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The current study employed interrupted time series (ITS) models to analyze all
available (published and unpublished) Abstract Semantic Associative Network
Training (AbSANT) data. AbSANT is a semantically focused anomia treatment that
targets not only concrete but abstract words, unique among existing anomia
treatments. However, evidence to date for the positive effects of AbSANT comes
only from small-sample, single-subject design studies, limiting the strength of this
evidence and the inferences that can be drawn from it. The statistical power and
greater representativeness afforded by this larger aggregated sample enabled us
to look for group-level efficacy evidence for AbSANT, examine specific questions
about AbSANT’s direct training and generalization effects, and identify potential
predictors and mechanisms of AbSANT treatment response. We found that across
33 participants from four different data sources, AbSANT appears to be a robust
word retrieval therapy protocol, with overall direct training and generalization
effects that were more meaningful than exposure effects. Similar to previous
smaller-sample study conclusions, we found that in this large sample, training
abstract words results not only in larger direct training effects than training
concrete words, but also larger generalization effects, suggesting that while
AbSANT successfully improves both abstract and concrete word retrieval, it may
be better suited for training abstract words. In general, direct training effects were
more persistent after treatment ended than generalization effects and effects for
concrete words were more persistent than for abstract words. Additionally, the
effects of generalization appear to be distinct from the effects of simple exposure
to words, and generalization effects are consistent with AbSANT’s hypothesized
mechanism of action: spreading activation from directly trained concepts to
related concepts. Also consistent with this mechanism, we found that milder
aphasia and both conceptual and lexical semantic processing ability predicted
both direct training and generalization gains, and that executive function was
predictive of generalization effects. These factors are thus important to consider
when evaluating the appropriateness of AbSANT for individual clients.
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1. Introduction

Aphasia is a language difficulty that affects over 2 million Americans (1). Anomia, a

hallmark characteristic of aphasia, is a popular target for aphasia therapy that employs

semantically focused or phonologically focused therapeutic techniques. Most semantically

focused techniques have been developed for concrete words, which has limited benefit, as
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this practice has closed off a broad range of concepts that are of

high personal salience and functional relevance (e.g., health,

emotional states) for persons with aphasia (PWA). Additionally,

the utilization of concrete words impedes the opportunity to

leverage what we know about differences between abstract and

concrete concepts and about stimulus-complexity effects in

treatment response. AbSANT [Abstract Semantic Associative

Network Training; (2–5)] is a recently-developed training

program for abstract word retrieval that addresses these

limitations. Although there have been multiple studies

demonstrating AbSANT’s efficacy, these effects have been shown

using effect sizes (ES) at the individual level in single-subject

research designs (SSRDs) involving small samples (4–12

participants). Furthermore, they have not been able to take into

consideration individual participant characteristics in a systematic

way. The purpose of this article is to review the studies of

AbSANT to date and to report a novel type of meta-analysis, in

which we combine published AbSANT data with recently

gathered unpublished data and use interrupted time series (ITS)

models to more robustly examine specific questions about direct

training and generalization effects of AbSANT, as well as

questions about individual participant characteristics that may

influence treatment effects.

AbSANT is similar to other semantically focused word retrieval

therapies that utilize semantic feature training techniques (e.g.,

semantic feature analysis (SFA); (6). Namely, semantic features of

concepts are studied in an effort to strengthen the activation of

an existing concept, which is thought to (a) raise the activation

of the target concept to a level sufficient for the retrieval of the

lexical form, and (b) promote the spread of activation within the

semantic system to related concepts. This is often achieved

through the generation of semantic features (e.g., a car is found

in a garage), based on the assumption that conceptual semantics

and the ability to manipulate semantic knowledge are relatively

intact in stroke-based aphasia (though note that semantic control

appears to be affected in semantic aphasia (7),; and see (8), for

the application of SFA in PPA-S/semantic dementia). Notably,

while the semantic features of concrete words are easily

categorized [e.g., location, function, etc.; (9)] and easily retrieved,

the semantic features of abstract words are more elusive (10).

Thus, rather than semantic feature generation (e.g., as in SFA),

AbSANT relies on feature selection and verification. Additionally,

rather than semantic features that focus on physical properties of

concepts (Where is a car located?), the semantic features used in

AbSANT focus on more abstract properties (Is an emergency

generally considered positive?). A detailed description of

AbSANT can be found in Sandberg (3).

AbSANT was first developed by Kiran et al. (2) as a response to

the lack of available training methods for abstract word retrieval,

and as a way to test whether the Complexity Account of

Treatment Efficacy [CATE; Thompson et al., (11)] could be

applied to abstractness as a mode of complexity. This principle

that training more complex items promotes generalization to

related, less complex items was first reported in the realm of

agrammatism treatment. Thompson et al. (11) found that

training complex syntactic structures showed generalization to
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simple structures with the same type of movement, but not vice

versa. Kiran and Thompson (12) applied this logic to the anomia

realm by training atypical words (e.g., penguin) within semantic

categories (e.g., birds) and found generalization to typical words

(e.g., finch), but not vice versa.

Thus, Kiran et al. (2) hypothesized that training abstract words

(e.g., emergency) would promote generalization to concrete words

(e.g., ambulance) in the same thematic category (e.g., hospital), but

not vice versa. Thematic categories were chosen since (a) unlike

concrete words, abstract words are not easily categorized

taxonomically and (b) both abstract and concrete words can belong

to a thematic category. The authors chose the categories hospital,

courthouse, and church from a list of eight through a norming

procedure with 14 neurologically intact young adults. This norming

procedure also produced the target abstract and concrete words

used in each category, which differed in concreteness, but did not

differ in frequency, familiarity, and number of syllables. Features

were developed based on dictionary definitions of abstract and

concrete, previous studies in the lab, and participant feedback

during the first treatment session. The authors conducted a single-

subject experimental design with four participants with anomic

aphasia. Training included a category sorting step, a feature

selection step, a feature verification step (yes/no questions), a word

recall step, and a free generative naming step. All four participants

had one phase of abstract word training, and three of the four

participants also had one phase of concrete word training (one of

whom received concrete word training first). The dependent

variable was a category generation task that was completed each

week in the trained and untrained thematic categories.

Effects were measured using effect size calculations and

benchmarks from Beeson and Robey (13, 14). One participant did

not show any significant effects of either abstract or concrete word

training. The other three participants who received abstract word

training all showed both improvement on the trained abstract

words and generalization to the untrained concrete words in the

same category. Of those three, two also received concrete word

training, but only improved on the trained concrete words. Kiran

et al. (2) concluded that not only had they developed a successful

way to improve abstract word retrieval using a semantic feature

training technique, but they had also shown that training abstract

words promoted generalization to thematically related concrete

words but not vice versa, in line with the CATE. While this study

was a well-designed single-subject experiment with replication, the

participants were quite homogenous. Sandberg and Kiran (5)

aimed to test this pattern of generalization from abstract to

concrete words in a larger, more varied group of participants.

In Sandberg and Kiran (5), 12 participants with varying types

and severity levels of aphasia completed one phase of abstract word

training. The same categories as in Kiran et al. (2) were used, except

that the category church was always used as an exposed control,

and training alternated between hospital and courthouse across

participants. By “exposed control” we mean that abstract and

concrete words in the category church were exposed during the

category sorting treatment step, and the category church was

tested along with the trained category. The stimuli from Kiran

et al. (2) were used, but they were supplemented with data from
frontiersin.org
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association norms. The resulting abstract and concrete word lists in

each category differed from each other in concreteness and

imageability but did not differ in frequency and familiarity. The

features from Kiran et al. (2) were also used, with the exception

of the personalized features, which were obtained from the

participant during the first treatment session. The same

treatment steps as Kiran et al. (2) were used, except that the

word recall step also included synonym generation and a

question about whether the word was abstract or concrete.

Effects were measured using effect size calculations and

benchmarks from Beeson and Robey (13, 14). Of the 12

participants, ten improved on the trained abstract words. Of the

ten who showed direct training effects, eight showed

generalization to related concrete words. While the pattern of

generalization from abstract to concrete words was replicated in

a larger, more varied sample, the hypothesis that we would not

observe generalization from concrete to abstract words was not

tested. Thus, Sandberg and Gray (4) aimed to more closely

replicate Kiran et al. (2).

In Sandberg and Gray (4), four participants with varying types

and severity levels of aphasia completed two phases of AbSANT:

concrete words were trained in the first phase and abstract words

were trained in the second phase. The category, word, and feature

stimuli from Sandberg and Kiran (5) were used. For concrete

word training, a few of the features were changed (e.g., “can be

perceived” was removed and “is a person” was added) to be more

appropriate for concrete words. The order of trained category

(hospital vs. courthouse) was counterbalanced across participants

and phases. As in Sandberg and Kiran (5), the category church

was never trained and always used as an exposed control. Similar

to Kiran et al. (2), Sandberg and Gray (4) found that, in general,

training abstract words resulted in generalization to concrete

words, but training concrete words only resulted in direct training

effects. Two participants showed this pattern very strongly. Of the

other two participants, one showed generalization to concrete

words when abstract words were trained, but no effects when

concrete words were trained and one participant showed strong

direct training effects during concrete word training, but no effects

during abstract word training. When Sandberg and Gray (4)

compared their results to Kiran et al. (2), they found a pattern of

higher effect sizes for the directly trained abstract words than the

directly trained concrete words.

All three AbSANT studies noted above have high

methodological rigor as classified using the RoBiNT guidelines

for evaluating single-case studies (15), and show (a) direct

training effects when abstract words are trained and (b)

generalization to concrete words when abstract words are trained.

Additionally, two of these AbSANT studies have shown (a) direct

training effects when concrete words are trained and (b) NO

generalization to abstract words when concrete words are trained.

Taken together, the results of these studies support the CATE

and show that abstractness can be used as a mode of complexity.

However, none of these studies directly examined the effects of

participant-level differences on AbSANT effects. Limitations of

SSRD that will be addressed by the current meta-analysis are (a)

the small sample sizes, (b) the need to use techniques such as ES
Frontiers in Rehabilitation Sciences 03
calculation to show treatment effects, and (c) a limited ability to

systematically explore individual participant characteristics that

may influence treatment outcome.

While CATE was a motivating factor in the development of

AbSANT, it is important to consider the role of the organization

of abstract and concrete words within the semantic network to

better understand the mechanisms underlying direct training and

generalization effects of this treatment. The concreteness effect is

a well-known phenomenon in which performance is faster and

more accurate for concrete than abstract words. Two early

theories were pitted against each other in terms of whether there

were two processing streams or one. The dual-coding theory

[DCT; see (16) for a review] posited that abstract and concrete

words differentially rely on verbal and sensorimotor encoding,

with the advantage for concrete words being based on the

support of both streams and the disadvantage for abstract words

being based on support from only the verbal stream. The context

availability theory [CAT; (17)] posited that the advantage for

concrete words was based not on the combination of verbal and

sensory processing streams, but on the context inherent in the

semantic representations for concrete words that is not present

in and must be provided for abstract words. More recently,

theories based on grounded cognition (18) have gained

popularity, with differences in the processing of abstract and

concrete words being attributed to differential reliance on

sensorimotor experiences for concrete words and social and

linguistic experiences for abstract words (19). Importantly, all

three viewpoints suggest that abstract and concrete words engage

partially distinct cognitive processes.

The concreteness effect is more pronounced in individuals with

aphasia [e.g., (20–22)]. In terms of word retrieval, these effects have

been proposed to reflect damage to the semantic lexicon (23). In

contrast, the Normal Isolated Centrally Expressed (NICE) model

(24) proposes that the threshold of conceptual activation needed

for retrieval of a lexical form is higher in aphasia. Thus, the

semantic concept itself is not damaged, nor is the lexical form,

but the ability to link the two is more difficult. Concrete

concepts more easily pass the lexicalization threshold because

they have less spreading activation to a small set of closely

related concepts, making their activation stronger and more

specific. Conversely, abstract concepts tend to be connected to a

wide variety of concepts, resulting in a wider spread of

activation, making their activation weaker, less specific, and

therefore less likely to pass the threshold needed for retrieval of

the lexical form. While these differences in the spread of

activation among concepts favor the retrieval of concrete over

abstract lexical forms, they may also provide a means of

generalization that may be more far-reaching for abstract words.

The Different Representational Frameworks (DRF) hypothesis

(25) suggests that abstract and concrete words are organized within

the semantic system in fundamentally different ways. Whereas

concrete words tend to be organized through similarity of

semantic features (i.e., within taxonomic categories such as

birds), abstract words tend to be organized through associations

(i.e., more thematically: e.g., diagnosis and prognosis are

associated within the context of a hospital). When combined
frontiersin.org
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with the NICE model, the DRF hypothesis may be used to provide

a rationale for expecting different patterns of generalization when

abstract and concrete words are trained in different scenarios.

Specifically, when concrete words are trained using a

semantically-based therapeutic technique [e.g., Semantic Feature

Analysis; (6)], it is expected that concepts that share semantic

features with the target will also improve, due to spreading

activation. Indeed, this is the case [see (26) for a review]. When

abstract words are trained using a semantically based therapeutic

technique (e.g., AbSANT), it is expected that concepts that are

thematically related to the target will also improve, due to

spreading activation. This pattern has in fact been observed in

three SSRD studies (2, 4, 5).

An interesting result in two of these studies (2, 4) is that when

concrete words were trained in thematic categories that contain

both abstract and concrete words, little or no generalization was

found from trained concrete words to related untrained abstract

words. While this aligns with the CATE, it also suggests some

sort of weight or directionality for links between abstract and

concrete words. However, there is limited work in the

concreteness effect or semantic network literature specifically

examining links between abstract and concrete words. Notably,

in a word association task, De Groot (27) found that high

imageability words (i.e., concrete words) elicited high

imageability associations, whereas low imageability words (i.e.,

abstract words) elicited both high and low imageability

associations, suggesting that activation flows more easily from

abstract to concrete words than from concrete to abstract words.

More work is needed specifically examining how abstract and

concrete words are linked within the semantic network. By

examining AbSANT generalization patterns in a large sample of

participants, the analyses here will provide important, novel

evidence regarding how abstract and concrete words are related,

supporting generalization within semantic categories.

Individual variability can also shed important light on the

mechanisms that support AbSANT treatment response. Because

the analysis of semantic features is a core component of the

AbSANT protocol, and generalization in AbSANT depends on

spreading activation among thematically related concepts, having

intact conceptual semantic representations and the ability to

manipulate semantic knowledge should be critical for response to

AbSANT. That is, individuals with better conceptual semantic

processing should exhibit better AbSANT response, with greater

direct training and generalization effects, regardless of whether

abstract or concrete words are trained. Further, individuals with

better lexical-semantic processing for both abstract and concrete

words should also experience greater benefit from AbSANT: they

should show greater direct training effects, as well as greater

generalization to thematically related words, regardless of

whether abstract or concrete words are being trained. These

predictions have not been tested to date.

Similarly, cognitive capacities that support activation of target

concepts and spreading activation to relevant related concepts may

be especially important to AbSANT response. Executive function

is likely to play a critical role in supporting semantic control,

which supports retrieval of relevant concepts and is implicated in
Frontiers in Rehabilitation Sciences 04
lexical-semantic processing deficits in post-stroke aphasia (7, 28).

Additionally, the feature selection and verification steps in

AbSANT require critical thinking and problem solving (3).

Individuals with better executive function should therefore also

demonstrate better AbSANT treatment response. There is some

evidence consistent with this prediction: executive function has

previously been found to be predictive of response to other

semantically focused anomia treatments. Both Gilmore et al. (29)

and Lambon Ralph et al. (30) found that both linguistic and non-

linguistic cognition predict naming treatment outcomes, and

Gilmore et al. (29) further found that executive function and

visual short-term memory specifically predicted outcomes for a

semantically-focused naming therapy. As noted above, previous

AbSANT studies have not directly examined the effects of

individual differences on response to AbSANT. A particular

advantage of the meta-analysis reported here is its use of

multilevel models to measure how individual characteristics may

moderate AbSANT treatment response.

The purpose of this study is to analyze all available AbSANT

data, to more robustly examine not only efficacy questions but

also specific questions about direct training and generalization

effects of AbSANT, as well as questions about individual

participant characteristics that may influence treatment effects. The

primary analysis approach used to address these questions is

multilevel (mixed-effect) interrupted time series (ITS) models. ITS

models were developed to model the timecourse of intervention

effects in single-subject controlled experimental designs in the

education literature (31). They have recently been used successfully

in both multiple-case single-subject, multiple-baseline aphasia

treatment studies (32, 33) and meta-analyses of such studies (34).

ITS models use generalized linear mixed-effect regression methods

to model changes in a treated behavior (for AbSANT, success of

word retrieval for target concrete or abstract words) over three key

treatment phases: during the baseline phase (baseline slope), at the

initiation of treatment (level change: the magnitude of change at

the baseline-treatment phase boundary), and across the treatment

phase (slope change: change in treatment-phase slope compared to

the baseline phase). The level change and slope change

components of ITS models provide evidence of efficacy, testing

whether there is a robust jump in performance when treatment is

initiated (level change) and whether the rate of change during

treatment is greater than any change observed during the baseline

phase (slope change). Of note, the same ITS model structure may

also be applied to other treatment phases (35). For example, it

may be used to examine whether gains made during treatment

persist over time, by modeling the magnitude of change at the

treatment/withdrawal boundary (level change) and the decline in

treatment-related gains over the withdrawal period (slope change).

ITS models are thus well-suited to examining how behavior

changes in response to treatment in studies using ABA (baseline-

treatment-withdrawal) SSRDs (35), and SSRD studies with AB/

ABAB plus follow-up designs were of sufficient quality to be

included in a recent systematic review and meta-analysis of dosage

in aphasia treatment (36). The studies that the aggregated data are

drawn from for this study are all multiple-baseline ABA or

ABABA SSRDs.
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Also of importance, the ITS models used to analyze these

aggregated data provide a useful complement to traditional

effect-size measures (4, 13) by examining changes over the

course of treatment, rather than a single measure of pre-to-post-

treatment change per participant. Furthermore, the way that ITS

regression models treat weekly probe data is particularly useful for

examining AbSANT-related changes in word-retrieval

performance. ITS models use logistic regression to model count or

proportion data, reflecting the underlying binomially-distributed

nature of these data (37): performance on a weekly probe reflects

the proportion of successful target word retrievals out of a possible

total of 10. In these logistic regression models, this performance is

modeled (via a binomial link function) as the log odds of success

or failure of target word retrieval during each weekly probe

session. ITS models thus measure the relative likelihood of

successful retrieval of target words and how that changes from

session to session, rather than the absolute accuracy of

performance. As a result, they may be especially sensitive to

changes that are small in absolute terms but large in relative

terms: for example, a baseline-to-treatment change from 2%

accuracy to 8% accuracy is small in absolute terms but represents

a large (four-fold) relative increase. This greater sensitivity may be

especially helpful for examining treatment-related changes for

abstract words. As noted above, performance is typically lower for

abstract words than concrete words, so baseline abstract word

accuracy is likely to be low and AbSANT-related changes in

abstract word accuracy may be small in absolute terms.

In addition, because ITS models model the data from weekly

probes, they involve many more observations per participant. This

significantly larger dataset increases these models’ potential

sensitivity to both treatment-related variables (whether abstract or

concrete words are being trained) and person-specific

characteristics (e.g., aphasia severity). The structure of mixed-effect

ITS models also enables them to examine the effect of both

treatment-related variables (such as training-phase type) and

person-related variables (such as semantic processing ability) on

AbSANT-related changes in performance: both types of variables

can serve as predictors (fixed effects) of performance in each

weekly probe, while taking into account other sources of

variability (random effects, such as stimulus category or persons).

See Braun and Kiran (38) for an example of how mixed-effect

models can be used to examine the effects of both person- and

treatment-related (e.g., stimulus complexity) variables on naming

treatment response, and see Swiderski et al. (34) for an example of

how mixed-effect ITS models may be used to examine the

simultaneous effects of treatment-related and person-specific

variables on sentence production treatment response. This is a

particularly valuable feature of this meta-analysis. Although

participant characteristics have been reported in our previous

small sample SSRD studies, it has been difficult to determine any

relevant patterns across the individual participants. However, by

combining the information from all available AbSANT data, we

can start to examine these patterns.

Our research questions were related to how the shape of the

traditional ABA (baseline, treatment, withdrawal) timeseries for

AbSANT—the curve of which reveals information about
Frontiers in Rehabilitation Sciences 05
treatment efficacy and the persistence of AbSANT-related

changes—varies based on (a) whether items were directly trained,

expected to show generalization (related, untrained), or were

simply unrelated exposed items, (b) the training condition (i.e.,

abstract vs. concrete), and (c) person-specific factors (i.e., aphasia

severity, executive functioning, conceptual semantic processing,

and lexical-semantic processing).

RQ1. Our first models aimed to answer questions related to

AbSANT’s efficacy and the persistence of AbSANT-related

changes: Does the AbSANT protocol result in robust positive

changes in word retrieval performance, for (a) directly trained

items and (b) untrained items in the same category (regardless of

whether abstract or concrete words are trained)? Is the observed

change greater than simple exposure (i.e., viewing words during

category sorting)? Do these effects persist after training has ceased?

Based on typical single-subject responses to AbSANT in

previous studies, we predict that there will be meaningful positive

level and slope changes for directly trained items and gradual

positive slope changes for untrained items in the same category

(generalization items). We do not expect level or slope changes for

exposed items that are related to training. The evidence is mixed

regarding whether AbSANT-related changes persist after training

ceases. In Sandberg and Gray (4), maintenance results (measured

via generative naming probes) were variable (even within

individuals), with some effects deteriorating and some effects

showing delayed improvement approximately 1 month after

withdrawal-phase probes (3.5 months for one participant). In

general, we expect the cessation of training to have a dampening

effect on performance, but not to baseline levels.

RQ2. Our second model aimed to answer questions related to the

specificity of AbSANT effects across training (treatment) and

withdrawal phases: Does the AbSANT protocol work for training

both abstract and concrete words? Do both training conditions

result in generalization to the opposite word type? Are these effects

equivalent? Do these effects persist after training has ceased?

Based on typical single-subject responses to AbSANT in

previous studies (2, 4), we predict that training abstract words

will result in greater direct training effects in both level and slope

change than concrete words. Additionally, we predict that training

abstract words will result in greater generalization effects. As

mentioned previously, the evidence regarding the persistence of

AbSANT effects after training has ceased is mixed (4); thus, while

we anticipate some decline in performance after training has ceased,

we do not believe it will reach baseline levels (see Figure 1).

RQ3. Our third set of models aimed to answer the question of

what person-level factors predict AbSANT outcomes across

training and withdrawal phases: Does aphasia severity, executive

functioning, conceptual semantic processing, or lexical-semantic

processing affect the efficacy of AbSANT or whether effects

persist after training has ceased?

Based on recent work exploring predictors of naming treatment

outcomes in aphasia as well as the hypothesized mechanisms of

AbSANT treatment, we predict that both linguistic and non-

linguistic cognition will support AbSANT outcomes. Because

previous work has demonstrated that aphasia severity is predictive

of aphasia recovery (39) and Semantic Feature Analysis (SFA)
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FIGURE 1

Hypothesized outcomes. When abstract words are trained (Panel A), we expect directly trained abstract words to improve and we expect the effects to
generalize to related concrete words. The direct training effects should be more immediate and stronger than generalization effects. When concrete
words are trained (Panel B), we expect only concrete words to improve. We expect a larger immediate effects and change over time for the direct
training of abstract words (red line in Panel A) than for the direct training of concrete words (blue line in Panel B). We expect both training conditions
to be better than exposure alone (Panel C).
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outcomes specifically (40), we predict that milder aphasia will

correlate with better AbSANT outcomes. Notably, Quique et al.

(40) found that aphasia severity was predictive of generalization

effects for SFA, with less severe aphasia being associated with

more treatment-related improvement for untreated but

semantically related items. This pattern may or may not hold for

AbSANT, given that AbSANT targets not only concrete words

(like SFA) but also abstract words. Furthermore, executive

function has been associated with better word retrieval treatment

outcomes [e.g., (29)], and we predict that AbSANT will also

benefit from stronger executive function, especially considering the

higher difficulty of discussing semantic features of abstract words

[e.g., (10)]. Because AbSANT, like other semantically focused
Frontiers in Rehabilitation Sciences 06
naming treatments, is focused on strengthening the link between

concept and word form by utilizing intact semantic knowledge, we

predict that better conceptual semantic processing (as indexed by

a nonverbal semantic judgment task like Pyramids and Palm

Trees) will support better AbSANT treatment outcomes. However,

it may be that lexical-semantic processing is more important for

training abstract words due to the highly verbal nature of abstract

words (41), thus we are also testing whether a measure of lexical-

semantic processing (as indexed by on semantic judgment and

association tasks for both high- and low-imageability words, like

those found in the Psycholinguistic Assessment of Language

Processing in Aphasia) will be associated with better treatment

outcomes.
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TABLE 1 Demographic information for all participants.

ID Sex MPO Age Lesion information Education

Sandberg and Kiran (5)
SK1 Female 54 61 LMCA At least 12 years

SK2 Male 23 59 LMCA At least 12 years

SK3 Male 76 56 LMCA At least 12 years

SK4 Male 42 47 LMCA At least 12 years

SK5 Male 117 53 LMCA At least 12 years

SK6 Male 93 48 LMCA At least 12 years

SK7 Female 15 66 LMCA At least 12 years

SK8 Female 38 57 LMCA At least 12 years

SK9 Female 134 74 LMCA At least 12 years

SK10 Male 16 69 LMCA At least 12 years

SK11 Male 11 75 LMCA At least 12 years

SK12 Female 7 56 LMCA At least 12 years

Sandberg and Gray (4)

Sandberg et al. 10.3389/fresc.2023.1017389
2. Methods

2.1. Participants

We combined previously reported data (4, 5) with recently

collected unpublished data. Data from a total of 33 participants

were analyzed. Twelve participants from Sandberg and Kiran (5)

and six new participants completed abstract training only. Four

participants from Sandberg and Gray (4) and 11 new

participants completed two phases of AbSANT—one directly

training abstract words and one directly training concrete words.

Abstract and concrete training phases were counterbalanced. All

participants were diagnosed with aphasia and were in the chronic

phase of recovery. Demographic information for all participants

can be found in Table 1.
SG1 Male 132 70 LMCA 16 years

SG2 Male 48 51 LMCA 16 years

SG3 Female 156 47 LMCA 16 years

SG4 Male 21 51 LMCA 15 years

New 2-Phase Participants
2P1 Male 173 57 LCVA 18 years

2P2 Male 71 69 LCVA 16 years

2P3 Female 8 58 LCVA 20 years

2P4 Male 52 68 LCVA 14 years

2P5 Male 32 67 LMCA 14 years

2P6 Female 8 75 Left posterior limb of
internal capsule infarct

18 years

2P7 Female 29 78 LCVA 14 years

2P8 Female 15 61 LCVA 12 years

2P9 Male 32 66 Left temporal lobe infarct 14 years

2P10 Female 144 56 LH stroke (per self-report) 14 years

2P11 Female 94 59 LH stroke (per self-report) 14 years

New 1-Phase Participants
1P1 Male 30 53 Left frontalparietal

intraparenchymal
hemorrhage

12 years

1P2 Male 102 47 Large LMCA 16 years

1P3 Female 58 63 Left frontal
intraparenchymal
hemorrhage

16 years

1P4 Male 80 70 Left temporoparietal
intracranial hemorrhage

16 years

1P5 Female 160 64 LH stroke (per self-report) 14 years

1P6 Male 20 75 LMCA involving temporal
and parietal lobes

12 years
2.2. Procedures

2.2.1. Language and cognitive testing
All participants completed a battery of standardized language

and cognitive assessments. Core tests that were used in the models

examining RQ4 were: (1) The Western Aphasia Battery-Revised

[WAB-R; (42)], which was used as a measure of aphasia severity

(Part 1) and, if applicable, contributed to the executive function

index (Ravens Progressive Matrices in Part 2). While most

participants completed both Parts 1 and 2, some only completed

Part 1. (2) The Cognitive Linguistic Quick Test Plus [CLQT+;

(41)], from which the executive function composite score was used

(combined with the Ravens score, when available) as a measure of

executive functioning [following findings by Gilmore et al. (29)].

(3) The Pyramids and Palm Trees [PPT; (44)] 3-picture subtest,

which measures the ability to manipulate nonverbal concrete

semantic knowledge, served as a measure of conceptual semantic

processing. (4) Subtests from the Psycholinguistic Assessment of

Language Processing in Aphasia [PALPA; (45)], which were used

to assess abstract and concrete semantic processing (auditory and

written synonym judgement). Mean accuracy across these PALPA

subtests was used as a measure of lexical-semantic processing. As

seen in Table 2, participants’ language and cognitive skill

represent a range of ability levels.
Information from previous studies was gathered from the published articles. Lesion

information for some participants was from medical records and self-report for

others. MPO, months post onset; MCA, middle cerebral artery; CVA,

cerebrovascular accident; LH, left hemisphere.

based on a category generation task conducted for a separate study
2.2.2. AbSANT procedures
For each study from which data were analyzed, there were three

thematic categories that had been chosen from norming data:

hospital, courthouse, and church. For each category, 10 abstract

and 10 concrete words were chosen as target words1. For all
1See review in the introduction and original articles (4, 5) for details. All new

2-phase participants had the same stimuli as those in Sandberg and Gray (4).

This list of target words was amended for the new 1-phase participants

(unpublished) in the lab. Fifteen neurologically intact adult native English

speakers (7 M; 13 White, 2 Black) aged 21–83 (M= 41.8) generated abstract

and concrete words in 17 thematic categories, including hospital, church,

and courthouse. Using the same selection criteria as described in Kiran

et al. (2), approximately half of the stimuli for each word type in each

category were replaced. The resulting abstract and concrete word lists in

each category remained significantly different in concreteness (all ps

< .001) and similar in frequency and length (all ps > .05).
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TABLE 2 Scores used to calculate the indices used in the models for RQ3.

ID PALPA 49,
50, 51
average:
lexical-
semantic
processing

CLQT EF
composite/

ravens
average:
executive
functioning

PPT 3-picture
score:

conceptual
semantic
processing

WAB AQ:
aphasia
severity

Sandberg and Kiran (5)
SK1 0.86 0.92 46 74.4

SK2 0.83 0.94 49 78.6

SK3 0.90 0.97 51 77.7

SK4 0.92 0.97 52 95.5

SK5 0.68 0.67 46 41.7

SK6 0.85 0.94 47 72.5

SK7 0.78 0.44 39 82.2

SK8 0.95 0.86 50 99.2

SK9 0.89 0.36 48 89.8

SK10 0.94 0.94 50 96.6

SK11 0.94 0.56 48 67.6

SK12 0.98 0.75 51 84.7

Sandberg and Gray (4)
SG1 0.73 0.79 48 63.6

SG2 0.65 0.66 46 59.8

SG3 0.93 0.91 48 93.5

SG4 0.93 0.75 48 51.1

New 2-phase participants
2P1 0.79 0.91 48 84.2

2P2 0.71 0.90 49 68

2P3 0.56 0.67 39 52.1

2P4 0.77 0.70 50 65.4

2P5 0.63 0.67 37 68.1

2P6 0.93 0.91 52 98

2P7 0.65 0.25 43 25.5

2P8 0.68 0.66 49 80.3

2P9 0.65 0.87 50 84.1

2P10 0.51 0.78 47 59

2P11 0.95 0.87 50 95.9

New 1-phase participants
1P1 0.91 0.68 47 94.2

1P2 0.97 0.90 51 81.2

1P3 0.79 0.74 51 93.6

1P4 0.72 0.68 44 55.9

1P5 0.61 0.52 42 66.7

1P6 0.69 0.48 47 37.8

See Section 2.2.1. for a description of how these scores were calculated.
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participants whose data are in this meta-analysis, church was used as

the exposure category (i.e., target words in this category were exposed

during the category sorting step, but were never explicitly trained)

while hospital and courthouse were used as trained categories (target

words in these categories were explicitly trained). Participants were

probed using a category generation (i.e., verbal fluency) task for all

three categories throughout baseline, training, and withdrawal

phases. During treatment, the probe occurred at the beginning of

every other session. Category-generation probes were scored based

on how many target words were produced (i.e., x/10). Participants

who only received abstract word training (n = 18) were either

trained in hospital or courthouse and the categories were
Frontiers in Rehabilitation Sciences 08
counterbalanced across participants. For participants who received

two phases of training (n = 15), one phase was abstract word

training in one category and one phase was concrete word training

in the other category. The order of abstract and concrete training

phases was counterbalanced, as were the categories. The time

between phases ranged from 7 to 63 days (M = 29 days). See

Sandberg and Kiran (5) for a detailed description of the 1-phase

version of AbSANT and Sandberg and Gray (4) for a detailed

description of the 2-phase version of AbSANT.

Each training phase lasted 10 weeks (unless the participant

reached criterion early), with 2 two-hour sessions each week (unless

there were scheduling issues), for a total of 40 h of therapy in each

training phase. During training phases, a category-generation probe

was given at the beginning of every other session, resulting in 10

probes [exception: 8 participants reached criterion 1–7 weeks (M =

5.50, mode = 4) early in at least one training phase]. During

baseline and withdrawal phases, participants completed 3–5 probes

(Mbaseline = 4.39, modebaseline = 5; Mpost = 4.09, modepost = 5). Of the

15 participants who completed two training phases, eight completed

an additional 2–5 probes (M = 4.00, mode = 5) between phases.

Although 20 of the participants completed maintenance probes an

average of 2 months after treatment ended (range = 36–123 days,

M = 69.72, median = 63), for model simplicity, we chose to model

only the continuous change across the withdrawal phase as a

measure of whether AbSANT-related changes persist.

A detailed protocol of AbSANT can be found in Sandberg (3).

Briefly, each training session consisted of five treatment steps: (1)

sorting words into the trained category (hospital or courthouse) vs.

the category church, (2) selection of six features that belong to the

target word being trained (out of 45, 15 of which were

brainstormed with the participant during the first session), (3)

verification of the applicability or not of 15 features (in the form of

yes/no questions), (4) (a) statement of whether target word is

abstract or concrete, (b) retrieval of synonym of target word, and

(c) recall of the target word, and (5) untimed category generation

for trained category with feedback. Steps 1 and 5 only occurred

once per session, while steps 2–4 occurred with each trained word.
2.2.3. Effect sizes

Because most studies of aphasia treatment are single-subject

research designs, the calculation of effect sizes (ES) is standard,

and the guidelines in Beeson and Robey (13, 14) are often used.

For this dataset, ES were already calculated for the published

studies, and were calculated using the same formula [ES = (post-

treatment average—pretreatment average)/standard deviation of

pretreatment scores] for the unpublished data. ES for all

participants can be found in Table 3.
2.2.4. Interrupted time-series models

2.2.4.1. Model data
Data from every category-generation probe for every individual

were extracted by the third author and analyzed using ITS
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TABLE 3 Effect size summary across AbSANT studies.

Abstract word training Concrete word training Exposure

ID Direct training Generalization Direct training Generalization Abstract Concrete
Sandberg and Kiran (5) SK1 5.82 7.01 1.83 7.18

SK2 0.00 0.45 2.24 −1.79
SK3 3.46 2.31 1.15 1.15

SK4 17.53 −0.79 0.91 −2.12
SK5 12.07 4.62 0.57 0.58

SK6 13.79 1.73 4.62 0.57

SK7 12.07 −0.67 0.00 0.58

SK8 5.75 4.62 1.72 0.00

SK9 1.15 −0.44 1.73 1.73

SK10 9.24 3.46 1.15 1.73

SK11 13.86 1.73 1.44 4.62

SK12 4.60 2.31 1.15 0.58

Average (SD) 8.28 (5.60) 2.20 (2.41) 1.54 (1.14) 1.23 (2.54)

Sandberg and Gray (4) SG1 2.24 1.83 7.67 0.89 1.79 2.91

SG2 2.67 4.44 −0.57 1.11 −0.96 0.15

SG3 12.70 2.31 10.10 −0.09 0.24 1.10

SG4 15.95 3.18 10.73 0.00 2.78 1.55

Average (SD) 8.39 (6.98) 2.94 (1.15) 6.98 (5.20) 0.48 (0.61) 0.96 (1.65) 1.43 (1.15)

New 2-phase participants 2P1 13.33 2.67 12.44 0.89 0.00 8.89

2P2 −0.44 −1.43 8.00 0.00 −0.37 2.56

2P3 0.00 4.44 1.67 −0.23 0.00 0.89

2P4 0.89 −0.89 4.24 0.00 0.00 0.37

2P5 0.00 0.73 1.05 0.00 0.00 0.23

2P6 7.90 1.35 10.97 1.73 9.86 6.21

2P7 0.00 0.87 1.11 0.00 0.00 3.56

2P8 1.50 0.71 1.13 0.92 3.56 6.57

2P9 8.54 5.66 5.29 0.00 2.56 6.79

2P10 0.89 0.28 −2.67 0.00 0.00 −0.73
2P11 7.30 2.19 9.78 1.78 2.56 8.00

Average (SD) 3.63 (4.75) 1.51 (2.13) 4.82 (4.89) 0.46 (0.74) 1.65 (3.05) 3.94 (3.48)

New 1-phase participants 1P1 6.00 0.90 6.00 1.19

1P2 9.32 2.80 1.95 −0.82
1P3 9.00 2.32 1.00 1.19

1P4 0.89 1.79 0.44 0.00

1P5 4.89 1.96 0.89 3.83

1P6 0.74 3.28 0.00 1.79

Average (SD) 5.14 (3.76) 2.18 (0.83) 1.71 (2.20) 1.20 (1.60)

Grand average (SD) 6.36 (5.27) 2.20 (1.63) 5.90 (5.05) 0.47 (0.68) 1.47 (2.01) 1.95 (2.19)

Averages are indicated in bold.
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regression models (31, 34, 35). These weekly probe data were coded

for whether they were part of the baseline (A1), training (B), or

withdrawal (A2) phase for the purpose of ITS analysis (see below

for details of the coding scheme used). Each individual

contributed either one or two sets of ABA (baseline-treatment-

withdrawal) phases to the analysis, depending on whether they

were trained in just one (abstract) or both (abstract and

concrete) training conditions. The number of trained, untrained,

or exposed stimuli out of the 10 target words that were

successfully produced during category-generation probes

administered throughout baseline, training, and withdrawal

phases served as the dependent variable in all models.2
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2.2.4.2. Model structures
All models included fixed effects of baseline slope (BL

hereafter), level change from baseline to training (LC1 hereafter),

slope change from baseline to training (SC1 hereafter), level

change from training to withdrawal phase (LC2 hereafter), and

slope change from training to withdrawal phase (SC2 hereafter).

Figure 2 provides an illustration of how level change and slope

change parameters are related to the ABA phases of the SSRDs

used in AbSANT studies (2, 4, 5).

The models addressing RQ1–3 examined different subsets of

the extracted data described above, and they had related but

different model structures. Models examining AbSANT efficacy
2This outcome variable was modeled as the proportion of successful target

words retrieved out of a possible 10 using the cbind() operation in R.
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FIGURE 2

Model structure. This figure illustrates the way level change 1, slope change 1, level change 2, and slope change 2 are calculated in the models, based on
the ABA design of the data. A1 contains all the probe data points prior to the start of the training phase being measured, B contains all the probe data
points during the training phase being measured, and A2 contains all the probe data points after the training phase being measured has ended. Level
change 1 is the difference between the first probe of phase B and the last probe of phase A1. Slope change 1 is the difference between the slope of
phase B (mB) and the slope of phase A1 (mA1), if it were to extend into phase B. Level change 2 is the difference between the first probe of phase A2

and the last probe of phase B. Slope change 2 is the difference between the slope of phase A2 (mA2) and the slope of phase B (mB) if it were to
extend into phase A2. Note that maintenance of a treatment effect would not be zero for slope change 2. Thus, we are interested in the relative
change among conditions, with a less negative change indicating more maintenance.
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(RQ1: Models 1a-b) examined either directly trained and exposed

stimuli (Model 1a) or generalization and exposed stimuli (Model

1b). These models included the ITS-variable fixed effects

described above and their interaction with item type (directly

trained vs. exposed category; generalization vs. exposed category).

Note that this model collapsed across abstract and concrete

training conditions and that 15 of 33 participants contributed

both an abstract and a concrete training phase. The remaining

models examined either directly trained and generalization

stimuli, excluding exposed stimuli, as we had no reason to

believe that exposure effects would differ between abstract and

concrete training conditions or among individual predictors.

Models examining AbSANT specificity (RQ2: Models 2a-b)

examined directly trained stimuli (Model 2a) or generalization

stimuli (Model 2b) and included the ITS-variable fixed effects

and their interactions with training condition (whether abstract

or concrete words were directly trained). Note that while there

are 33 phases of abstract word training, there are only 15 phases

of concrete word training.

Models examining AbSANT predictors (RQ3: Models 3a-h)

examined directly trained stimuli (Models 3a,c,e,g) or

generalization stimuli (Models 3b,d,f,h) and included the

included the ITS-variable fixed effects listed above (LC1, SC1,

and so on) and their interactions with person-specific variables.

For this set of models, we used four individual-difference

measures derived from the language and cognitive assessment

battery. The WAB Aphasia Quotient (AQ) was used as a

measure of aphasia severity (Models 3a-b). To index executive

function (Models 3c-d), the percentage-correct scores from either

the CLQT Symbol Trails, Mazes, and Design Generation subtests,

the Ravens Colored Progressive Matrices (46), or both were

averaged. These were chosen based on what we had available that

aligned with the executive function component found in Gilmore
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et al. (29). The PPT 3-picture subtest score was used to index

general conceptual semantic processing (Models 3e-f). To index

lexical-semantic processing (Models 3g-h), the average accuracy

across abstract (low-imageability) and concrete (high-

imageability) items on PALPA 49, 50, and 51 was calculated. See

Table 2 above for descriptive data for these person-specific

variables.

All models contained random intercepts for participants and

category, which was the maximal random effects structure

consistent with model convergence. Models with more complex

random-effects structures failed to converge or resulted in

singular-fit warnings (47).

2.2.4.3 Model coding
Following Huitema and Mckean’s (31) coding scheme for

ITS variables, baseline slope for baseline-phase observations

was coded from 1 to 25, depending on baseline-phase length

(e.g., the baseline phase is longer for phase 2 training). LC1

was coded with all baseline-phase observations coded as 0 and

all training-phase observations coded as 1. SC1 was coded

from 0 to 13, starting with the first training-phase observation,

varying based on training-phase length. LC2 was coded with

all training-phase observations coded as 0 and all withdrawal-

phase observations coded as 1. SC2 was coded from 0 to 25,

starting from the last training-phase observation, varying based

on withdrawal-phase length (e.g., the withdrawal phase is

longer for phase 1 training targets).

Item type (directly trained or generalization vs. exposed) was

treatment coded, with exposed stimuli being the reference

category (directly trained/generalization = 0) and directly

trained/generalization stimuli being coded as 1. This coding

scheme means that main effects in RQ1 Efficacy models (e.g.,

LC1) can be interpreted as changes for exposed stimuli, i.e., as
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measures of the effects of exposure alone. Interactions with item

type (e.g., Item Type x LC1) can be interpreted as whether

changes observed at the start of treatment (LC1) or across the

treatment phase (SC1) are greater for directly trained/

generalization stimuli. Training condition (abstract vs. concrete

training) was treatment coded, with concrete training being the

reference category (concrete training = 0) and abstract training

the treatment category (abstract training = 1). This coding

scheme was motivated by previous findings that abstract

training resulted in larger trained-stimuli effect sizes (4) and

greater generalization to untrained stimuli (2, 4, 5). This coding

means that main effects in RQ2 Specificity models (e.g., LC1)

can be interpreted as changes in concrete training conditions,

and interactions with training condition (e.g., LC1 x Training

Condition) can be interpreted as whether those changes are

larger (or smaller) for the abstract training condition. All

person-specific predictor variables (aphasia severity, executive

function, conceptual semantic processing, lexical semantic

processing) were z-scored and centered for analysis, with higher

values corresponding to better function. This coding scheme

means that main effects in RQ3 Predictor models (e.g., LC1)

can be interpreted as changes for participants with average

scores for each predictor, and interactions with training

condition (e.g., LC1 x aphasia severity) can be interpreted as

whether those changes are larger for people with above-average

scores for that predictor.

All observations in a time series (baseline, treatment,

withdrawal), regardless of the word type (abstract, concrete),

were coded with the training condition (abstract training,

concrete training). This allows us to discuss direct training and

generalization within the context of the type of word that was

directly trained. For example, during a hospital abstract training

phase, abstract words in the category hospital are directly trained

and concrete words in the category hospital are the untrained

items to which generalization may or may not occur. Thus, in

any abstract training phase, direct training effects are referring to

abstract word performance and generalization effects are

referring to concrete word performance. For concrete training

phases, this logic is reversed.

2.2.4.4. Model implementation
These models were implemented as generalized linear mixed-

effect regression models, using the glmer command and the

binomial link function in R in the lme4 package (48).

Generalized linear mixed-effect models are appropriate for

proportion variables like the number of correct word retrievals

out of 10 during weekly probes. These ITS models examined

how the likelihood of a correct word retrieval (log odds of word-

retrieval success) changed over time, in response to ITS variables

and other fixed effects described above.
3. Results

Because we are not hypothesis testing, we do not report the results

in terms of traditional statistical significance based on p-values. We do
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not wish to force an artificial dichotomy of significant vs. non-

significant, which can provide “a false sense of certainty” (46).

Instead, we embrace the uncertainty that is inherent in these data

and report as transparently as possible the results of our models,

highlighting what we believe to be meaningful changes. In this way,

we allow the reader to come to their own conclusions and set the

stage for future hypothesis generation [(50); Lazar, personal

communication]. To this end, we include all ITS model outputs in

Supplementary Tables S1–S6. For effect sizes (ES), we report the

ES of direct training and generalization for each participant in

Table 3. We do not report whether these ES pass traditional small,

medium, and large thresholds, partly because the existing thresholds

are based on confrontation naming of concrete concepts (13). For

the ITS models, in the following text and Table 4 we report the

results in terms of what we consider to be meaningful answers to

our research questions.
3.1. Effect sizes (ES)

Table 3 reports and summarizes ES across the dataset. Although

there was variability across individuals and across datasets (to be

expected with a wide range of aphasia types and severities), in

general, ES for directly trained stimuli were larger than ES for

generalization or exposed stimuli. The ES for directly trained

abstract words was larger than the ES for exposed abstract words,

but the ES for directly trained concrete words was similar to the

ES for exposed concrete words. The ES for concrete and abstract

directly trained stimuli were similar, but the ES for generalization

stimuli was higher when abstract words were trained.
3.2. ITS models

The major findings from the ITS models are summarized in

Table 4. In examining the p-values, there appeared to be a

natural cutoff separating effects in the models: there was a cluster

with p-values below.2 and z-values typically above 1.5 (or below

−1.5). In Supplementary Tables S1–S6, values that did not meet

these criteria have been grayed out. Additionally, we examined

the predicted change in accuracy for the baseline, LC1, SC1, LC2,

and SC2 ITS variables for each model. The aggregated data from

the models are shown in Supplementary Table S7. For most

models, there seemed to be a natural cutoff at 4%–5%. These

values were cross-referenced with the model outputs, with any

values higher than a 4% change bolded in the model outputs.

Table 4 highlights findings that fit these criteria and were thus

considered meaningful.

Aggregated model data for RQs 1 and 2 for average word

retrieval accuracy across baseline, training, and withdrawal phases

are plotted in Figure 3. Aggregated model data for RQ 3 are

plotted in Figure 4. The length of the phases in these ABA

timeseries reflect the median length of each phase in the

aggregated dataset: for example, the median baseline-phase

length is 8 sessions, collapsing across individuals and first vs.

second training phase.
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TABLE 4 Summary of meaningful model outputs.

BL Slope (A1) LC1: BL-TX
(A1 to B)

SC1: BL-TX
(A1 to B)

LC2: TX-WD
(B to A2)

SC2: TX-WD
(B to A2)

Model Efficacy
Direct training (Ab + Con)

Large (10%) jump after
first 2 training sessions

9% greater increase
across training
sessions than baseline

0% slope (different
from 9% rise during
therapy)

Generalization (Ab + Con) 5% greater increase
across training
sessions than baseline

Negative slope (5%
decline), opposed to 6%
increase during training

Exposure (Ab + Con)

Specificity
Abstract Direct training

Medium (7%) jump after
first 2 training sessions

11% greater increase
across training
sessions than baseline

Negative slope (7%
decline), opposed to
11% increase during
training

Generalization
(to Concrete)

Small, but meaningful
(4%) jump after first
2 training sessions

5% greater increase
across training
sessions than baseline

0% slope (different
from 5% rise during
therapy)

Concrete Direct training

7% increase across baseline

Medium (7%) jump
after first 2 training
sessions

Small, but
meaningful (4%)
drop after training
ceased

0% slope (different
from 5% rise during
therapy)

Generalization (to
Abstract)

Small, but meaningful
(5%) jump after first
2 training sessions

Predictors
Aphasia
quotient

Direct training
(Ab + Con)

11% greater increase
than average

Generalization
(Ab + Con)

6% larger jump than
average

5% less drop than
average (4% jump)

7% less decline than
average

Executive
functioning

Direct training
(Ab + Con)

Generalization
(Ab + Con)

5% less rising baseline
than average (2% decrease)

5% greater increase
than average

Conceptual
semantic
processing

Direct training
(Ab + Con)

7% decreasing baseline
(compared to 0% for average)

14% larger jump than
average

11% greater increase
than average

Generalization
(Ab + Con) 9% larger increasing baseline

than average

19% decrease
(compared to 2%
increase for average)

6% larger jump than
average

7% less decline than
average

Lexical-
semantic
processing

Direct training
(Ab + Con)

24% greater increase
than average

8% larger drop than
average

25% greater decline
than average

Generalization
(Ab + Con) 6% larger increasing baseline

than average
8% larger jump than
average

25% decrease
(compared to 0% for
average)

10% larger jump
than average

7% increase (compared
to 8% decrease for
average)

BL, baseline; TX, training; WD, withdrawal; LC, level change; SC, slope change. All values for predictors are referencing the % difference between participants who had an

average score on that predictor and those who were 1 standard deviation above the average. Only values above 4% that also had a p-value below.2 and z-value above 1.5

(or below −1.5) are shown, as these were considered to be meaningful. For the efficacy and specificity models, as values generally fell between 4%–11%, 4%–5% was

considered small, 6%–8% was considered medium, and 9%–11% was considered large.

Sandberg et al. 10.3389/fresc.2023.1017389
3.2.1. RQ 1: AbSANT efficacy (Models 1a-b)
Models 1a-b addressed the questions: Does the AbSANT

protocol result in robust positive changes in word retrieval

performance, for directly trained stimuli (Model 1a) and

generalization stimuli (Model 1b), collapsing across abstract

and concrete training phases? Is the observed change greater

than simple exposure? Do these effects persist after training has

ceased?

Full model results are provided in Supplementary Table S1,

and aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 3, Panel A and Supplementary

Table S7.
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Model 1a. No main effects met our criteria for meaningfulness;

thus, while some positive changes from exposure were noted, they

were not considered meaningful. Notably, there was a positive and

meaningful interaction of LC1 and Item Type, indicating that the

increase in accuracy after 2 sessions of training was meaningfully

greater for directly trained stimuli than exposed stimuli. There

was no interaction of SC1 and Item Type, suggesting that the

training-phase slope for directly trained items was not different

than the slope for exposed items. There was no interaction of

LC2 and Item Type, indicating that accuracy for directly trained

items did not drop after training ceased. However, there was a

negative interaction of SC2 and Item Type, reflecting a more
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FIGURE 3

Graphs of aggregated model data from models 1 and 2. This figure illustrates the aggregated model data regarding target word retrieval accuracy across
weekly probes for the models examining efficacy (Model 1) and specificity (Model 2). Panel A illustrates the aggregated model data for direct training,
generalization, and exposure, regardless of training condition. Panel B illustrates the aggregated model data for direct training and generalization for
the abstract training condition. Panel C illustrates the aggregated model data for direct training and generalization for the concrete training condition.
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negative slope for directly trained stimuli during the withdrawal

phase, compared to exposed stimuli. Performance did not return

to baseline for either directly trained or exposed stimuli.

Model 1b. Again, no main effects met our criteria for

meaningfulness; thus, while some positive changes from exposure

were noted, they were not considered meaningful. There was no

interaction of LC1 and Item Type, indicating that the change in

accuracy for generalization items following 2 sessions of training

was not meaningfully greater than for exposed items. However,

there was a positive interaction of SC1 and Item Type, indicating

that the increase in accuracy across the training phase was

meaningfully greater for generalization stimuli than exposed

stimuli. There was no interaction of LC2 and Item Type,

indicating that accuracy for generalization items did not

meaningfully decrease immediately after training ceased.

However, there was a negative interaction of SC2 and Item Type,

indicating that while generalization stimuli decreased across the

withdrawal phase, exposed items continued on a positive

trajectory. Performance did not return to baseline for either

generalization or exposed stimuli.

3.2.2. RQ 2: AbSANT specificity (Models 2a-b)
Models 2a-b addressed the questions: Does the AbSANT

protocol work for training both abstract and concrete words? Do
Frontiers in Rehabilitation Sciences 13
both training conditions result in generalization to the opposite

word type? Are these effects equivalent? Do these effects persist

after training has ceased?

Full model results are provided in Supplementary Table S2

and aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 3, Panels B-C and

Supplementary Table S7.

Model 2a. There was a positive main effect of BL, indicating

that there was a rising baseline for directly trained concrete

words. There was a positive main effect of LC1, indicating that

accuracy for directly trained concrete words meaningfully

increased after 2 sessions of training. LC1 interacted positively

with Training Condition, indicating that this increase was greater

for directly trained abstract words. There was not a main effect

of SC1 (most likely because of the rising baseline), but there was

an interaction of SC1 and Training Condition, indicating that the

increase across the training phase was larger for abstract than

concrete training. There was a meaningful main effect of LC2

and SC2, and an interaction between SC2 and Training

Condition, indicating that there was a drop in accuracy and less-

positive slope after concrete training ceased and that the

withdrawal-phase decrease in slope was larger for abstract than

concrete training. Performance did not return to baseline for

either abstract or concrete directly trained stimuli.
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FIGURE 4

Graphs of aggregated model data from model 3. This figure illustrates the aggregated model data regarding target word retrieval accuracy for the models
examining the effects of individual characteristics (Model 3) across baseline (B), training (T), and withdrawal (W) phases. (Panel A) illustrates the aggregated
model data for individuals with an average aphasia quotient (within this sample) as well as for those who are 1 standard deviation above and below the
average for direct training and generalization effects. (Panel B) illustrates the aggregated model data for individuals with average executive functioning
(within this sample) as well as for those who are 1 standard deviation above and below the average for direct training and generalization effects.
(Panel C) illustrates the aggregated model data for individuals with average conceptual semantic processing (within this sample) as well as for those
who are 1 standard deviation above and below the average for direct training and generalization effects. (Panel D) illustrates the aggregated model
data for individuals with average lexical semantic processing (within this sample) as well as for those who are 1 standard deviation above and below
the average for direct training and generalization effects.

Sandberg et al. 10.3389/fresc.2023.1017389
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Model 2b. There was a positive main effect of LC1, indicating

that accuracy for generalization items during concrete training (i.e.,

abstract words) meaningfully increased after 2 sessions of training.

LC1 interacted with Training Condition, indicating that this

increase was greater for generalization items during abstract

training (i.e., concrete words). There was not a main effect of

SC1, indicating that there was not a meaningful change for

generalization items across the training phase during concrete

training. However, there was an interaction of SC1 and Training

Condition, indicating that accuracy increased for generalization

items during abstract training across the training phase, over and

above increases seen in the baseline phase, and that this increase

in generalization was larger for abstract training than concrete

training. There was no meaningful main effect of LC2 or SC2 for

concrete training, but SC2 interacted with Training Condition,

indicating that the withdrawal-phase decrease in accuracy for

generalization items was larger for abstract training. Performance

did not return to baseline for generalization items after either

abstract or concrete training ceased.
3.2.3. RQ 3: AbSANT Predictors
Does overall aphasia severity, executive functioning, conceptual

semantic processing, or lexical-semantic processing predict

response to AbSANT?

For all of these models, the main effects represent the

performance of an individual with an average score in this

sample and are largely consistent with the results of Model 1 (see

Supplementary Table S1, left side, and Supplementary Tables

S3–S6, left side). Thus, the results reported below are for the

interactions, which represent the effect of above average

performance in this sample, specifically performance for

individuals with scores one standard deviation above the sample

average.
3.2.3.1. Aphasia severity (Models 3a-b)
Full model results are provided in Supplementary Table S3 and

aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 4, Panel A and Supplementary

Table S7.

Model 3a. SC1 interacted with aphasia severity, indicating that

the increase across the training phase for directly trained stimuli

was greater for participants with above-average WAB AQ than

those with average WAB AQ scores. No other interactions were

meaningful based on our criteria.

Model 3b. LC1 interacted with aphasia severity, indicating that

the increase after 2 sessions of training for generalization items was

meaningfully greater for participants with above-average WAB AQ

than those with average WAB AQ scores. There was also a positive

interaction between aphasia severity and both LC2 and SC2,

indicating that the withdrawal-phase decrease in accuracy for

generalization items was meaningfully smaller for participants

with above-average WAB AQ. In fact, numerically, there was a

small jump in accuracy (LC2) for these participants immediately

after training ceased (see Figure 4, Panel A).
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3.2.3.2. Executive function (Models 3c-d)
Full model results are provided in Supplementary Table S3 and

aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 4, Panel B and Supplementary

Table S7.

Model 3c. No interactions for directly trained items were

meaningful based on our criteria.

Model 3d. BL slope had a negative interaction with executive

function (EF), indicating that participants with above-average EF

showed a declining baseline for generalization items while those

with average EF showed a numerically rising baseline (though

this rise was not meaningful based on our criteria). There was

also a positive interaction between EF and SC1, indicating that

the increase across the training phase for directly trained stimuli

was meaningfully greater for participants with above-average EF

than those with average EF. No other interactions for generalized

items were meaningful based on our criteria.

3.2.3.3. Conceptual semantics (Models 3e-f)
Full model results are provided in Supplementary Table S3 and

aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 4, Panel C and Supplementary

Table S7.

Model 3e. BL slope had a negative interaction with conceptual

semantic processing (CS), indicating that participants with above-

average CS showed more of a declining baseline for directly trained

items, compared to those with average CS. Both LC1 and SC1 also

interacted with CS, indicating that the increase after 2 sessions of

training and across the training phase for directly trained stimuli

was greater for participants with above-average CS than those

with average CS scores. There were no meaningful interactions

between CS and LC2 or SC2.

Model 3f. BL slope had a positive interaction with conceptual

semantic processing (CS), indicating that participants with

above-average CS showed more of a rising baseline for

generalization items compared to those with average CS. While

LC1 did not interact with CS, SC1 showed a negative interaction

with CS, indicating a decrease across the training phase for

generalization stimuli for participants with above-average CS,

compared to an increase across the training phase for those with

average CS scores. Both LC2 and SC2 showed a positive

interaction with CS, indicating that there was a jump in

performance after training ceased for those with above-average

CS that did not occur in those with average CS and that the

decline over the withdrawal phase was smaller for those with

above-average CS than those with average CS.

3.2.3.4. Lexical semantics (Models 3g-h)
Full model results are provided in Supplementary Table S3 and

aggregated model data for changes in accuracy across A1BA2

phases are presented in Figure 4, Panel D and Supplementary

Table S7.

Model 3g. SC1 interacted with lexical semantic processing (LS),

indicating that the increase across the training phase for directly

trained stimuli was meaningfully greater for participants with

above-average LS than those with average LS scores. There were
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also negative interactions between LS and both LC2 and SC2,

indicating that there was both a larger drop in accuracy after

training ceased and a steeper decline during the withdrawal

phase for directly trained items for those with above-average LS

than those with average LS.

Model 3h. BL slope had a positive interaction with LS,

indicating that participants with above-average LS showed more

of a rising baseline for generalization items than those with

average LS. While LC1 showed a positive interaction with LS,

indicating that the increase in accuracy that occurred after 2

sessions of training for generalization items was larger for those

with an above-average LS than those with an average LS, SC1

showed a negative interaction with LS, indicating a decrease

across the training phase for generalization stimuli for

participants with above-average LS, compared to an increase

across the training phase for those with average LS scores. Both

LC2 and SC2 showed a positive interaction with LS, indicating

that there was a jump in performance after training ceased for

those with above-average LS that did not occur in those with

average LS and that the decline over the withdrawal phase was

steeper for those with above-average LS than those with average LS.
4. Discussion

The purpose of this meta-analysis was to combine all available

AbSANT data to answer questions related to the efficacy (RQ1),

specificity (RQ2), and predictors of positive outcomes (RQ3) of

this therapy. The current analytical approach of quantifying

changes over the course of AbSANT via mixed-effect models,

rather than quantifying pre-to-post changes via a single effect-

size estimate per participant, has already been used in one

published meta-analysis: Swiderski et al. (34). This approach has

the advantage of not only increasing the statistical power of the

analyses but enabling fine-grained examination of the unfolding

treatment response: for example, examining which treatment

conditions (abstract vs. concrete training) result in larger, faster-

emerging, or better-retained training gains. These analyses thus

naturally complement traditional effect-size analyses, and they

also address a key question motivating AbSANT, whether

abstract or concrete training results in better response. Of note,

Beeson and Robey (13) explicitly suggest that analyses examining

the slope of change may be used to compare the relative benefits

of different treatments or treatment conditions. Aggregated data

from 33 participants across four different datasets confirm the

results of previous smaller-sample studies that found positive

direct training and generalization effects of AbSANT.

Importantly, this meta-analysis additionally found nuances to

how training-related and person-specific factors affect outcomes

and how these effects unfold over time. These factors may

inform candidacy for AbSANT, as well as future investigations of

AbSANT’s mechanisms of action.

For comparison, we also report traditional effect sizes (ES) (13,

14) of AbSANT treatment response for this set of 33 participants,

including those taken from previous studies and those calculated

for the previously unreported data. Overall, the average ES across
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all 33 participants demonstrated that AbSANT has positive

effects for directly trained and generalization stimuli (see

Table 3), largely consistent with the ITS models and with

findings previously reported for a subset of these participants (4,

5). However, based solely on ES, it was less clear in this larger

sample that the magnitude of treatment effects was greater than

the magnitude of exposure effects: for example, the ES for

directly trained concrete words was similar to the ES for exposed

concrete words. This finding was not expected based on previous

AbSANT studies (2, 4), and it draws attention to the need to

examine not only overall pre-to-post treatment changes but the

response to treatment over time. In this case, ITS models were

able to show that the effects of exposure were not meaningful,

most likely due to the pattern of a small, gradual slope that

began during baseline and continued through withdrawal. This

pattern was distinct from the training-induced changes observed

for directly trained and generalization items (see next paragraph

for details). ES alone could not provide this context for the effect

of exposure. Furthermore, there was substantial variability in the

ES in this larger sample, ranging from large positive to small

negative ES. This variability was mirrored in the wide range of

scores on standardized language and cognitive assessments (see

Table 2). This substantial variability underlines the greater size

and representativeness of the current aggregated sample, and it

draws attention to the need for detailed examination of how

individual factors impact AbSANT response, a question

addressed by the current study that had not been directly

examined in previous SSRD studies of AbSANT.

In terms of efficacy (RQ1), we were interested in measuring

immediate training effects (level change from baseline to

training, LC1) and gradual training effects (slope change from

the baseline phase to the training phase, SC1) as well as

immediate and gradual withdrawal effects (LC2 and SC2) for

directly trained items, untrained items in the same category, and

exposed items from a different category. The main effects,

representing exposed items, were not meaningful. However,

interaction effects revealed that the immediate training effects

were meaningful and relatively large (10% jump) for directly

trained items, across training conditions. While there was also a

gradual increase across the training phase for directly trained

items that was numerically large (9%), it did not reach our other

criteria for meaningfulness. However, there was a meaningful

(but smaller), gradual generalization effect, indicating a positive

effect of training on untrained but semantically related items. In

addition, both direct training and generalization showed an

interaction with exposure in terms of withdrawal effects, such

that while direct training leveled out and generalization dropped

off during withdrawal, exposure continued on a relatively similar

trajectory. Importantly, untrained items in the same category as

the directly trained items and the exposed items from a different

category were both seen during the category sorting step, and the

exposed category was probed at the same frequency as the

trained category. Thus, any differences seen between the exposed

items and the untrained items reflects true within-category

generalization from the directly trained items to the untrained

items. This suggests that although exposure can slightly improve
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word retrieval, (a) it is not an efficient direct training technique,

and (b) it is operating under a different mechanism than the

generalization effect observed in AbSANT. This second assertion

is important for future exploration of mechanisms underlying

generalization in aphasia treatment.

In terms of specificity (RQ2), this meta-analysis revealed that

although there were meaningful positive effects for both training

conditions, AbSANT was more effective when directly training

abstract words than when directly training concrete words.

While both training conditions resulted in a 7% level change,

this meant a four-fold increase (2%–9%) in abstract word

retrieval compared to only a two-fold increase (16%–23%) in

concrete word retrieval. This is reflected in the interaction of

training condition and LC1, which shows that the increase in

LC1 was meaningfully larger for abstract than concrete words.

Additionally, there was a relatively large slope change over the

course of abstract training, but no meaningful slope change

over the course of concrete training. This is most likely related

to the rising baseline noted for directly trained concrete words.

During the withdrawal phase, abstract performance gradually

declined, though not to baseline levels. Immediately after

concrete training ceased, performance dropped a small, but

meaningful amount, but then held steady. In summary, it

appears that (a) AbSANT is more effective for directly trained

abstract words than concrete words, (b) the effects of directly

training concrete words appears to be more immediate, and (c)

there appears to be an advantage for concrete words before

training began and after training ceased. Both Kiran et al. (2)

and Sandberg and Gray (4) also found larger direct treatment

effects for abstract than concrete training using single subject

effect sizes. The current study expanded the results of Sandberg

and Gray (4) by adding 11 new participants who were trained

on both abstract and concrete words and applied a group

analysis that allowed the measurement of both immediate and

gradual effects of treatment. The pattern of an advantage for

concrete words before and after therapy is not unexpected, as

the concreteness effect is a well-known phenomenon. However,

this pattern coupled with the more robust effects of training for

abstract words does underscore the importance and value of

training abstract words.

Additionally, the direct training findings suggest that AbSANT

may be better suited for abstract than concrete word training. Not

only did abstract training result in greater generalization gains than

concrete training, but it resulted in larger and more rapidly

emerging relative improvements for directly trained abstract

words. This pattern was clearly revealed by the ITS models used

for the current analysis, which measured changes in the log odds

of successful target word retrieval, rather than absolute changes

in accuracy. One might expect that a training developed for

abstract word retrieval would be more effective for abstract

words than for concrete words (although it is worth noting that

AbSANT studies were designed to test the CATE using

abstractness as a mode of complexity, so concrete training was

planned from the start, as a control). However, it is reasonable to

suspect that (a) because concrete words are easier to retrieve and

manipulate than abstract words in general, training effects for
Frontiers in Rehabilitation Sciences 17
concrete words would naturally be larger than for abstract words

when using the same protocol, and (b) any training that focuses

on the semantic features of words would favor concrete words as

the features for concrete words are more readily manipulated

than those of abstract words [e.g., (10)]. Thus, the primacy of

direct training effects for abstract words raises questions

regarding the ingredients of this treatment. Understanding the

ingredients of a treatment is an important aspect of the

rehabilitation treatment specification system [RTSS; (51)]. The

RTSS is a framework for describing interventions in a way that

promotes transparent and standard practices, allowing for more

systematic analysis of treatment outcomes. Figure 5 illustrates

the RTSS applied to AbSANT, based on previous AbSANT

studies (2, 4, 5), using the schema presented in Fridriksson et al.

(52). While on the surface, the ingredients of AbSANT should

benefit the direct training of abstract and concrete words equally,

there may be effects of the stimuli used in certain steps as well as

parts of the approach that require further study.

First, the types of features that are utilized during AbSANT are

generally more abstract. There is a set of general features that are

used for all words that are trained. These include features such as

is generally considered positive. While these more abstract features

are very useful for thinking about the properties of more abstract

concepts, they may not be as useful for concrete concepts.

Among other types of semantic-feature training therapies, the

features for concrete concepts are more specific and more

concrete. For example, when training the word dog, a feature

such as barks might be used. Additionally, the features in

AbSANT often mutually apply to concepts that do not overlap in

taxonomic space. For example, exists outside the mind applies to

any concrete item, and so would equally apply to doctor and

syringe. Conversely, in a treatment like SFA, features for concrete

items would most often apply to taxonomically related concepts.

For example, is furry only applies to a subset of animals. Notably,

this broadness and abstractness of features only applies to a

subset of the features used in AbSANT. For the concrete phase of

training, five of the 15 general features used in the abstract phase

(e.g., has a different meaning for different people) were swapped

out for more concrete features (e.g., is a person) through lab

member consensus. Another 15 features were simply concrete

features of unrelated items (e.g., has six legs would not apply to

any concrete or abstract category member of courthouse or

hospital). Finally, 15 features were generated by each participant

during a brainstorm session at the start of training. Anecdotally,

these participant-generated features tended to be more abstract

when the target words were abstract and more concrete when the

target words were concrete, though there was often a mix of

abstract and concrete participant-generated features. A systematic

exploration of the features used in AbSANT, especially the

participant-generated features, is beyond the scope of this paper,

but would provide useful insight into the ingredients of AbSANT,

and how the mechanisms of action may change depending on

whether abstract or concrete words are being trained.

Second, it is possible that the act of generating features is

especially important for training concrete words, but may not be

as important for training abstract words. Although participants
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FIGURE 5

Rehabilitation Treatment Specification System (RTSS) Applied to AbSANT. This figure illustrates how the schema presented in Fridriksson et al. (49) can be
used as a framework to apply the RTSS to AbSANT (see Sandberg (3) for a detailed discussion of the protocol). As defined in Fridriksson et al. (52), targets
are the behaviors that are expected to change, ingredients are the steps the clinician takes to change the target behavior, and mechanisms of action are
the theoretical rationale for why the ingredients are expected to change the targets. The aim is the overall outcome of treatment and the treatment
components are the links between which ingredients are expected to affect which targets.
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generate features during the first session of AbSANT to be used

throughout therapy, they are not generating features during each

session. Gravier et al. (53) and Evans et al. (54) found that

participants who generated more features for concrete concepts

during SFA had better naming accuracy for those items at the

end of therapy. It would be worthwhile to compare a feature

generation version of AbSANT with the current feature selection

and verification version (or an abstract version of SFA with the

current concrete version).

In terms of generalization, we found small but meaningful

immediate effects of training for both training conditions. This

was unexpected, as we only predicted generalization in the

abstract training condition, based on previous smaller-sample

studies (2, 4) that found generalization effects for abstract word

training and no generalization effects for concrete word training.

However, the model interactions suggest that this effect was

stronger for abstract training. Also, when examining the gradual

effects of training, we observed a small but meaningful, positive

change during the abstract training that was absent in the

concrete training. In fact, upon visual inspection of the graphs, it

appears the initial generalization effect in the concrete training

disappears by the end of training. Further, the generalization

gains observed during the abstract training were maintained

during the withdrawal phase (0% slope).

Together, this suggests a nuanced timeline for the

generalization effects of abstract vs. concrete training using the
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AbSANT protocol. After the first week of training, there is a

small but meaningful immediate improvement in both concrete

words when abstract words are trained and abstract words when

concrete words are trained. It is possible that discussing thematic

categories, whether or not abstract words are being directly

trained, has a positive and immediate effect on the spread of

activation within the part of the semantic network that is

associated with that category, activating both abstract and

concrete concepts that were sub-threshold. However, as the

training progresses and the relevant semantic features are

reinforced, the spread of activation may be restricted in a way

that favors directed connections from abstract to concrete words,

but disfavors directed connections from concrete to abstract

words, perhaps partially due to the complexity of abstract words.

Future work should test this hypothesis.

It is important at this point to reiterate the differences in the

analysis techniques between this current meta-analysis and

previous smaller-sample studies. This meta-analysis directly

examines the relative changes in performance from baseline, using

much larger samples and a dependent variable (the relative

likelihood of success in retrieving a target word) that is especially

sensitive to changes that may be small in absolute magnitude,

while the effect sizes in the previous smaller-sample studies were

calculated using only post-treatment probes and baseline probes.

The advantage of the ITS analysis in the current study is that we

are able to see both immediate and gradual effects of therapy as
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well as immediate and gradual effects of training cessation (i.e.,

withdrawal). We would also miss the nuanced differences between

directly training abstract and concrete words in terms of

immediate vs. gradual effects in both training and withdrawal.

Thus, with this meta-analysis, we are able to see subtle changes in

performance that were invisible in previous small-sample studies,

which is exciting for attempting to understand the mechanisms

that drive generalization in this treatment approach. Another

advantage of this approach is its ability to examine individual

characteristics that may contribute to AbSANT outcomes.

Although the mechanisms of a treatment approach are largely

responsible for treatment outcomes, individual characteristics are

thought to modulate these mechanisms. In this study, we

therefore examined the effects of aphasia severity, executive

functioning, conceptual semantic processing, and lexical-semantic

processing on the general efficacy of AbSANT (RQ3).

First, we found that aphasia severity, as indexed by the WAB

AQ, was related to SC1 for directly trained items, such that those

with a higher AQ (less severe aphasia) had a meaningfully larger

slope during training than baseline than those with more severe

aphasia. This is in line with the results of Gilmore et al. (29) and

Lambon Ralph et al. (30), who found that language ability

predicted treatment outcome. Additionally, we found that WAB

AQ was related to LC1 for generalization, such that milder

aphasia was associated with a larger immediate effect of training

for untrained items. These results are aligned with the results of

Quique et al. (40) who found that higher WAB AQ was

associated with larger generalization effects after a semantically

based treatment (SFA). Further, those with a higher AQ had less

immediate and gradual decline for generalization items during

the withdrawal phase. In fact, visual inspection of the graph

(Figure 4A) shows a slight immediate jump in performance after

training ceased. Taken together, it seems that AbSANT may be

better suited for individuals with milder aphasia, especially when

considering the ability to generalize to related, untrained items.

Second, although the models examining executive function did not

reveal any evidence that executive function moderated AbSANT’s

direct training effects, there were meaningful effects of executive

function on generalization effects. Specifically, it appeared that

executive function was related to the gradual increase in accuracy for

untrained items that occurred throughout training. While interesting

and promising, this is different than the patterns observed in

Gilmore et al. (29) and Lambon Ralph et al. (30). Executive function

scores were calculated using the same methods as Gilmore et al.

(29), but they did not appear to be as useful in characterizing

variability in direct training outcomes. The reason for this difference

is unclear. Upon visual inspection, the direct training graphs show

numerically larger effects for individuals with higher executive

functioning; however, the p-values and z-values for these effects did

not pass our threshold for meaningfulness (though Supplementary

Table S7 reveals that LC1 did show a 13% larger jump for those 1

SD above the EF mean than those at the mean). This is most likely

because the relative changes in LC1 and SC1, which ITS models are

sensitive to, are not that different for those with average executive

functioning compared to those who are 1 standard deviation above

average. It is also possible that the difference between the current
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results and the Gilmore et al. (29) findings reflects differences in the

distribution of executive-functioning scores in our respective samples

or differences in the type of therapy given. The potentially more

interesting result is that despite executive function not being

meaningfully linked with direct training outcomes, it was

meaningfully linked with generalization outcomes. Thus, executive

functioning may be especially important for generalization. This is

definitely an area of research worth exploring.

Third, we found that better conceptual semantic processing, as

indexed by the PPT 3-picture subtest, was associated with both

larger immediate effects (LC1) and gradual effects (SC1) of direct

training. This result aligns both with our prediction that better

conceptual semantic processing would support the outcomes of a

semantically-focused treatment and the results of Lambon Ralph

et al. (30), who found a strong correlation between the PPT

performance and naming treatment outcomes, and Gilmore et al.

(29) who found that both linguistic and non-linguistic abilities—

both of which were contributed to by the PPT—predicted

treatment outcomes. However, we also expected conceptual

semantic processing to predict level and slope change for

untrained items, as an intact semantic network is important for

the spreading activation that is presumed to support generalization

to semantically related items. Instead, it appears that generalization

meaningfully decreases for individuals above the mean and there

is a jump in performance immediately after training ceases. This

odd pattern prompted us to examine the duration of training

across individuals and whether this correlated with conceptual

semantic score. The logic behind this is that if people with higher

conceptual semantic ability ended training early because they met

criterion for directly trained items, then their scores would be

absent from the later sessions of the training phase. Also, these

individuals’ scores would “re-appear” at the first withdrawal phase

session, moving the average score back up for the LC2 calculation.

This indeed was the case. Pearson correlation (see Supplementary

Table S8) between the length of training phase (i.e., the number

of training sessions in a training phase for an individual, averaged

across phases for those with 2 training phases) and the conceptual

semantic processing score was significantly negative [r (33) =−.37,
p = .03, CI =−.63 to −.03], indicating that those with better

conceptual semantic processing had shorter training phases. It is

interesting to note that this did not seem to affect direct training

as much as generalization. Also, there was a significant negative

correlation between aphasia severity and length of training phase

[r (33) =−.45, p = .009, CI =−.68 to −.12], indicating that those

with milder aphasia had shorter training phases, though a similar

pattern was not observed in Model 3a-b.

Finally, we found that better lexical-semantic processing, as indexed

by selected PALPA subtests which include both abstract and concrete

words, was associated with larger direct training and generalization

effects. Although the immediate effects of direct training were not

meaningfully linked with lexical-semantic processing, the gradual

effects were. Additionally, the immediate effects of generalization

were linked with lexical-semantic processing. Like we observed for

the PPT models, it appears that generalization meaningfully decreases

for individuals with above average lexical-semantic processing. Again,

because this result was unexpected, we examined the relationship
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between length of training and lexical-semantic score to see if the latter

part of the SC1 slope was impacted by missing data from high

performers. As with the conceptual semantic processing model, we

found that a Pearson correlation between the length of training phase

and the lexical semantic processing score was significantly negative

[r (33) =−.43, p = .01, CI =−.67 to −.09], indicating that those with
better lexical semantic processing had shorter training phases. It is

encouraging that both better conceptual semantic processing and

better lexical-semantic processing are related to better training

outcomes. The negative gradual effects for generalization are most

likely caused by data points biased toward worse performers at the

tail-end of training, thus we do not feel they detract from the

positive effects we observed, though future analyses should take

training phase length into consideration. Additionally, there are

other questions to be answered that require a finer-grained analysis

than was possible with the current data. For example, we were not

able to tease apart the specific effects of abstract semantic

processing on abstract training performance vs. concrete semantic

processing on concrete training performance. Future work focused

on the specific effects of abstract vs. concrete conceptual- and

lexical-semantic processing on abstract vs. concrete training is

warranted. It is worth noting that these analyses use multiple

different cognitive predictors to examine the same treatment

outcomes. They are therefore vulnerable to potential false positives,

and this limitation should be kept in mind while interpreting these

results. Regardless, these preliminary results may help guide future

work by helping to narrow down predictor selection.

In summary, this meta-analysis utilized a powerful statistical

technique on data aggregated from 33 participants across four

different datasets to answer questions related to the efficacy,

specificity, maintenance, and individual predictors of AbSANT

outcomes. The efficacy models, collapsed across concrete and

abstract training conditions, revealed positive and meaningful

direct-treatment effects as well as positive and meaningful

generalization effects that were larger and qualitatively different

than the observed exposure effects. While the exposure effects

continued on a relatively unchanged trajectory throughout baseline,

training, and withdrawal phases, the direct training effects leveled

off and the generalization effects declined across the withdrawal

phase. The specificity models revealed immediate positive direct

training and generalization effects for both training conditions that

were larger for the abstract training condition. The abstract

training condition also showed a larger gradual effect for both

direct training and generalization than the concrete training

condition. While performance for directly trained abstract words

gradually declined across the withdrawal phase, generalized

concrete words leveled off and while performance for directly

trained concrete words immediately dropped then leveled off after

training ceased, generalized abstract words appeared to remain

unchanged (though they remained generally unchanged throughout

all phases, excepting an initial jump observed after training began).

Taken together, these results suggest that the AbSANT protocol

may be better suited for training abstract words, with lasting

generalization effects to related concrete words. But, contrary to

previous smaller-sample studies, this analysis revealed that

generalization from concrete to abstract words, while not a lasting
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effect, is not completely absent. This opens the door for further

discussion of how the organization of the semantic network,

specifically in terms of both abstract and concrete concepts, may

be leveraged to improve the efficacy of word retrieval treatment.

More work is needed to examine the active ingredients of

AbSANT, uncover the underlying mechanism of the generalization

effects of training abstract vs. concrete words using AbSANT, the

optimal strategy for training abstract and concrete words, and

whether this strategy differs for abstract vs. concrete words.

In terms of individual predictors of treatment outcomes, we

found that individuals ranged widely in their response to

AbSANT, that aphasia severity was predictive of both direct

training and generalization effects, that executive function was

predictive of generalization but not direct training effects, and that

both conceptual semantic and lexical semantic processing ability

were predictive of both direct treatment and generalization effects,

though the latter was negative and appears to be influenced by the

fact that individuals with better semantic processing finish the

training earlier. These results were largely, but not completely

aligned with our expectations based on previous studies and

theoretical assumptions motivating the treatment. These findings

will help shape future explorations of individual predictors of

AbSANT outcomes and may inform future AbSANT treatment

candidacy recommendations. One result worth highlighting is that

individuals with milder aphasia experienced better outcomes for

both direct training and generalization. Thus, AbSANT may be

better suited to individuals with milder aphasia.
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