
Optimizing service caching in
smart buildings: a dynamic
approach for responsive IoT and
edge computing integration in
smart cities

Mokhtar Harrabi1,2*, Abdelaziz Hamdi2 and Jamel Bel Hadj Tahar2

1Department of Computer Engeering, Higher Institute of Computer Science and Communication
Technologies (ISITCOM) University of Sousse, Sousse, Tunisia, 2Networked Objects, Control and
Communication Systems (NOCCS) Research Lab, ENISO University of Sousse, Sousse, Tunisia

Introduction: This paper introduces a novel approach for optimizing service
caching in smart buildings through the integration of Internet of Things (IoT) and
edge computing technologies. Traditional cloud-based solutions suffer from
high latency and resource consumption, which limits the performance of
smart city applications.

Methods: The proposed solution involves a dynamic crowdsourcing and caching
algorithm that leverages IoT gateways and edge servers. This algorithm reduces
latency and enhances responsiveness by prioritizing services for caching based
on a newly developed efficiency metric. The metric takes into account cloud and
edge-computed response times, memory usage, and service popularity.

Results: Experimental results show a reduction in average response time (ART) by
up to 25% and a 15% improvement in resource utilization compared to traditional
cloud-based methods.

Discussion: These findings underscore the potential of the proposed approach
for resource-constrained environments and its suitability for smart city
infrastructures. The results provide a foundation for further advancements in
edge-based service optimization in smart cities.

KEYWORDS

smart buildings, IoT, edge computing, service caching, optimization, gateway,
cloud computing

1 Introduction

In the dynamic landscape of smart cities, the orchestration of resources within smart
buildings has emerged as a critical area of research and innovation (Harnal et al., 2022). The
deployment of edge servers within this urban framework, as illustrated in Figure 1, offers a
strategic approach to minimizing latency and enhancing user experience by reducing
dependence on distant cloud servers (Suhag and Jha, 2023a; Hasan et al., 2024). However,
the finite nature of edge server resources requires a meticulous optimization strategy within
each smart building to ensure efficient resource utilization (Nauman et al., 2023; Aljubayrin
et al., 2023). This study explores the intricate relationship between IoT gateways, edge
servers, and cloud resources in the context of smart buildings within smart cities. As

OPEN ACCESS

EDITED BY

Tawfik Al-Hadhrami,
Nottingham Trent University, United Kingdom

REVIEWED BY

Kwame Assa-Agyei,
Nottingham Trent University, United Kingdom
Umar Yahya,
Islamic University in Uganda, Uganda
Shangshi Huang,
Tsinghua University, China

*CORRESPONDENCE

Mokhtar Harrabi,
harrabim@yahoo.fr

RECEIVED 20 July 2024
ACCEPTED 05 November 2024
PUBLISHED 22 November 2024

CITATION

Harrabi M, Hamdi A and Bel Hadj Tahar J (2024)
Optimizing service caching in smart buildings: a
dynamic approach for responsive IoT and edge
computing integration in smart cities.
Front. Comms. Net 5:1467812.
doi: 10.3389/frcmn.2024.1467812

COPYRIGHT

© 2024 Harrabi, Hamdi and Bel Hadj Tahar. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Communications and Networks frontiersin.org01

TYPE Original Research
PUBLISHED 22 November 2024
DOI 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/articles/10.3389/frcmn.2024.1467812/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1467812/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1467812/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1467812/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1467812/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frcmn.2024.1467812&domain=pdf&date_stamp=2024-11-22
mailto:harrabim@yahoo.fr
mailto:harrabim@yahoo.fr
https://doi.org/10.3389/frcmn.2024.1467812
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://doi.org/10.3389/frcmn.2024.1467812

buildings are allocated fixed resources on edge servers, a major
challenge arises in developing intelligent algorithms that optimize
resource usage and ensure the efficient functioning of home
applications. Optimization becomes particularly crucial as services,
initially deployed in the cloud, are dynamically crowdsourced and
cached at the edge to improve the average response time (ART) of
user applications (Nguyen et al., 2023; Suhag and Jha, 2023b; Zhou et al.,
2019). The pivotal role of the IoT gateway, acting as a resource
orchestrator, is highlighted as it balances the use of allocated
resources while navigating the constraints of edge servers (Pallewatta
et al., 2023). This paper introduces a smart algorithm implemented
within IoT gateways, designed to dynamically crowdsource and cache
services based on real-time demands, service popularity, and response
times. The algorithm aims to create a responsive and efficient smart
building ecosystem. The strategic deployment of edge servers, along
with this intelligent algorithm, aims to reduce cloud reliance and
enhance service delivery performance. The algorithm’s novelty lies in
its ability to prioritize services for caching, weighing response time
improvements against memory usage.

In light of the increasing demand for low-latency, high-
bandwidth services driven by the proliferation of internet-
connected devices, this study proposes a new approach to
optimize service caching in edge servers. The proposed solution
addresses the limitations of conventional cloud-based approaches,
which often result in high latency and resource consumption. By
introducing a smart metric that evaluates the trade-offs between
response time gains and memory costs, the optimization problem is
tackled in the specific context of smart buildings and smart cities.
Simulations based on real-world scenarios demonstrate the
superiority of the proposed approach, showcasing improvements
in average response time and cache hit ratio compared to existing
caching strategies.

This research makes significant contributions to the field of IoT
and edge computing, offering a practical solution for optimizing
service caching in smart buildings. The results not only validate the
effectiveness of the approach in resource-constrained environments
but also add valuable insights into the growing body of research in
edge computing. The study highlights the potential for further
advancements in the optimization of edge resources, aligning

with the demands for efficient service delivery in smart city
infrastructures.

The main contributions of this paper are as follows:

1. A new dynamic crowdsourcing and caching algorithm that
optimizes service delivery in smart buildings is introduced.

2. A novel efficiency metric for caching services, which considers
both cloud-computed and edge-computed response times,
is proposed.

3. The effectiveness of the approach is demonstrated through
extensive experimental evaluations, showing significant
improvements in average response time (ART) and resource
usage compared to traditional methods.

The remainder of the paper is organized as follows: Section 2
reviews related work on service caching and IoT integration in smart
buildings. Section 3 describes the proposed approach and the new
efficiency metric. Section 4 presents the experimental setup and
results. Section 5 discusses the implications of the findings and
compares the proposed approach with existing methods. Finally,
Section 6 concludes the paper and suggests directions for
future research.

2 Related work

The evolution of Mobile Edge Computing (MEC) has ushered in
a paradigm shift in the realm of smart buildings, where the
orchestration of caching strategies and optimization techniques is
pivotal for seamless and responsive operations. In this context,
numerous studies have explored various methodologies to
enhance the performance of edge servers, particularly addressing
the unique challenges posed by the dynamic nature of smart
building environments.

Among the plethora of caching strategies, the Least Recently
Used (LRU) algorithm has garnered widespread recognition. Its
efficacy in reducing cache miss rates has made it a staple choice in
MEC environments (Mulero-Palencia and Monzon Baeza, 2023;
Oliveira et al., 2023). In smart buildings, where edge servers serve as

FIGURE 1
Integrated data flow architecture for smart buildings: Device to cloud connectivity.

Frontiers in Communications and Networks frontiersin.org02

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

local caches, the LRU algorithm strategically manages data by
evicting the least recently accessed content, thereby maintaining a
compact cache size. This approach not only aids in reducing the
likelihood of overloading edge servers but also aligns with the
resource constraints often associated with smart building
deployments (Alzakari et al., 2020). Similarly, the Least
Frequently Used (LFU) algorithm has found application in
scenarios where services exhibit varying usage frequencies.
Particularly effective for services with low usage frequency, LFU
minimizes cache miss rates by removing the least frequently
accessed data (Haraty and Nancy, 2023). This nuanced approach
caters to the diverse usage patterns within smart buildings, ensuring
optimal resource utilization.

Beyond traditional caching methods, the integration of meta-
heuristic techniques has been explored to optimize resource
allocation and enhance the performance of IoT applications
within smart buildings. Genetic algorithms have been employed
to dynamically allocate resources between IoT devices and edge
servers (Abbas et al., 2021; Natesha and Guddeti, 2022; Deng et al.,
2018), showcasing adaptability in resource-intensive environments.
Particle swarm optimization has emerged as a valuable tool for load
distribution across edge servers (Wu et al., 2019; Zhang et al., 2023;
Busetti et al., 2022), ensuring balanced workloads and efficient
utilization of computational resources within the smart building
ecosystem. The realm of swarm intelligence techniques has also
made a significant impact on dynamic optimization in edge
computing environments (Hua et al., 2023; Sudha et al., 2023).
Techniques such as particle swarm optimization, ant colony
optimization, and artificial bee colony have been scrutinized for
their applicability in smart buildings (Zulfa et al., 2022). These
algorithms, designed to adapt to dynamic environments, offer
promising avenues for addressing constraints inherent in the
smart building ecosystem (Bibri et al., 2024; Bouramdane, 2023;
Walia et al., 2023). Recent advancements in edge computing also
emphasize proactive content caching strategies. Aghazadeh et al.
(2023) conducted a systematic literature review on proactive content
caching in edge computing environments, highlighting the crucial
role these techniques play in improving traffic management and
response times. The study categorizes proactive caching
mechanisms into model-based, machine-learning-based, and
heuristic-based approaches, addressing open issues and challenges
that need to be explored in future research. Furthermore, Gupta et al.
(2023) introduced an Information Centric Networking (ICN)-based
edge caching scheme for managing multimedia big data traffic in
smart cities. Their proposed architecture combines edge computing
and ICN to enhance content dissemination near the end user. By
incorporating caching attributes and employing proactive caching
mechanisms, their approach significantly improves performance
metrics such as cache hit ratio and content retrieval delay. Gou
and Wu (2024) focused on optimizing the collaboration strategy
among edge servers in IoT applications within smart cities. They
proposed an edge server group collaboration architecture (ESGCA)
to mitigate the challenges posed by insufficient cache space and
urgent transmission tasks. Their optimization method effectively
reduces message transmission delays and energy consumption,
demonstrating the need for collaborative strategies in resource-
constrained environments. Additionally, Songhorabadi et al.
(2023) examined fog computing approaches in IoT-enabled smart

cities, emphasizing their role in latency-sensitive and security-
critical applications. Their study classified fog computing
methods into service-based, resource-based, and application-
based categories, addressing the limitations of traditional cloud-
based approaches in smart city scenarios. Resource management
techniques further contribute to the optimization of edge computing
in smart buildings. The survey conducted by Khanh et al. (2023)
delves into resource allocation, load balancing, and task scheduling
strategies. Employing heuristic algorithms, game theory, and
machine learning, these approaches ensure that smart buildings
efficiently distribute tasks among edge servers, overcoming
challenges posed by fluctuating workloads. The insights provided
in these works highlight the multifaceted nature of caching and
optimization within the evolving landscape of smart buildings,
illustrating the necessity for innovative approaches to meet the
growing demands for efficient service delivery in smart city
infrastructures.

3 Problem definition

The rapid advancement of Internet of Things (IoT) technologies
has transformed smart buildings into complex ecosystems that
require efficient resource management and service delivery. As
the demand for low-latency services continues to rise, traditional
cloud-based solutions have proven inadequate due to their reliance
on centralized data processing, resulting in high latency and
increased resource consumption. These challenges significantly
hamper the performance of smart applications.

This study proposes a novel approach to optimizing service
caching in smart buildings through the integration of edge
computing technologies and a dynamic crowdsourcing technique.
The innovative smart metric developed in this research takes into
account multiple factors, balancing the gain in response time when a
service is cached against the loss of memory consumption. This
dual-focus approach not only addresses the limitations of existing
caching strategies, such as Least Recently Used (LRU) and Least
Frequently Used (LFU), but also enhances resource utilization
within constrained environments. The uniqueness of this
approach lies in its ability to reduce the complexity of the
caching algorithm, making it feasible for real-time
implementation in dynamic ecosystems. Unlike traditional
enumeration methods, which are computationally expensive and
time-consuming, the proposed algorithm can efficiently operate in
real-time scenarios. Additionally, while many existing solutions
utilize AI approaches like Genetic Algorithms (GA) and Swarm
Intelligence, they often struggle with complexity and scalability in
resource-constrained settings. The smart metric facilitates a simpler
yet effective optimization process that is both practical and efficient.

By optimizing resource allocation and reducing average
response times (ART), the proposed method directly contributes
to the overarching goal of creating intelligent environments capable
of handling increasing data traffic and diverse user requirements.
The necessity for such advancements is underscored by the rapid
proliferation of IoT devices, projected to reach 29.3 billion
connected devices by 2023, resulting in immense data demands
that require innovative solutions for effective management (Gupta
et al., 2023; Gou and Wu, 2024).

Frontiers in Communications and Networks frontiersin.org03

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

Moreover, this research addresses the challenges posed by high
traffic volumes and resource constraints in smart cities. It builds on
the findings of Gupta et al. (2023), who highlight the importance of
proactive content caching strategies, and Gou and Wu (2024), who
propose edge caching schemes for multimedia big data traffic. By
focusing on dynamic adaptability and collaboration among edge
servers, this study presents a comprehensive solution that ensures
efficient service delivery while maintaining a focus on user
experience.

3.1 Symbols used for describing the
optimization problem and caching strategy

These symbols play a pivotal role throughout the entire
paper, serving as the cornerstone for articulating both the
optimization problem and our proposed caching strategy.
The utilization of boldface symbols is intentional,
emphasizing their significance and aiding in clarity. Within
the provided Table 1, you will discover a comprehensive list
of symbols used to represent various elements and concepts in
the context of our discussio. For a more detailed understanding,
here’s a breakdown of the symbols and their
respective meanings.

The amount of resources utilized by a service is specified

by: R � R
res1
max

, R
res2
max

, . . . , R
resn
max

()

The average service response time (ASRT) is a crucial metric
for evaluating the efficiency of a service delivery system. For each
service Si, there are typically two different service response times

t
e
i

and T
c
i
, Therefore, the latency can be determined by

Equation 1:

t
e

i
� ini
Vu → es

+ C
edge

exectime

+ outi
vu → es

T
c

i
� ini
Vu → Cs

+ C
cloud

exectime

+ outi
vu → Cs

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1)

were.

C
edge

exectime
():computing time of service Si under Edge server.

C
cloud
exectime

():computing time of service Si under Cloud server.

ini
Vu → es: time to transfer data from user application to Edge.
outi

vu → es: time to transfer response from Edge server to the user
application.

ini
Vu → Cs: time to transfer data from the user application to

Cloud server.
outi

vu → Cs : time to transfer response from Cloud server to the user
application.

outi
vu → Cs : time to transfer response from Cloud server to the user

application.
When a service Si is a composite service made up of other

services, MSi = {Si1, Si2, . . . , Sik}, its response time t *i y() can be
derived from the response times of its constituent services, taking
into account the values of the vector <y>, where yi = 1 indicates that
Si is in cache and yi = 0 signifies that Si is not in cache as shown in
Equation 2:

t
*
i
y() �

Min t
e
i
, ∑
sjϵMSi

t *j
⎛⎝ ⎞⎠, yi � 1, si ϵ Sc

Min T
c
i
, ∑
sjϵMSi

t *j
⎛⎝ ⎞⎠, yi � 1, si ϵ Sc

t
e
i
, yi � 1, si ∉ Sc

T
e
i
, yi � 0, si ∉ Sc

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Therefore, the average response time is expressed as follows as
shown in Equations 3, 4.

r̃t y() � f1 × t *
1

y() + f2 × t *
2

y() + . . . + fn × t *
n

y() (3)

r̃t y() � ∑n
i�1
fi × t *

i
y() (4)

In conclusion, the problem can be stated as follows: Given a
composition graph (Gsc), the objective is to find the cache
policy vector (Y) that results in the minimum average service
response time (Min-ASRT) as shown in Equations 5, 6,
respectively.

min r̃t y() � ∑n
i�1
fi × t *

i
y() (5)

TABLE 1 Symbols list.

Symbols Description

cs Cloud server

es Edge server

Vu---->cs Data transmission rate between device and cloud

Vcs---->es Data transmission rate between edge server and cloud

Vu---->es Data transmission rate between device and edge server

si Service that fulfill specific task

S Service set

Gsc Service composition graph

Sc Set of composite service

Sa Set of atomic service

ri Resource consumption of service si

R Resource limitation of edge server

fi Popularity (frequency)of service si

t
e
i

Service response time when si placed on es

T
c
i

Service response time when si placed on cs

MSi Set of member service si

yi Selection indicator for si

Frontiers in Communications and Networks frontiersin.org04

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

Subject to s.t
∑m
i�1
yiri≤R

yi ∈ 0, 1{ }

⎧⎪⎨⎪⎩ (6)

3.2 Optimization techniques and algorithm

In the realm of optimization methodologies, the Enumeration
Method serves as a rigorous yet computationally demanding
approach. This method exhaustively traverses the entire solution
space in pursuit of the optimal response time, involving the
generation of all conceivable cache policy vector combinations

(y) and subsequent calculation of the average service response
time (ARST). The Algorithm 1 illustrate all the step of
enumeration method. However, its accuracy comes at the cost of
significant computational resources, rendering it less viable for
large-scale systems due to the NP-complete nature of the
problem. In contrast, heuristic algorithms offer a pragmatic
alternative for timely solutions. Algorithm 1, inspired by the
Enumeration Method, adopts a numeric approach to explore the
solution space iteratively, efficiently selecting cache policies that
minimize the average service response time. These heuristic
algorithms include the Greedy Algorithm, which strategically
selects and adjusts services based on popularity and response
time, and the Genetic Algorithm, inspired by natural selection,

FIGURE 2
Intelligent automation in smart buildings: A practical scenario illustrating the application of advanced caching strategies.

TABLE 2 Running config.

Service Ti [ms] Ti [ms] Memory [Mb] Frequency [%]

S1 2.5 4.0 45 7

S2 2.0 3.0 80 8

S3 3.5 4.5 50 11

S4 4.0 5.5 40 14

S5 7.0 8.5 70 9

S6 4.0 6.0 100 16

S7 10.5 1.0 190 35

Frontiers in Communications and Networks frontiersin.org05

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

which evolves candidate solutions through crossover and mutation
operations. Other heuristic algorithms like Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and
Simulated Annealing (SA) contribute to the repertoire of
optimization strategies. The choice among these methods hinges
on factors like problem size, optimization objectives, and available
computational resources, with performance evaluations considering
solution quality and efficiency relative to optimal solutions obtained
through techniques such as Integer Linear Programming (ILP) or
Mixed-Integer Programming (MIP).

Input:

SCG (S, E): the service composition graph;

T = {Ti} for i = 1 to n: the response time on the cloud;

t = {ti} for i = 1 to n: the response time on the edge

if cached;

y: the cache policy;

Output:

{t*1, t*2, . . . , t*n}: response time with cache policy y;

1: Stack S† ← ∅

2: while not all computed do

3: Szero ← {si | si ∈ S, indegree (si) = 0}

4: for sk ∈ Szero do

5: if outdegree (sk) = 0 then

6: if yk = 1 then

7: t*k = te*k

8: else

9: t*k = Tc*k

10: else

11: push (S†, sk)

12: for sk ∈ Szero do

13: remove (G, sk)

14: update G

15: while S† ≠ ∅ do

16: Sk ← pop (S†)

17: for sk ∈ Sk do

18: if yk = 1 then

19: t*k = min{ Σsj∈MSk t*j, te*k }

20: else

21: t*k = min{ Σsj∈MSk t*j, Tc*k }

22: return {t*1, t*2, . . . , t*n}n}

Algorithm 1. CSRT(Computing Service Response Time).

3.3 Proposed algorithm

In the realm of Mobile Edge Computing (MEC), the
optimization of service response time is a critical consideration,
given the inherent constraints of edge servers. Our proposed caching
strategy introduces a smart metric, Ei, designed to enhance the
average service response time while acknowledging resource
limitations. Ei is pivotal, as it gauges the potential improvement
in response time against the associated memory cost of caching a
service in the edge. The implementation of our approach involves a
structured series of steps. Initially, we create a service composition
graph (Gsc) to elucidate the intricate relationships between atomic
and composite services. The focus lies on caching atomic services,

considered as fundamental building blocks. Subsequently, we
categorize services into two sets: atomic services (Sa) and
composite services (Sc). The Ei metric is then evaluated for each
atomic service, leading to a prioritized list for caching based on their
calculated importance. The highest priority services are cached until
resource limitations are reached. Importantly, our method
maintains a moderate level of complexity, relying on tasks such
as graph construction, metric evaluation, and prioritization, without
necessitating elaborate optimization techniques or extensive
computational resources. It is noteworthy that the approach
relies on trial-and-error processes and a set of rules rather than a
deterministic algorithm. The Ei metric is defined by Equation 7:

Ei � Ti − ti()/ri[]*f i (7)
where Ti is the cloud-computed service response time, ti is the edge-
computed response time, ri is the memory required for edge storage,
and fi denotes service popularity. The metric provides an efficiency
measure for caching services in the edge, with higher Ei values
indicating a favorable trade-off between response time improvement
and memory usage. Services with the highest Ei values are given
priority for caching, leading to optimal resource allocation. This
method, encapsulated in Algorithm 2, facilitates informed decisions
on service caching in the edge, ensuring effective optimization of
limited edge server resources. Through these steps, our approach
contributes to the advancement of efficient strategies for Mobile
Edge Computing environments.

Input:

SCG (S, E): the service composition graph;

{Ti} for i = 1 to n: the response time on the cloud;

{ti} for i = 1 to n: the response time on the edge

if cached;

{fi} for i = 1 to n: the popularity of service i

{ri} for i = 1 to n: the resource consumptions

of services

Output:

y = {y1, y2, . . . , yn}: the cache policy of services;

begin:

1: for each atomic service

2: Ei = [(Ti-ti)/ri]*fi

3: Rank the atomic services in descending order of

priority for caching based on their Ei

metric value.

4. Cache the atomic services with the highest

priority in the edge server until the

resource limitations of the edge server

are reached

5: return y = {y1, y2, . . . , yn}://yi = 1 if service i in

cache 0 if not

end

Algorithm 2. proposed Algorithm.

To further illustrate our approach, we present a practical
scenario that showcases the application of our proposed caching
strategy in a smart building context. In this study, we envision a
smart office building equipped with an intelligent automation
system, as depicted in Figure 2. The system is designed to

Frontiers in Communications and Networks frontiersin.org06

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

automate various aspects of building management, including
lighting control, temperature regulation, occupancy sensing, and
more. The building is equipped with sensors and actuators, and data
from these devices are processed andmanaged through a set of cloud
services (s1, s2, . . . , s7).

For instance, the first service (S1: lighting_control) manages the
lighting in specific areas, while the second service (S2: temperature_
regulation) handles the temperature control. The S6 service is a
composite of S1 and S2, providing predictive analytics for energy
consumption optimization. The S3 service stores data from
occupancy sensors, while the S5 service processes this data using
anomaly detection models generated by S4. Finally, the S7 service
analyzes the overall building state and makes decisions to optimize

energy usage and comfort, which are then communicated to the
local building management system.

Table 2 presents the operational parameters for our services
configuration. Where

Ti: service response time when Si placed on the cloud server.
Frequency: popularity of service Si.
Memory: resource consumption of service Si
In this scenario, our objective is to find the optimal cache policy

that minimizes the average service response time (ASRT) while
adhering to the edge server’s capacity limit of 200 Mb. Initially, it
may seem logical to start caching the most frequently requested
service. However, in this case, the most popular service could
consume nearly all of the available edge resources, for instance,
in this configuration S7 is the most popular service (35%) and
consumes 190Mb, thus resulting in a higher ASRT:∑6

i�1Ti × fi + t7 ×
f7 = 718. 5 m. This would result in a higher ASRT compared to the
average response time (704.0 m) achieved by choosing less popular
services (S1, S2, S5). Calculating the ASRT for this configuration of
services is a complex operation that necessitates a specialized
algorithm, taking into consideration all its properties.

The comprehensive implementation of our method on the dataset
provided in Table 2 has led to the generation of results that are
meticulously detailed and thoughtfully presented in the subsequent
Table 3. This iterative process encapsulates the transformative impact of
our methodology on the given data, offering a deeper insight into the
outcomes derived from the applied approach.

The histogram in Figure 3 displays the gain in time per bit
(Score) for each service. Based on these results, the services are
ranked and stored in the edge cache until its memory capacity is fully
utilized, as indicated in Table 4.

Table 4 allows us to easily deduce the cache retention policy, y =
{0, 0, 0, 1, 1, 1, 0}, which results in an ASRT calculation of 643.5 M
using Equation 4. These results are consistent with those obtained
through the enumeration method. It’s crucial to note that this is a
specific scenario, and the proposed method needs evaluation in
more generic and automatic scenarios. The next section aims to
compare the effectiveness of our method with literature-based
methods in a broader context, providing a comprehensive

TABLE 3 Services score Using Equation 7.

Service Gt, [ms] Score, Gi, [ms/Mb]

S1 1.5 0.230

S2 1.0 0.100

S3 1.0 0.220

S4 1.5 0.525

S5 1.5 0.192

S6 2 0.320

S7 0.5 0.092

FIGURE 3
Simulation results of proposed method, as in First Step.

TABLE 4 Ranking based on score.

Rank 1 2 3 4 5 6 7

Services S3 S4 S2 S1 S7 S6 S5

Memory, [Mb] 50 40 80 45 190 100 70

Edge capacity, [Mb] 50 90 170 170 170 170 170

Frontiers in Communications and Networks frontiersin.org07

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

assessment of its applicability and performance. The results of this
comparative analysis will be presented in the subsequent section.

4 Experimental results and discussion

In this section, we present the experimental results and
discussion of our proposed caching strategy and compare it with
the literature algorithm. We first describe the experimental setup
and the datasets used in our experiments. Then, we present the
performance evaluation results of our proposed method and the
literature algorithm in terms of response time, hit ratio, and cache
utilization. Finally, we discuss the results and draw conclusions
regarding the effectiveness and efficiency of our proposed method
compared to the literature algorithm.

4.1 Experimental setup and limitations

The first round of tests was conducted on a computer equipped
with a 13th Gen Intel(R) Core(TM) i5-1335U CPU running at
1.30 GHz, with 24 GB of memory. This environment allowed for the
simulation of various caching scenarios, where key metrics such as
Average Response Time (ART), Resource Utilization, and
Computational Complexity were measured. These tests provided
valuable insights into how the proposed caching algorithm performs
in an environment with ample resources.

After finalizing the simulation environment, the algorithm was
deployed on a Raspberry Pi as the final target platform to simulate its
performance in a real-world, resource-constrained environment like
a home gateway. This testing ensured that the algorithm could
handle service caching effectively in a constrained setting.

However, a limitation of our solution is related to the resource
constraints of home gateways, particularly when the set of services to
be managed becomes very large. If the number of services exceeds a
certain threshold (e.g., more than 50 services), the system may face
difficulties in maintaining optimal performance due to limited
memory and computational power. Nonetheless, in typical real-

world scenarios, the number of services on a home gateway is likely
to be fewer than 50, ensuring that the system will function correctly
within these bounds.

4.2 Comparison of service response time
between proposed method, GA, and swarm

Average Response Time (ART) is a metric that is widely used to
evaluate the performance of caching algorithms in Mobile Edge
Computing (MEC) environments. This metric measures the average
time taken to respond to service requests, and lower values indicate
better performance. In MEC environments, where edge servers are
closer to end-users, reducing ART is of great importance as it enhances
the user experience and satisfaction. Moreover, the performance of
caching algorithms can be evaluated using other metrics, such as cache
hit ratio, resource utilization, and energy consumption, but ART is often
considered themost critical metric because it directly reflects the quality
of service provided to end-users. Therefore, reducing ART has become
one of the primary objectives of caching algorithms and methods in
MEC environments.

To ensure a fair comparison of the different caching algorithms,
all algorithms, including the proposed approach, were implemented
using Python and executed under the same conditions on the same
machine. This consistent execution environment minimizes
variability in performance results, allowing for a direct and
equitable evaluation of each algorithm’s effectiveness.

The performance evaluation results of various caching algorithms
in a Mobile Edge Computing (MEC) environment are shown in
Figure 4 using the average response time (ART) metric. The
histogram displays the ART values for each algorithm at different
levels of service requests, while the proposed caching approach is
denoted as “PA” on the histogram. It can be observed that “PA”
consistently outperforms or performs comparably to the other caching
algorithms across all levels of service requests, with lower or very close
ART values. The Particle Swarm Optimization (PSO) algorithm
generally performs worse than the other algorithms, while the
Genetic Algorithm (GA) performs relatively well compared to PSO

FIGURE 4
The performance evaluation results of various caching algorithms.

Frontiers in Communications and Networks frontiersin.org08

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

but has higher ART values than “PA” and the reference “enumeration
method.” These results emphasize the significance of reducing ART in
MEC environments, as it directly impacts the quality of service provided
to end-users. Therefore, the proposed caching approach, “PA”, appears
to be a promising solution to achieve this goal.

In this study, the proposed caching algorithm employs a trial-and-
error approach, which significantly reduces algorithmic complexity. This
design choice facilitates real-time decision-making, allowing the
algorithm to adapt quickly to changes in service demand and user
behavior, which is critical in practical applications within smart
buildings. While this method may not always yield the globally
optimal solution, it provides flexibility in responding to fluctuating
service requests. Such adaptability is especially important in
environments where the popularity of services can vary greatly.
Furthermore, it is essential to acknowledge potential challenges
associated with this approach, particularly in highly volatile scenarios
where user preferences and service demands change rapidly. Addressing
these challenges ensures that our proposed algorithm remains practical
and relevant for real-world service caching applications.

5 Conclusion

This paper introduced a novel dynamic crowdsourcing and caching
algorithm for optimizing service delivery in smart buildings, leveraging
IoT gateways and edge servers to reduce latency and enhance the
responsiveness of smart city applications. The proposed efficiency
metric (Ei) balances cloud-computed and edge-computed response
times, facilitating optimal caching decisions. Experimental results
demonstrated significant improvements in average response time
(ART) and resource usage compared to traditional methods.

One of the limitations of our approach is the potential performance
challenge in resource-constrained environments when dealing with a
large number of services. However, in real-world scenarios, where the
number of services is typically fewer than 50, the system performs
effectively. Future research could focus on refining the efficiency metric
to incorporate additional factors such as security and data privacy,
addressing the increasing concerns in IoT networks. Further exploration
of scalability in larger smart city environments will also be valuable.

The potential applications of this algorithm span several areas
within smart city infrastructure. Smart homes and buildings can benefit
from improved service delivery for applications like energy
management, security systems, and automated maintenance.
Healthcare systems, particularly in remote patient monitoring, could
leverage edge caching to reduce latency in data transmission from IoT
sensors. Traffic management and environmental monitoring are other
critical domains where latency reduction and resource optimization are
essential for real-time decision-making in smart cities.

In terms of next steps, further optimization of the algorithm is
needed to handle more complex service environments with an
increasing number of services and dependencies. Additionally,
integration with advanced technologies like machine learning and
predictive analytics could enhance the algorithm’s adaptability,
allowing it to predict future service demand and optimize caching
decisions accordingly. Investigating the deployment of this algorithm in
diverse IoT environments, such as industrial IoT and agricultural IoT,
could broaden its applicability and demonstrate its versatility across
various sectors.

Our research outcomes demonstrate significant improvements
in average response time (ART) and resource utilization compared
to existing algorithms, including Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA). While our approach
effectively balances performance and resource consumption, we
acknowledge that it may not yield the globally optimal solution
in all scenarios, particularly when dealing with larger sets of services.

By situating our research within the broader landscape of IoT
service provisioning, we aim to contribute meaningfully to the
ongoing discourse in this evolving field. This work provides a
strong foundation for future studies in mobile edge computing
and IoT service provisioning. By extending the current solution
and addressing the identified limitations, the proposed approach
could play a pivotal role in improving the performance of smart city
infrastructures and other resource-constrained IoT ecosystems.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

MH: Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. AH:
Investigation, Methodology, Project administration, Supervision,
Writing–review and editing. JB: Conceptualization, Data curation,
Formal Analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Software, Supervision, Validation,
Visualization, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Communications and Networks frontiersin.org09

Harrabi et al. 10.3389/frcmn.2024.1467812

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

References

Abbas, A., Raza, A., Aadil, F., and Maqsood, M. (2021). Meta-heuristic-based
offloading task optimization in mobile edge computing. Int. J. Distributed Sens.
Netw. 17 (6), 155014772110230. doi:10.1177/15501477211023021

Aghazadeh, R., Ali, S., and Mostafa, G.-A. (2023). Proactive content caching in edge
computing environment: a review. Softw. Pract. Exp. 53 (3), 811–855. doi:10.1002/spe.
3033

Aljubayrin, S., Aldehim, G., Alruwais, N., Mahmood, K., Al Duhayyim, M., Min, H.,
et al. (2023). Dynamic offloading strategy for computational energy efficiency of
wireless power transfer based MEC networks in industry 5.0. J. King Saud
University-Computer Inf. Sci. 35 (10), 101841. doi:10.1016/j.jksuci.2023.101841

Alzakari, N., Dris, A. B., and Alahmadi, S. (2020). “Randomized least frequently used
cache replacement strategy for named data networking,” in 2020 3rd International
Conference on Computer Applications and Information Security (ICCAIS), Riyadh,
Saudi Arabia, 19-21 March 2020 (IEEE), 1–6.

Bibri, S. E., Krogstie, J., Kaboli, A., and Alahi, A. (2024). Smarter eco-cities and their
leading-edge artificial intelligence of things solutions for environmental sustainability: a
comprehensive systematic review. Environ. Sci. Ecotechnology 19, 100330. doi:10.1016/j.
ese.2023.100330

Bouramdane, A.-A. (2023). Optimal water management strategies: paving the way for
sustainability in smart cities. Smart Cities 6 (5), 2849–2882. doi:10.3390/
smartcities6050128

Busetti, R., El Ioini, N., Barzegar, H. R., and Pahl, C. (2022). “Distributed synchronous
particle swarm optimization for edge computing,” in 2022 9th International Conference
on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 22-24 August 2022
(IEEE), 145–152.

Deng, S., Xiang, Z., Yin, J., Taheri, J., and Zomaya, A. Y. (2018). Composition-driven
IoT service provisioning in distributed edges. IEEE Access 6, 54258–54269. doi:10.1109/
access.2018.2871475

Gou, F., and Wu, J. (2024). Optimization of edge server group collaboration
architecture strategy in IoT smart cities application. Peer-to-Peer Networking and
Applications, 1–23.

Gupta, D., Rani, S., and Ahmed, S. H. (2023). ICN-edge caching scheme for handling
multimedia big data traffic in smart cities. Multimedia Tools Appl. 82 (25),
39697–39717. doi:10.1007/s11042-022-13518-3

Haraty, R. A., and Nancy, R. (2023). Network traffic analysis as a strategy for cache
management. Int. J. Comput. Digital Syst. 14 (1), 10347–10359. doi:10.12785/ijcds/
1401106

Harnal, S., Sharma, G., Malik, S., Kaur, G., Khurana, S., Kaur, P., et al. (2022).
Bibliometric mapping of trends, applications and challenges of artificial intelligence in
smart cities. EAI Endorsed Scal Inf. Syst. 9 (4), e8. doi:10.4108/eetsis.vi.489

Hasan, M. K., Jahan, N., Nazri, M. Z. A., Islam, S., Khan, M. A., Alzahrani, A. I., et al.
(2024). Federated learning for computational offloading and resource management of
vehicular edge computing in 6G-V2X network. IEEE Trans. Consumer Electron. 70,
3827–3847. doi:10.1109/tce.2024.3357530

Hua, H., Li, Y., Wang, T., Dong, N., Li, W., and Cao, J. (2023). Edge computing with
artificial intelligence: a machine learning perspective. ACM Comput. Surv. 55 (9), 1–35.
doi:10.1145/3555802

Khanh, Q.Vu, Nguyen, V. H., Minh, Q. N., Dang Van, A., Le Anh, N., and Chehri, A.
(2023). An efficient edge computing management mechanism for sustainable smart
cities. Sustain. Comput. Inf. Syst. 38, 100867. doi:10.1016/j.suscom.2023.100867

Mulero-Palencia, S., and Monzon Baeza, V. (2023). Detection of vulnerabilities in
smart buildings using the shodan tool. Electronics 12 (23), 4815. doi:10.3390/
electronics12234815

Natesha, B. V., and Guddeti, R. M. R. (2022). Meta-heuristic based hybrid service
placement strategies for two-level fog computing architecture. J. Netw. Syst. Manag. 30
(3), 47. doi:10.1007/s10922-022-09660-w

Nauman, A., Alruwais, N., Alabdulkreem, E., Nemri, N., Aljehane, N. O., Dutta, A. K.,
et al. (2023). Empowering smart cities: high-altitude platforms based mobile edge
computing and wireless power transfer for efficient IoT data processing. Internet Things
24, 100986. doi:10.1016/j.iot.2023.100986

Nguyen, T. V., Tran, A. T., Dao, N. N., Moon, H., and Cho, S. (2023). Information
fusion on delivery: a survey on the roles of mobile edge caching systems. Inf. Fusion 89,
486–509. doi:10.1016/j.inffus.2022.08.029

Oliveira, F., Pereira, P., Dantas, J., Araujo, J., and Maciel, P. (2023). Dependability
evaluation of a smart poultry house: addressing availability issues through the edge, fog,
and cloud computing. IEEE Trans. Industrial Inf. 20, 1304–1312. doi:10.1109/tii.2023.
3275656

Pallewatta, S., Kostakos, V., and Buyya, R. (2023). Placement of microservices-based
iot applications in fog computing: a taxonomy and future directions. ACM Comput.
Surv. 55 (14s), 1–43. doi:10.1145/3592598

Songhorabadi, M., Rahimi, M., MoghadamFarid, A., and Haghi Kashani, M. (2023).
Fog computing approaches in IoT-enabled smart cities. J. Netw. Comput. Appl. 211,
103557. doi:10.1016/j.jnca.2022.103557

Sudha, I., Mustafa, M. A., Suguna, R., Karupusamy, S., Ammisetty, V., Shavkatovich,
S. N., et al. (2023). Pulse jamming attack detection using swarm intelligence in wireless
sensor networks. Optik 272, 170251. doi:10.1016/j.ijleo.2022.170251

Suhag, D., and Jha, V. (2023a). A comprehensive survey on mobile crowdsensing
systems. J. Syst. Archit. 142, 102952. doi:10.1016/j.sysarc.2023.102952

Suhag, D., and Jha, V. (2023b). A comprehensive survey on mobile crowdsensing
systems. J. Syst. Archit. 142, 102952. doi:10.1016/j.sysarc.2023.102952

Walia, G. K., Kumar, M., and Gill, S. S. (2023). AI-empowered fog/edge resource
management for IoT applications: a comprehensive review, research challenges and
future perspectives. IEEE Commun. Surv. and Tutorials 26, 619–669. doi:10.1109/comst.
2023.3338015

Wu, J., Cao, Z., Zhang, Y., and Zhang, X. (2019). “Edge-cloud collaborative
computation offloading model based on improved partical swarm optimization
in MEC,” in 2019 IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS), Tianjin, China, 04-06 December 2019 (IEEE),
959–962.

Zhang, D., Sun, G., Zhang, J., Zhang, T., and Yang, P. (2023). Offloading approach for
mobile edge computing based on chaotic quantum particle swarm optimization
strategy. J. Ambient Intell. Humaniz. Comput. 14 (10), 14333–14347. doi:10.1007/
s12652-023-04672-z

Zhou, Z., Wu, Q., and Chen, X. (2019). Online orchestration of cross-edge service
function chaining for cost-efficient edge computing. IEEE J. Sel. Areas Commun. 37 (8),
1866–1880. doi:10.1109/jsac.2019.2927070

Zulfa, M. I., Hartanto, R., Permanasari, A. E., and Ali, W. (2022). LRU-GENACO: a
hybrid cached data optimization based on the least used method improved using ant
colony and genetic algorithms. Electronics 11 (19), 2978. doi:10.3390/
electronics11192978

Frontiers in Communications and Networks frontiersin.org10

Harrabi et al. 10.3389/frcmn.2024.1467812

https://doi.org/10.1177/15501477211023021
https://doi.org/10.1002/spe.3033
https://doi.org/10.1002/spe.3033
https://doi.org/10.1016/j.jksuci.2023.101841
https://doi.org/10.1016/j.ese.2023.100330
https://doi.org/10.1016/j.ese.2023.100330
https://doi.org/10.3390/smartcities6050128
https://doi.org/10.3390/smartcities6050128
https://doi.org/10.1109/access.2018.2871475
https://doi.org/10.1109/access.2018.2871475
https://doi.org/10.1007/s11042-022-13518-3
https://doi.org/10.12785/ijcds/1401106
https://doi.org/10.12785/ijcds/1401106
https://doi.org/10.4108/eetsis.vi.489
https://doi.org/10.1109/tce.2024.3357530
https://doi.org/10.1145/3555802
https://doi.org/10.1016/j.suscom.2023.100867
https://doi.org/10.3390/electronics12234815
https://doi.org/10.3390/electronics12234815
https://doi.org/10.1007/s10922-022-09660-w
https://doi.org/10.1016/j.iot.2023.100986
https://doi.org/10.1016/j.inffus.2022.08.029
https://doi.org/10.1109/tii.2023.3275656
https://doi.org/10.1109/tii.2023.3275656
https://doi.org/10.1145/3592598
https://doi.org/10.1016/j.jnca.2022.103557
https://doi.org/10.1016/j.ijleo.2022.170251
https://doi.org/10.1016/j.sysarc.2023.102952
https://doi.org/10.1016/j.sysarc.2023.102952
https://doi.org/10.1109/comst.2023.3338015
https://doi.org/10.1109/comst.2023.3338015
https://doi.org/10.1007/s12652-023-04672-z
https://doi.org/10.1007/s12652-023-04672-z
https://doi.org/10.1109/jsac.2019.2927070
https://doi.org/10.3390/electronics11192978
https://doi.org/10.3390/electronics11192978
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1467812

	Optimizing service caching in smart buildings: a dynamic approach for responsive IoT and edge computing integration in smar ...
	1 Introduction
	2 Related work
	3 Problem definition
	3.1 Symbols used for describing the optimization problem and caching strategy
	3.2 Optimization techniques and algorithm
	3.3 Proposed algorithm

	4 Experimental results and discussion
	4.1 Experimental setup and limitations
	4.2 Comparison of service response time between proposed method, GA, and swarm

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

