.name})) AND NOT

EXISTS((:Router)-[:DENIES]->(:Firewall {source:

n.name,destination:m.name})))

MERGE(n)-[:REACHES]->(m)
The reachability graphs that correspond to the clinic and the

patient topology graphs are represented in Figures 4, 5, which show
the output that matches the reachability described through the
firewall rules listed in Tables 1, 2.

FIGURE 6
Clinic attack graph.

Frontiers in The Internet of Things frontiersin.org13

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

4.3 Attack propagation

How an attack propagates in a certain topology can be modelled
through an attack graph, which is a representation of all possible
attack paths an attacker may follow to compromise critical
resources. It uses the knowledge base of known vulnerabilities
and attack techniques on a network and then finds the different
sequences of exploits and attack paths starting from the attacker’s
initial state, leading to the compromise of critical network assets
(Agmon et al., 2019). To generate the attack graph for a system, in
this instance, the clinic and the patient, it is necessary to first
consider the topologies of the respective networks, which are
represented in Figures 2, 3, respectively, in order to generate
their associated reachability graphs. Next, from the reachability
graph, we can generate the attack graph by considering the
vulnerabilities present in each of the reachable devices, the pre-
conditions necessary to exploit each vulnerability, and the privileges
(i.e., post-conditions) obtained after the vulnerabilities are exploited.
In short, we must know the following information to generate a
network attack:

• The topology of the network.
• The devices in the topology.
• The vulnerabilities that may exist on those devices.
• The preconditions that must be satisfied in order to
successfully exploit those vulnerabilities and whatever post-
conditions result as an outcome of the successful
vulnerability exploit.

• Traffic-limiting configurations, such as firewall rules that
control the reachability between the devices in the topology.

4.3.1 Attack graph
As mentioned in Section 2, we adopt the exploit dependency

graph representation (Barik et al., 2016b), and our approach to
generating the attack graph for a specific network topology follows

similar steps as those discussed in Barik et al. (2016a). However, in
addition to all the information considered in Barik et al. (2016a) to
generate an attack graph, in our work, we consider the information
associated with vulnerabilities, such as pre- and post-conditions that
are missing from Barik et al. (2016a), which only considers attacker
gained privileges. In addition, we explicitly model the accessibility
information between hosts in the attack-graph generation.
Moreover, in contrast to the work in Barik et al. (2016a), which
creates an attack graph merged with a topology graph in one graph,
our approach must read information from the reachability graph
and generate an attack graph separate from the topology and the
reachability graphs, which makes it easier to query and analyse. Our
attack graph can be defined as GA = (V, E), where V is the set of
nodes in the attack graph and E is the set of edges that connect the
nodes in GA. The attack graph involves two types of nodes, such that
V = {Vc, Ve}, where Vc = {Vpre, Vpost} is a set of condition nodes that
can either be pre-conditions required to exploit the device or post-
conditions resulting from a successful exploit, whereas Ve is a set of
vulnerability exploit nodes that represent an exploit of a
vulnerability on software on a device. The attack graphs for the
clinic and the patient are shown in Figures 6, 7 respectively. The pink
nodes represent the conditions (either pre- or post-conditions),
whilst the brown nodes represent vulnerability exploits.

Generally, in our attack graph, we say ∀vv ∈ Vv ∃vpr ∈ Vpre AND
∃vpo ∈ Vpost. Nodes representing pre- and post-conditions will be
automatically generated when generating an attack graph. We
assume that all the preconditions must be met to exploit a
vulnerability. When it comes to vulnerability exploit nodes, any
ve ∈ Ve has a name, ve.name � CVE − ID(vei, vej), where CVE − ID
is the unique identifier of the software vulnerability and is defined in
the CVE database that can be searched using Booth et al. (2013). vei
and vej are, respectively, the vertices that represent the end devices in
the network topology graph from where the attacker launches the
exploit and the device where the software vulnerability exists. On the
other hand, E = {Ee, El}, that is, in our attack graph, each edge e ∈ E
belongs to one of two sets: Ee and El, where Ee is a set of edges of
category/type EXPLOIT that connect the pre-condition nodes Vpre

and the nodes Ve. El is a set of edges of category/type LEADS that
connect the exploit nodes Ve and the achieved post-condition
nodes Vpost.

For example, to exploit the vulnerability CVE-2017-8628 in the
Internet browser of Workstation 1, the attacker’s machine must use
the HTTP protocol to connect to Workstation 1, which is a pre-
condition required to successfully exploit CVE-2017-8628. If the
attack is conducted successfully, then the attacker will become a user
on Workstation 1, as this is the post-condition of the vulnerability.
Hence, HTTP should be included in the attacker’s machine
accessibility list, as well as in the pre-condition list associated
with the CVE-2017-8628 vulnerability. Having user privileges on
Workstation 1 is one pre-condition required to exploit the FTP
vulnerability CVE-2021-41635 onWorkstation 2, which is reachable
from Workstation 1. The other pre-condition is that the attacker
must use the FTP protocol to access Workstation 2; hence,
Workstation 1 must support such protocol, that is, FTP should
be included in the Workstation 1 accessibility list as well as in the
pre-conditions list associated with vulnerability CVE-2021-41635.
Only then can the CVE-2021-41635 vulnerability be exploited to give

FIGURE 7
Patient attack graph.

Frontiers in The Internet of Things frontiersin.org14

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

the attacker user privileges onWorkstation 2 and proceed to the next
vulnerability exploit.

Hence, ∀precondition ∈ vvi.preConditions where vvi ∈ Vv our
algorithm (Cypher query) creates a pre-condition node vpr ∈ Vpre

in the attack graph GA. Note that part of the pre-conditions
required to successfully exploit a vulnerability is being a user or
a superuser on a device from where the attack is launched; hence, a
pre-condition node representing the required privilege will be
created. Similarly, ∀postcondition ∈ vvi.postConditions where
vvi ∈ Vv our algorithm (Cypher query) creates a post-condition
node vpo ∈ Vpost in the attack graph GA. In our use case scenario, we
only assume one post-condition as an outcome from a successful
exploit, representing the privilege the attacker gained as either a
user or a superuser on the attacked device.

To generate the attack graph, we follow the steps presented in
the pseudocode depicted in Listing 1:

Listing 1: Attack-graph generation.
The following discusses each of the steps included in the

pseudocode presented above:

1. For each device where the attacker has acquired user or super
user privileges, create a condition node representing the
privilege the attacker has gained on that device.

2. For each device reachable from the attacker device and which
has one or more vulnerabilities,

3. And for each pre-condition in the pre-conditions list of each
vulnerability in the reachable device, and for each item in the
accessibility list of the device where the attacker acquired user/
superuser privileges (i.e., the list of protocols according to
which a device can initiate connections), check whether the
pre-conditions to exploit each of those vulnerabilities are
satisfied; that is, check the if there are accessibility features
match the required pre-conditions to exploit each
vulnerability, then

a. Create a condition node representing each of the satisfied
pre-conditions that matches one or more of the attacker
device accessibility features.

b. Create an exploit node representing the exploit of that
vulnerability.

c. Create a condition node representing each item in the list of
post-conditions associated with the vulnerability that
represents the outcome of the successful attack on the
device that has that vulnerability.

d. Create an EXPOLITS edge between the pre-condition node
and the exploit node.

e. Create a LEADS edge between the exploit node and the
post-condition node.

4.3.2 Neo4j implementation of the attack graph
Using Neo4j, we have implemented Cypher queries that allow us

to generate the attack graph from the reachability graph. Following
the steps in the pseudocode in Listing 1, we can generate the attack
graph for a network with a topology graph GN using Cypher queries.
For example, for the clinic topology graph GNC, we implemented the
following Cypher queries:

Step 1:

MATCH(n:ClinicTopology:EndDevice) WHERE

n.privilege =‘User(’+n.name+‘)’

OR n.privilege = ‘SuperUser(’+n.name+‘)’

MERGE(n1:Condition{name:‘User/

SuperUser(’+n.name+‘)’})

ON CREATE SET n.targetTopology =

ClinicTopology, n1:ClinicAttackGraph

Step 2:

MATCH(m:ClinicTopology:EndDevice)

MATCH(n)-[:REACHES]->(m)-[:HAS]->(v:
Vulnerability)

Step 3:

UNWIND n.accessiblity as y WHERE ANY(x IN

v.preConditions WHERE x = y)

Step 3-a:

UNWIND v.preConditions AS c

MERGE(n1:Condition{name:

c+‘(’+n.name+‘,’+m.name+‘)’})

ON CREATE SET n1:ClinicAttackGraph

Step 3-b:

MERGE(n2:Exploit{name:

v.name+‘(’+n.name+‘,’+m.name+‘)’})

ON CREATE SET n2:ClinicAttackGraph

Step 3-c:

UNWIND v.postConditions AS p

MERGE(n3:Condition{name:p})

ON CREATE SET n3:ClinicAttackGraph

Step 3-d:

MERGE(n1)-[:EXPLOITS]->(n2)
Step 3-e:

MERGE(n2)-[:LEADS]->(n3)
As expected in Section 4, the generated clinic attack graph

reveals two attack paths that can lead the attacker to become a
user/superuser on the Database Server. For example, to exploit the
CVE-2009-2446 vulnerability on the Database Server from
Workstation 2 that is, CVE-2009-2446(Workstation 2, Database),

Frontiers in The Internet of Things frontiersin.org15

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

the attacker must be a user/superuser on Workstation 2 (user/
superuser (Workstation 2)) and also access the Database Server
through MYSQL fromWorkstation 2, that is, MYSQL (Workstation
2, Database). The successful exploit of CVE-2009-2446(Workstation
2, Database) leads to the attacker acquiring the user/superuser
(database) privilege as a post-condition. The two attack paths in
the clinic attack graph leading the attacker to become a user/
superuser on the Database Server are

CVE-2017-6753(Attacker Machine, Workstation

1)->CVE-2021-41635
(Workstation 1, Workstation 2)->CVE-2009-

2446(Workstation 2, Database)

CVE-2017-6753(Attacker Machine, Workstation

1)->CVE-2022-30318
(Workstation 1, Workstation 3)->CVE-2009-

2446(Workstation 3, Database)

The generated patient attack graph reveals one attack path,
leading the attacker to become a user/superuser on the patient
Smartwatch, exploiting the vulnerability CVE-2017-1000251 from
the Smartphone:

CVE-2017-1000251(Smartphone, Smartwatch)

4.3.3 Attack graph and cycles
If the attacker is a user/superuser on a device with accessibility

features that allow it open connections and satisfy the pre-conditions
required to successfully exploit a software vulnerability on a
reachable device, allowing the attacker to eventually become user/
superuser on the reachable device, then cycles may occur if the
attacker device also has a vulnerability that requires pre-conditions to
be exploited from the reachable device if that reachable device has
accessibility features that allow it to open a connection with the
attacker device. In other words, cycles in the attack graph may occur
if the following condition applies: If there is an edge (vei, vej) ∈ Er in
the reachability graph (GR), and if the attacker is a user/superuser on
the end device vei ∈ Ve which has an accessibility list aei ∈ Av and has
a software vulnerability vvi ∈ Vv that has pre-conditions list pri to be
successfully exploited, and the end device vej ∈ Ve has an accessibility
list aej ∈ Av and has a software a vulnerability vvj ∈ Vv that has pre-
conditions list prj to be successfully exploited, then if the attacker
becomes a user/superuser (depending on the post-conditions) on the
end device vej and if the features in the accessibility list aej match a set
or a subset of the pre-conditions list pri required to exploit vvi exists in
the end device vei ∈ Ve, that is, if vej.aej ⊆ vvi.pri then a cycle will
be generated.

To sum up, cycles will appear in the attack graph in this case: If
(vei, vej) ∈ Er and the attacker becomes a user/superuser on vej and
there exists vej.aej such that vej.aej ⊆ vvi.pri. If cycles are inevitable in
the attack graph and one wants to eliminate them, the cycles can be
eliminated by first detecting them and then removing them. We can
do that by finding the shortest path between any two nodes,
considering that the shortest path is the path with the minimum
number of edges (relationships) between two nodes (Phillips and
Swiler, 1998a; Bopche and Mehtre, 2017). This is because in the
cycle, the start and the end node is the same node, leading to the
shortest path between any two nodes in a graph where cycles are
inevitable. After finding the cycle path, that is, the shortest path
between any two nodes in the graph, then we simply remove the
exploit nodes from the detected cycle path and all the edges attached

to them. To achieve this, we implemented the following
Cypher query:

MATCH(m1:ClinicAttackGraph)-[]->(m2:
ClinicAttackGraph)

cyclePath=shortestPath((m2)-[*]->(m1))
WITH m1

nodes(cyclePath) AS cycle WHERE m1:Exploit

DETACH DELETE m1

As a result of running the above query, some conditions
associated with the removed exploit nodes become isolated
without edges. We can remove those remaining nodes (condition
nodes) without edges, as having those isolated nodes, although not
harmful, is useless. We can add the following Cypher queries to find
those nodes with zero edges and delete them:

MATCH(n:ClinicAttackGraph)

WHERE SIZE—n)--())=0 DELETE (n)

In our attack graph, a cycle will be generated due to the exploit of the
vulnerability of the Bluetooth adapter equipped in the Kiosk launched by
an attack initiated from Workstation 1 and the exploit of the
vulnerability of the Bluetooth adapter equipped in the Workstation
1 launched by an attack initiated from Kiosk. This is because both the
Kiosk and the Workstation 1 are reachable from each other (when they
are in the same Bluetooth vicinity), and the preconditions required to
exploit the Bluetooth vulnerabilities in both of the devices are satisfied by
each of them. However, as the attack target in the clinic topology is the
Database Server, having this path (the cycle) fromWorkstation 1 to the
Kiosk then toWorkstation 1 is not useful in the clinic attack graph as this
path will not lead the attacker to the Database Server, so we can remove
this cycle from our attack graph as explained above.

5 Merging graphs

When a sub-network joins another network, they may
interconnect. As explained in Section 1, the topologies of both
networks will be interconnected, and the reachability between the
devices in both networks will change. As a result, their associated
attack graphs will also be interconnected. Hence, we must do the
following major steps to depict how attack propagation changes
when two networks join each other and become interconnected:

1. Update (merge) the topologies of the involved networks, that
is, create new connection links.

2. Re-generate the reachability graph of the merged topologies.
3. Re-generate the attack graph of the merged topologies.

The following sections describe each of these steps in detail.

5.1 Merging network topology graphs

In essence, if a device has an IP address, it will look for an access
point (router device) with which a bidirectional TCP connection can
be created (we only consider TCP traffic in our use case scenario)
when it joins a new system. However, even if the device does not
have an IP address, it still can create point-to-point links with
devices in its vicinity. Hence, once a device joins a new system,
different connectivity edges may be created. The outcome will be a

Frontiers in The Internet of Things frontiersin.org16

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

merged topology comprising the original topologies of the networks
we have in the environment, plus newly created CONNECTS_TO
edges between them. In Neo4j, this can be implemented as follows:

MATCH(m1:EndDevice) WHERE ANY(x IN

m1.accessibility WHERE x =‘IP’)

MATCH(m2:Router) WHERE NOT

m1.targetTopology = m2.targetTopology

In the above query, we are looking for all the end devices that
have IP addresses and all the routers we have in the environment.
We are not filtering a specific network topology (through specifying
a category); this is to ensure looking both ways between the two
topology graphs in question, that is, the clinic and the patient, as the
patient may also have routers. If those devices do not belong to the
same network topology, then do the following:

MERGE(m1)-[:NEW_CONNECTS_TO {via:‘TCP’}]->(m2)
MERGE(m2)-[:NEW_CONNECTS_TO {via:‘TCP’}]->(m1)
SET m1:MergedTopologies, m2:MergedTopologies

In the above query, we are connecting the devices from the two
network topologies with new TCP connections, that is, the edges of
the new category/type of NEW_CONNECTS_TO. As we will
discuss in the following section, this will distinguish the newly
created links from the old links, which will help in finding the
reachability only for the updated parts of the merged topologies. The
above query allows us to find reachability for devices associated with
new connections only and avoid re-calculating the reachability for
the whole network. Thereafter, we add the devices associated with
the newly created edges to a new category called MergedTopologies,
which will help us merge and de-merge the associated attack graphs
when the patient leaves the clinic or moves to a different floor. In
addition to creating new connection edges via TCP, we are creating
direct connection links due to the short comm protocols like
Bluetooth. Such connection types require another condition to be
satisfied: for example, the devices must be in the Bluetooth vicinity of
each other. To achieve this, we write the following Cypher query:

MATCH(n1:PatientTopology) WHERE ANY(x IN

n1.accessiblity

WHERE x=‘Bluetooth’)

MATCH(n2:ClinicTopology) WHERE ANY(x IN

n2.accessiblity

WHERE x=‘Bluetooth’)

AND n2.floor = $floor

In the above query, we set the vicinity condition through the
property floor, but we allow the user to specify the value of this
property at run time through the parameter $floor to avoid needing
to change the value of the floor manually each time the patient
moves to a different floor. This is just one way of specifying the
vicinity. In the above query, we consider only one example of short-
range communication, Bluetooth, but this code can easily be
upgraded for all possible short range communication
technologies that allow different networks to merge with each
other, considering any other condition required to create the
connection edge. Next, we connect the Bluetooth-enabled devices
from both networks using the following Cypher query:

MERGE(n1)-[:NEW_CONNECTS_TO{via:‘Bluetooth’}]

->(n2)
MERGE(n2)-[:NEW_CONNECTS_TO{via:‘Bluetooth’}]

->(n1) with n1, n2

n1:MergedTopologies, n2:MergedTopologies}

In fact, we can create new connections associated with different
typologies that belong to other categories to merge with other
networks. For example, imagine if another patient network
topology with the category PatientTopology2 joins the clinic
network. Then, as an example, we can create new connections
associated with the second patient as follows:

MERGE(m1)-[:NEW2_CONNECTS_TO {via:‘TCP’}]

->(m2)
MERGE(m2)-[:NEW2_CONNECTS_TO {via:‘TCP’}]

->(m1)
SET m1:MergedTopologies, m2:MergedTopologies

We can do the same for multiple networks joining other
networks each time we distinguish the new connections
associated with the new merge using different edge categories/
types. This guarantees only updating the reachability for the
updated parts of the merged networks and avoids repeatedly
querying all the networks to update the reachability results, as
will be explained in detail in the following section.

5.2 Updating the reachability graph

Due to the newly created NEW_CONNECTS_TO edges in the
merged network topology graphs, the reachability graph of both
networks will inherently change. For example, new devices such as
the the patient’s Smartphone are merged into the clinic topology and
can reach other devices. Thus, we must re-generate an updated
version of the reachability graph by running the following
Cypher query.

MATCH(n:EndDevice)

MATCH(m:EndDevice)

WHERE n.name <> m.name AND (n.subnet=m.subnet

OR EXISTS((n)-[:NEW_CONNECTS_TO]->(m))
OR EXISTS((n)-[:NEW_CONNECTS_TO*{via: ‘TCP’}]

->(m))
AND EXISTS((:Router)-[:ALLOWS]->(:Firewall

{source: n.name, destination: m.name})))

MERGE(n)-[:REACHES]->(m)
Although the above query looks similar to the reachability query

discussed in Section 4.2.1 that calculates the reachability for the
whole network, the following query finds the reachability between
the end devices associated with the newly created connection links in
the merged topologies. Note that although the reachability query
discussed in Section 4.2.1 can find the reachability in the merged
topologies, using the query will repeat the work we have already
done for the devices in their original network. That query already
has poor performance and takes significant time and database hits
due to the need to traverse the graph for all indirect TCP
connections. Hence, we need a reachability query that can find
reachability for only the updated parts of the networks in the merged
topologies.

Note that the newly joined devices may or may not reach
existing devices, depending on their connection modes and the
firewall rules deployed, as explained in Section 4.1. In addition to
checking the existence of the newly created links in the merged
topologies, the above query still checks whether end devices belong
to the same subnets, which is useful in case one adds a new device to
a specific subnet in the current network, enabling the newly added

Frontiers in The Internet of Things frontiersin.org17

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

device to reach and become reachable from devices in the same
subnet. However, as in our merged topology query, we consider
merging two networks by creating new connection links where
necessary rather than adding a specific device to a specific
subnet. We can omit the first case, which is checking whether
devices belong to the same subnet when updating the reachability
for the merged topologies. Instead, reachability between end devices
in the same subnet can be assumed by default whenever one adds a
new device to a specific subnet. The following query finds the
reachability when a second patient joins the clinic network:

MATCH(n:EndDevice)

MATCH(m:EndDevice)

WHERE n.name <> m.name AND (EXISTS((n)-[:NEW2_

CONNECTS_TO]->(m))
OR EXISTS((n)-[:NEW2_CONNECTS_TO* {via:

‘TCP’}]->(m))
AND EXISTS((:Router)-[:ALLOWS]->(:Firewall

{source: n.name, destination: m.name})))

MERGE(n)-[:REACHES]->(m)
We tested our work for multiple patients joining the clinic, and

our queries revealed the correct results. Due to space limitations, we
will present the results of multiple networks joining and leaving each
other in a future article.

5.3 Merging attack graphs

When the reachability graph is updated, the attack graphs of both
the clinic and the patient must be re-generated. Updating the attack
graphs to represent the changes in the topology and the reachability
graph requires re-running the query for generating the attack graph
presented in Section 4.3.2 with two modifications: First, any newly
generated node will be set to belong to a new category, the
MergedAttackGraph (we can check that automatically using the
MERGE clause)5. This is because during the merge of the attack
graphs, new edges will be generated in the target attack graph, and
new nodes will also be generated. For example, in the clinic attack
graph presented in Section 4.3.2, we do not have any conditions or
exploit nodes associated with vulnerabilities in the Kiosk software
services. This is because the attack graph of the clinic is generated for
attacks originating from the Internet. Involving attacking the Kiosk
in the external attack would result in a cycle because the attacker
would go to the Kiosk from Workstation 1 and back to Workstation
1 to proceed further to the database. Secondly, we must specify the
target topology we are interested in in this work. Each network
topology graph in the MergedTopologies category has its own
target(s) and, thus, its own attack graph. For this purpose, we use
a parameter (using $) allowing the user to specify the target they are
interested in at run time instead of specifying statically as a hard-
coded value. For example, Step 2 and Step 3-a in Section 4.3.2 would
have the following minor modification:

Step 2:

MATCH(m:MergedTopologies:EndDevice)

WHERE m.targetTopology= $targetTopology

MATCH(n)-[:REACHES]->(m)-[:HAS]->(v:
Vulnerability)

Step 3-a:

UNWIND v.preConditions AS c

MERGE(n1:Condition{name:

c+‘(’+n.name+‘,’+m.name+‘)’})

ON CREATE SET n1:MergedcAttackGraphs

If we are interested in checking all the updates in all attack
graphs associated with all merged topologies, then we must update
(merge) the attack graphs associated with each network topology
one by one in an iterative way. The target of interest must be
specified each time.

6 De-merging graphs

In brief, when a system (sub-network) leaves, we must remove
its nodes from the merged attack graph and remove all the edges that
were added due to the interconnections between the two systems. In
short, we must:

1. Update (de-merge) the merged topology graphs by removing
the newly added connection links.

2. Update (de-merge) the merged attack graphs by removing
newly added nodes and all edges associated with them.

These steps are explained in the following subsections.

6.1 De-merging network topology graphs

As discussed in Section 5.3, in the merging process, new
connection edges are added between the devices from the
merged network topology graphs. REACHES edges are also
created between devices in the merged topologies due to
updating reachability for the updated part of the network.
Hence, in the de-merging process, we only need to delete the
new edges created between the merged topologies without
removing the graph nodes representing the devices in the
merged networks, which in our use case are the patient and
the clinic networks. Moreover, we must remove those network
components in the merged topology graphs from the
MergedTopologies category. In other words, we can say:
∀(vei, vej) ∈ Ed and ∀e(vei, vej) ∈ Er, where vei ∈ GNP and
vej ∈ GNC and both vei and vej ∈ MergedTopologies DELETE
(vei, vej) and remove the MergedTopologies from the labels
associated with (vei, vej), where GNP and GNC refer to the
categories of patient and the clinic network topology graphs,
respectively. The following is the Cypher query for de-merging
the merged network topology graphs (the patient and the clinic
in our use case scenario).

MATCH(n1:PatientTopology)-[r]-(n2:

ClinicTopology)

REMOVEn1:MergedTopologies,n2:MergedTopologies

DELETE r

5 When generating an attack graph, associated nodes will be created from

scratch. When merging attack graphs, some nodes will already exist, and

new ones will be created. We do not want to create nodes that are

already there.

Frontiers in The Internet of Things frontiersin.org18

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

The above query guarantees removing all the edges between
end devices in the MergedTopologies category, whether they are
NEW_CONNECTS_TO or REACHES edges. If there are
multiple network topology graphs in the MergedTopologies
category, we can filter which network topology graph we are
interested in removing from the merged topologies. For
example, if there are two patient topologies merged with the
clinic network topology, and in the case that Patient 2 leaves the
clinic while Patient 1 stays in the clinic, we can simply edit the
above query as follows:

MATCH(n1:PatientTopology2)-[r]-(n2:Clinic

Topology)

REMOVEn1:MergedTopologies,n2:MergedTopologies

DELETE r

The above query will remove the NEW2_CONNECTS_TO
physical links as well as the REACHES edges associated with
Patient 2 when their topology was merged with the clinic
topology. This way, we can specify the category of the devices
we are interested in removing and use filtering and categories to
keep track of the nodes and edges added at each Merge operation.
We tested our work for multiple patients joining the clinic, and
our de-merge queries revealed the correct results. As mentioned
previously, due to space limitations, we will present the
description of multiple networks joining and leaving for a
future article.

6.2 De-merging attack graphs

When the patient leaves the clinic, we must update the attack
graphs by de-merging the attack graphs before merging them
again if necessary; for example, if the patient moves to a different
floor in the clinic. In de-merging the attack graphs, all we must do
is find the nodes in the temporary category
MergedAttackGraphs, which contains the newly added nodes
that were not originally in the attack graphs, and delete them
along with all the edges that connect them with the rest of the
original nodes in the graph. This guarantees separating the
original attack graphs corresponding to the network topology
graphs and removing newly created nodes and all edges
associated with them. In other words, we can say:
∀vma ∈ MergedAttackGraphs AND ∀ea ∈ Ea, where vma is part
of an edge ea then DELETE vma and ea. We can implement this as
a Cypher query as follows:

MATCH(n:MergedAttackGraphs) DETACH DELETE n

The above query guarantees de-merging all the merged attack
graphs. If there is another merged attack graph in the
MergedAttackGraph category associated with the Patient
2 topology graph in the MergedTopologies category, and if
Patient 2 leaves, we must specify that in the
MergedAttackGraphs category, as follows:

MATCH(n:PatientToplogy2:MergedAttackGraphs)

DETACH DELETE n

The above query guarantees de-merging only the attack
graph of Patient 2 from all other merged attack graphs.
Thanks to using categories (labels) to filter our queries, we
can work only on the topology and attack graphs we are
interested in.

7 Running the algorithms
(Cypher queries)

To check the correctness of our algorithms and test whether
their output aligns with expectations, we run the queries and show
the output for merging and de-merging the graphs associated with
the clinic-patient use case discussed in Section 3 when the patient
enters the clinic’s Floor 1.6 We first run the experiments by
considering that the target topology is the clinic topology, and
then we run the same experiments considering the target
topology is the patient topology.

7.1 Patient on Floor 1, targetTopology:
ClinicTopology

The patient just entered the clinic and is now on Floor 1.
Figure 8 depicts how the topology graphs of both the clinic and
the patient merge on Floor 1, while Figure 9 depicts how the
reachability graphs of both networks will be updated according to
the merge. The figures show what is expected. As the patient’s
Smartphone and Smartwatch are Bluetooth-enabled, they can
reach all Bluetooth-enabled devices in their vicinity (Floor 1), in
this case, the clinic’s Workstation 1 and the Kiosk. The patient’s
Smartphone has an IP address. Once in the clinic, it will look for
access points in the clinic to connect to, allowing the Smartphone
to create TCP connections with Router 1 and Router 2. However,
no firewall rule will allow the Smartphone to reach clinic end
devices using TCP connections on any floor; hence, the
Smartphone will only reach clinic Bluetooth-enabled end
devices on Floor 1 through the Bluetooth short-range
communication protocol. On the other hand, although
Workstation 1 has an IP address, it cannot create TCP
connections with any of the patient end devices because the
patient does not carry or wear a router device.

As a result, an internal attacker can exploit the Bluetooth
vulnerabilities on both the Workstation 1 and the Kiosk from
either the Smartphone or the Smartwatch because they satisfy the
preconditions required to exploit those vulnerabilities on the
clinic end devices located in Floor 1 (including the obtaining the
required privileges), which is the assumed Bluetooth
communication vicinity. The resulting merged attack graphs
are shown in Figure 10.

Running the reachability query for the updated part of the
network, as explained in Section 5.2, took 531 ms to run and
required 1,681 database hits. This is a significant improvement,
especially in terms of the total number of database hits compared to
running the reachability query for the whole network, which will
recalculate what has already been done. As our experiment in
Section 4.2.1 revealed, running the reachability query for all the
end devices in the network required 201,529 database hits. In
contrast, the query for merging the topology graphs took 11 ms
and required 616 database hits, while merging the attack graphs took
72 ms and required 4,681 database hits. As expected, the de-merge

6 We add extra examples in the Supplementary Material.

Frontiers in The Internet of Things frontiersin.org19

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

operations are very fast; they took 3 ms and 4 ms and required
93 and 38 database hits, respectively. The reachability query requires
the longest time and the most database hits to be processed.

7.2 Patient on Floor 1, targetTopology:
PatientTopology

We continue our query testing as in Section 7.1, but we change
the target topology to the patient topology. The merged topology
and reachability graphs while the patient is on Floor 1 of the clinic
should be similar to the ones in Figures 8, 9, respectively, which our

experimental results revealed. The only difference will be in the
merged attack graphs, as in this scenario, the directions of the
directed attack paths are going towards the patient target, the
Smartwatch, with the same number of attack paths (we will
discuss how we can count the attack paths in Section 8), as
shown in Figure 11.

8 Attack-graph-based metrics for risk
assessment

As discussed in the previous sections, the attack graph is a
modelling technique used to determine threats to critical system
resources. Determining the possibilities of a cyberattack against
critical resources, the potential impact of the attack on other
parts of the system, and planning security countermeasures to
prevent attacks on a system all fall under the umbrella of the
concept of security risk assessment (Landoll, 2021). At its core,
the attack graph provides a graphical security model to help
assess the risk of attack on system components (Bopche and
Mehtre, 2017). Our proposed method provides a means to assess
risk and attack propagation that allows re-evaluating the risk of
compromise to different parts of the system, as some parts of the
system may have been compromised.

Usually, we assess the risk of attacks in a system against specific
security metrics in order to identify and quantify security issues early
enough so that we select appropriate countermeasures. Security
metrics are used to assess the security of a given network
configuration and to evaluate day-to-day changes in the security
strength of a network (Bopche and Mehtre, 2017).

Several metrics for security risk assessment are summarised in
Bopche and Mehtre (2017), such as the attack path length and non-
path-length-based metrics, which were originally proposed in
Phillips and Swiler (1998b), Ortalo et al. (1999), Li and Vaughn
(2006), Lippmann et al. (2006), Pamula et al. (2006), and Idika and
Bhargava (2010). In addition, a group of network hardening metrics

FIGURE 8
Merged topology graphs in the clinic on Floor 1.

FIGURE 9
Updated reachability graphs in the clinic on Floor 1.

Frontiers in The Internet of Things frontiersin.org20

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

were proposed by Noel and Jajodia (2014). The probability-based
metrics proposed in Wang et al. (2007; 2008) are sensitive to the
introduction of a new vulnerability in the network. The graph
distance metrics discussed in Bopche and Mehtre (2017)
determine changes in the network attack surface at a finer
granularity and complement the traditional network monitoring
approach for security risk mitigation.

In this section, we implement examples of Cypher queries for
two attack-graph-based metrics, one of which is the shortest path
metric (Phillips and Swiler, 1998b). The other represents the number
of paths metric that was proposed in Ortalo et al. (1999).6

8.1 Shortest attack path metric

The shortest path metric represents the shortest distance
from an attacker’s initial state to the attacker’s goal state
(i.e., the target). In our attack graph, the shortest attack path

means the path with the minimum number of edges
(relationships) from the attacker’s starting point to the
attacker’s goal node (Phillips and Swiler, 1998a; Bopche and
Mehtre, 2017). The category/type of nodes that can be included in
the path is subject to the security expert performing the analysis.
For example, we may want to involve the condition nodes, or we
may want to count/view only the vulnerability exploit nodes
along the path, or we may want to analyse both (Idika and
Bhargava, 2010). In this work, we consider the number of
conditions and exploits starting from the attacker’s initial state
and proceeding in a chain to the attacker’s goal state. But how is
this metric useful?

Intuitively speaking, from the perspective of the attacker, if
there are multiple ways the attacker can follow to get to the target,
the attacker will choose the path that requires the fewest steps.
This relies on two assumptions: first, that the attacker is
interested in using the minimum effort to reach the goal node,
and second, that each step taken by an attacker includes a risk of

FIGURE 10
Merged attack graphs in the clinic on Floor 1.

Frontiers in The Internet of Things frontiersin.org21

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

being detected, so a minimum set of steps would, in principle,
also minimise the attacker’s risk of being detected. Hence, the
network with the shortest attack path is the network that is less
secure, and the security engineer may prioritise patching the
software vulnerabilities that exist along the shortest attack path.

However, although the shortest path attack metric can
indicate the level of security of a network, this metric is not
accurate in all cases. For example, as discussed in Ortalo et al.
(1999), this metric alone does not indicate how many shortest
paths exist in a network if more than one exists, which could lead
to erroneous analysis and decisions. Moreover, this metric is not
sensitive enough to be used for real-time network security
evaluation independently: improving the security of the
network by implementing countermeasures may result in a
new attack graph for a more secure network, but the new
network may have the same minimum path length as not
implementing any countermeasure. Finally, the assumption
that an attacker may choose the shortest path does not
necessarily hold; attacker skill, for example, in exploiting a

particular type of vulnerability or tooling, may induce
different attack paths to be chosen. As a result, the shortest
path metric can be too coarse (Idika and Bhargava, 2010).

Nevertheless, this metric can still effectively estimate how the
security of the network might change when a new vulnerability is
discovered or new countermeasures are being deployed.

Using the Neo4j Cypher language, we developed queries that
identify, visualise, and measure the shortest attack path in a
network. This metric can be applied and evaluated when the
graph changes, such as when different systems are merged. For
example, in our running example, the patient is on clinic Floor 1.
The following query counts the shortest attack path and the
length of that path between the patient’s smartphone and the
clinic Database Server when the patient is on clinic Floor 1. This
path is depicted in Figure 12. We can do the same analysis for
each network individually and for any other two nodes located in
the same or different topologies and with multiple targets.

MATCH(start:PatientTopology:EndDevice{name:

’Smart Phone’})

FIGURE 11
Merged attack graphs in the clinic on Floor 1, with the patient as a target topology.

FIGURE 12
Shortest attack path between the patient’s Smartphone and the Database Server in the clinic, while the patient is on Floor 1.

Frontiers in The Internet of Things frontiersin.org22

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

MATCH(end:ClinicTopology:EndDevice {name:

’Database’})

MATCH p = shortestPath((n:PatientAttackGraph:

Condition{ name:’User/SuperUser(’+start.name+’)

’})-[*]->(m:Condition:ClinicAttackGraph {name:

’User/SuperUser(’+end.name+’)’}))

RETURN length(p)

OUTPUT: 6

8.2 Number of attack paths metric

The number of attack paths metric represents the number of
ways an attacker can compromise a target in a given system and is an
estimate of the network exposure to an attack (Phillips and Swiler,
1998a; Bopche and Mehtre, 2017). Intuitively, if the attacker has
multiple ways to compromise a target node, the attacker has a better
chance of achieving their goal without being detected. Hence, an
attack graph with a larger number of paths is considered less secure.

This metric allows for the detection of fine granular changes in
network security that the shortest attack path metric fails to detect.
However, on its own, it may not give an accurate picture of the
security of the network because the attacker’s effort is not considered
in this metric (Idika and Bhargava, 2010). For example, each path in
a graph Ga of 10 attack paths could require 20 times more effort to
violate than a graph Gb with one path, which means that Gb is less
secure than Ga (Idika and Bhargava, 2010). However, there is no
known way to quantify the required effort to propagate throughout
the attack path in practice. For instance, the following query counts
the total number of attack paths between the attacker’s machine on
the Internet and the target, that is, the database server in the
clinic topology:

MATCH (start:ClinicTopology:EndDevice{name:

‘Attacker Machine’})

MATCH(end:ClinicTopology:EndDevice

{name:‘Database’})

MATCH path =(n:ClinicAttackGraph:Condition

{name:‘User/SuperUser(’+start.name+‘)’})-[*]->
(m:ClinicAttackGraph:Condition{name:‘User/

SuperUser(’+end.name+‘)’})

RETURN count(path)

Output: 2

Similar to the above, queries can be implemented to reason
about attack paths and metrics in the patient attack graph. We can
do the same analysis for each network individually and for any other
two nodes located in the same or different topologies and with
multiple targets. For example, the following query counts the
number of attack paths between the patient’s Smartphone and
the target in the clinic, that is, the Database Server when the
patient is in the clinic Floor 1, and reveals there are eight attack
paths between the Smartphone and the Database Server:

MATCH(start:PatientTopology:EndDevice

{name:‘Smart Phone’})

MATCH(end:EndDevice:ClinicTopology

{name:‘Database’})

MATCH path = (n:PatientAttackGraph:

Condition{

name:‘User/SuperUser(’+start.name+‘)’})-[*]->

(m:Condition:ClinicAttackGraph{name:‘User/

SuperUser(’+end.name+‘)’})

RETURN count(path)

Output: 8

The following Cypher query lists each of those eight attack paths
along with its length:

MATCH(start:PatientTopology:EndDevice

{name:’Smart Phone’})

MATCH(end:ClinicTopology:EndDevice

{name:’Database’})

MATCH path = (n:PatientAttackGraph:Condition

{ name:’User/SuperUser(’+start.name+’)’})-

[*]->(m:Condition:ClinicAttackGraph
{name:’User/SuperUser(’+end.name+’)’})

RETURN count(p), length(p)

OUTPUT:

count(p) length(p)

2 6

4 8

2 10

We can run similar queries to check the total number of attack
paths and the shortest attack path between the patient’s Smartwatch
and the Database Server in the clinic. We can also do the same by
changing the target topology to the patient topology and checking
the total number of paths and the shortest path between any end
device in the clinic and the patient target, that is, the Smartwatch.

9 Conclusion and future work

This study has investigated the propagation of attacks in current
and future IoT systems. In particular, an approach is developed to
enable representing and maintaining attack paths through the
system whilst allowing for system dynamics, considering not only
the addition/removal of single devices but also themerging of graphs
when multiple systems are connected and disconnected. This
includes considering aspects of system topology and
compositionality. Furthermore, the proposed method provides
the means to assess risk and attack propagation that allows
reevaluating the risk of compromise to different parts of the system.

We harnessed the efficiency of Neo4j, a popular graph-based tool,
tomap paths across the network. Neo4j allows us tomodel network and
attack graphs, perform queries that provide quick results, and also
allows for the filtering of large graphs and query subgraphs of interest,
which saves search and query time complexities. For example, when the
updates happen dynamically in the networks, our reachability query
finds the paths associated only with the newly created links, that is, the
updated part of the network, rather than querying all the paths, which
would have a poor performance on a scalable network due to the need
to traverse the graph for all indirect connections.

In comparison with previous reachability query approaches that
query all paths with no consideration for avoiding duplicate
calculations, we are not re-generating everything all the time. We
showed the extent to which a graph database tool and the optimised
implementation of queries on graphs make realising the solution to
system dynamics and reachability problems in dynamic graphs possible
by specifying exactly where and how to traverse certain parts of the
network: using different edge types, filtering, categories, parameters,

Frontiers in The Internet of Things frontiersin.org23

Salayma 10.3389/friot.2024.1306465

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

attributes, and so on. This optimised treatment of graphs allows parts of
the system to be queried even before any updates take place or in static
networks, as one does not need to query the whole network for
reachability between all network components.

Our reachability query is the only query that requires traversing
a graph searching for indirect connections between end devices.
Compared to the other Cypher queries that we proposed, which all
require only checking directly connected nodes, it takes the longest
processing time and requires the highest number of database hits. In
comparison, the processing times of the other queries proposed in
this work are negligible. However, after running and testing our
queries on different scenarios, results revealed that even when two
systems are merged, running the reachability query on the merged
graphs provided results in less than a second, with the number of
database hits reduced significantly compared to running the query
for the whole system. Our proposed network topology, reachability,
and attack graph models can easily be extended by only creating new
nodes, relationships, categories, and attributes; no changes to the
database schema are required.

In addition to investigating the propagation of attacks in current
and future IoT systems, we have developed queries to enable us to assess
the risk of compromise in the dynamic IoT environment against
security metrics evaluated on the graph of the different attack paths.
As discussed earlier, the shortest attack path metric can be too coarse,
while the number of attack paths offers a measure of the degree of
flexibility the attacker has but does not necessarily capture an
appropriate measure of risk to the system. It is, therefore, crucial to
be able to analyse multiple metrics together because any single metric
used in isolationmay lead to amisleading analysis and conclusion about
the risk to the system (Phillips and Swiler, 1998a; Bopche and Mehtre,
2017). Given that joining and leaving the network have a substantial
impact on the properties of the attack paths, we have expanded our
method to include other path-related risk assessment metrics. We
discuss how we can use multiple metrics together, which are
classified into decision metrics and assistive metrics. We have also
enhanced the method to enable estimating the impact of compromise
upon the functionality of the system. To achieve this, we have developed
an approach using Neo4j and Cypher queries that enables us to analyse
the interdependencies between system components. We modelled such
interdependencies using a dependency graph, which also considers
networked systems providing services whose functionality depends on
other components in the network. This is because the availability of a
given node is measured at the service level it provides as a proportion of
the level normally expected of it. Fully estimating the risk and the
impact of compromise when the environment changes enables us to
select the most appropriate threat mitigation technique to deploy when
the IoT environment changes based on its measured losses, impact, and
costs over time. We are working on achieving this not only by using the
methods implemented and/or related to this work, like the work in
Soikkeli et al. (2019), but also through Bayesian inference according to a
work previously done inMunoz-González and Lupu (2017). Due to the
space limitation, we have not provided this part of the work in this
article. We will discuss continuously analysing the risk and impact of
compromise to build security control selection methods in an ongoing
article that will be published soon.

The end goal we are seeking is the delivery of implemented tools
and algorithms that can be either used independently for the analysis

of more dynamic IoT scenarios or integrated into the broader tools of
attack-graph analysis and risk evaluation developed to model threats
in enterprise networks to enable them to deal with dynamic
network scenarios.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

MS: conceptualization, formal analysis, investigation,
methodology, software, validation, visualization, writing–original
draft, writing–review and editing, funding acquisition.

Funding

The author declares that financial support was received for the
research and the authorship of this article. This work was supported
by PETRAS National Centre of Excellence for IoT Systems
Cybersecurity (PETRAS 2) under grant number EP/S035362/1.
https://petras-iot.org/.

Acknowledgments

I thank Imperial College London for funding the article
processing/publication through Imperial Open Access Fund.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/
full#supplementary-material

Frontiers in The Internet of Things frontiersin.org24

Salayma 10.3389/friot.2024.1306465

https://petras-iot.org/
https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/friot.2024.1306465/full#supplementary-material
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

References

Agmon, N., Shabtai, A., and Puzis, R. (2019). “Deployment optimization of iot
devices through attack graph analysis,” in Proceedings of the 12th conference on
security and privacy in wireless and mobile networks, 192–202.

Almazrouei, O. S. M. B. H., Magalingam, P., Hasan, M. K., and Shanmugam,M. (2023). A
review on attack graph analysis for iot vulnerability assessment: challenges, open issues, and
future directions. IEEE Access 11, 44350–44376. doi:10.1109/access.2023.3272053

Barik, M. S., and Mazumdar, C. (2014). “A graph data model for attack graph
generation and analysis,” in International conference on security in computer networks
and distributed systems (Springer), 239–250.

Barik, M. S., Mazumdar, C., and Gupta, A. (2016a). “Network vulnerability analysis
using a constrained graph data model,” in International conference on information
systems security (Springer), 263–282.

Barik, M. S., Sengupta, A., and Mazumdar, C. (2016b). Attack graph generation and
analysis techniques. Def. Sci. J. 66, 559. doi:10.14429/dsj.66.10795

Booth, H., Rike, D., and Witte, G. (2013). The national vulnerability database (nvd):
overview.

Bopche, G. S., and Mehtre, B. M. (2017). Graph similarity metrics for assessing
temporal changes in attack surface of dynamic networks. Comput. Secur. 64, 16–43.
doi:10.1016/j.cose.2016.09.010

Buchanan, W. J. (1999). Networking fundamentals. London: Macmillan Education
UK. doi:10.1007/978-1-349-14966-7

Chen, Y., et al. (2016). Comparison of graph databases and relational databases when
handling large-scale social data. Saskatoon, SK: University of Saskatchewan. Ph.D.
thesis.

Idika, N., and Bhargava, B. (2010). Extending attack graph-based security metrics and
aggregating their application. IEEE Trans. dependable secure Comput. 9, 75–85. doi:10.
1109/tdsc.2010.61

Jajodia, S., and Noel, S. (2009). “Topological vulnerability analysis: a powerful new
approach for network attack prevention, detection, and response,” in Algorithms,
architectures and information systems security (World Scientific), 285–305.

Jajodia, S., Noel, S., and O’berry, B. (2005). “Topological analysis of network attack
vulnerability,” in Managing cyber threats (Springer), 247–266.

Jha, S., Sheyner, O., and Wing, J. (2002). “Two formal analyses of attack graphs,” in
Proceedings 15th IEEE computer security foundations workshop, 49–63. CSFW-15.
doi:10.1109/CSFW.2002.1021806

Jin, R., Ruan, N., Dey, S., and Xu, J. Y. (2012). “Scarab: scaling reachability
computation on large graphs,” in Proceedings of the 2012 ACM SIGMOD
international conference on management of data, 169–180.

Konsta, A.-M., Lafuente, A. L., Spiga, B., and Dragoni, N. (2024). Survey: automatic
generation of attack trees and attack graphs. Comput. Secur. 137, 103602. doi:10.1016/j.
cose.2023.103602

Lagraa, S., Husák, M., Seba, H., Vuppala, S., State, R., and Ouedraogo, M. (2024). A
review on graph-based approaches for network security monitoring and botnet
detection. Int. J. Inf. Secur. 23, 119–140. doi:10.1007/s10207-023-00742-7

Landoll, D. (2021). The security risk assessment handbook: a complete guide for
performing security risk assessments. Boca Raton: CRC Press.

Li, W., and Vaughn, R. B. (2006). “Cluster security research involving the modeling of
network exploitations using exploitation graphs,” in Sixth IEEE international
symposium on cluster computing and the grid (CCGRID’06) (IEEE), 26.

Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M., et al.
(2006). “Validating and restoring defense in depth using attack graphs,” in MILCOM
2006-2006 IEEE military communications conference (IEEE), 1–10.

Munoz-González, L., and Lupu, E. C. (2017). “Bayesian attack graphs for security risk
assessment,” in ST-153/RWS-21 NATO workshop on cyber resilience, 64–77.

Muñoz-González, L., Sgandurra, D., Barrère, M., and Lupu, E. C. (2017). Exact
inference techniques for the analysis of bayesian attack graphs. IEEE Trans. Dependable
Secure Comput. 16, 231–244. doi:10.1109/tdsc.2016.2627033

Noel, S., Harley, E., Tam, K. H., and Gyor, G. (2014). Big-data architecture for cyber
attack graphs. MITRE case.

Noel, S., Harley, E. T., Tam, K. H., Limiero, M., and Share, M. E. (2016). Chapter
4 – cygraph: graph-based analytics and visualization for cybersecurity.Handb. Statistics
35, 117–167.

Noel, S., and Jajodia, S. (2014). “Metrics suite for network attack graph
analytics,” in Proceedings of the 9th annual cyber and information security
research conference, 5–8.

Noel, S., Wang, L., Singhal, A., and Jajodia, S. (2010). Measuring security risk of
networks using attack graphs. Int. J. Next-Generation Comput., 113–123.

Ortalo, R., Deswarte, Y., and Kaâniche, M. (1999). Experimenting with quantitative
evaluation tools for monitoring operational security. IEEE Trans. Softw. Eng. 25,
633–650. doi:10.1109/32.815323

Ou, X., Boyer, W. F., and McQueen, M. A. (2006). “A scalable approach to attack
graph generation,” in Proceedings of the 13th ACM conference on Computer and
communications security, 336–345.

Pamula, J., Jajodia, S., Ammann, P., and Swarup, V. (2006). “A weakest-adversary
security metric for network configuration security analysis,” in Proceedings of the 2nd
ACM workshop on Quality of protection, 31–38.

Phillips, C., and Swiler, L. P. (1998a). “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on New security
paradigms, 71–79.

Phillips, C., and Swiler, L. P. (1998b). “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on new security
paradigms (New York, NY, USA: Association for Computing Machinery), 71–79.
doi:10.1145/310889.310919

Saravanan, S., Kalaiyarasi, M., Karunanithi, K., Karthi, S., Pragaspathy, S., and Kadali,
K. S. (2022). “Iot based healthcare system for patient monitoring,” in IoT and analytics
for sensor networks (Springer), 445–453.

Soikkeli, J., Muñoz-González, L., and Lupu, E. (2019). “Efficient attack
countermeasure selection accounting for recovery and action costs,” in Proceedings
of the 14th international conference on availability, reliability and security, 1–10.

Sorri, K., Mustafee, N., and Seppänen, M. (2022). Revisiting iot definitions: a
framework towards comprehensive use. Technol. Forecast. Soc. Change 179, 121623.
doi:10.1016/j.techfore.2022.121623

Swiler, L. P., Phillips, C., and Gaylor, T. (1998). A graph-based network-vulnerability
analysis system. Albuquerque, NM (United States): Sandia National Lab.

Veloso, R. R., Cerf, L., Meira Jr, W., and Zaki, M. J. (2014). “Reachability queries in
very large graphs: a fast refined online search approach,” in EDBT (citeseer), 511–522.

Wang, H., Chen, Z., Zhao, J., Di, X., and Liu, D. (2018). A vulnerability assessment
method in industrial internet of things based on attack graph and maximum flow. Ieee
Access 6, 8599–8609. doi:10.1109/access.2018.2805690

Wang, L., Islam, T., Long, T., Singhal, A., and Jajodia, S. (2008). “An attack graph-
based probabilistic security metric,” in IFIP annual conference on data and applications
security and privacy (Springer), 283–296.

Wang, L., Singhal, A., and Jajodia, S. (2007). “Measuring the overall security of
network configurations using attack graphs,” in IFIP annual conference on data and
applications security and privacy (Springer), 98–112.

Weisstein, E. W. (2008). Floyd-warshall algorithm. Available at: https://mathworld.
wolfram.com/.

Xie, G., Zhan, J., Maltz, D., Zhang, H., Greenberg, A., Hjalmtysson, G., et al.
(2005). On static reachability analysis of ip networks. Proc. IEEE 24th Annu. Jt.
Conf. IEEE Comput. Commun. Soc. 3, 2170–2183. doi:10.1109/INFCOM.2005.
1498492

Yuan, B., Pan, Z., Shi, F., and Li, Z. (2020). An attack path generation methods
based on graph database. 2020 IEEE 4th Inf. Technol. Netw. Electron. Automation
Control Conf. (ITNEC) 1, 1905–1910. doi:10.1109/itnec48623.2020.9085039

Frontiers in The Internet of Things frontiersin.org25

Salayma 10.3389/friot.2024.1306465

https://doi.org/10.1109/access.2023.3272053
https://doi.org/10.14429/dsj.66.10795
https://doi.org/10.1016/j.cose.2016.09.010
https://doi.org/10.1007/978-1-349-14966-7
https://doi.org/10.1109/tdsc.2010.61
https://doi.org/10.1109/tdsc.2010.61
https://doi.org/10.1109/CSFW.2002.1021806
https://doi.org/10.1016/j.cose.2023.103602
https://doi.org/10.1016/j.cose.2023.103602
https://doi.org/10.1007/s10207-023-00742-7
https://doi.org/10.1109/tdsc.2016.2627033
https://doi.org/10.1109/32.815323
https://doi.org/10.1145/310889.310919
https://doi.org/10.1016/j.techfore.2022.121623
https://doi.org/10.1109/access.2018.2805690
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/
https://doi.org/10.1109/INFCOM.2005.1498492
https://doi.org/10.1109/INFCOM.2005.1498492
https://doi.org/10.1109/itnec48623.2020.9085039
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1306465

	Threat modelling in Internet of Things (IoT) environments using dynamic attack graphs
	1 Introduction
	2 Related work
	2.1 Attack graphs
	2.2 Graph modelling using Neo4j
	2.3 Reachability graph

	3 Example of our use case drawn from healthcare systems
	4 Graph definitions and modelling
	4.1 Network topology
	4.1.1 Network topology graph
	4.1.2 Neo4j implementation for the network topology graph

	4.2 Reachability between end devices
	4.2.1 Reachability graph
	4.2.2 Neo4j implementation for the reachability graph

	4.3 Attack propagation
	4.3.1 Attack graph
	4.3.2 Neo4j implementation of the attack graph
	4.3.3 Attack graph and cycles

	5 Merging graphs
	5.1 Merging network topology graphs
	5.2 Updating the reachability graph
	5.3 Merging attack graphs

	6 De-merging graphs
	6.1 De-merging network topology graphs
	6.2 De-merging attack graphs

	7 Running the algorithms (Cypher queries)
	7.1 Patient on Floor 1, targetTopology: ClinicTopology
	7.2 Patient on Floor 1, targetTopology: PatientTopology

	8 Attack-graph-based metrics for risk assessment
	8.1 Shortest attack path metric
	8.2 Number of attack paths metric

	9 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

