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Efficient data collection and sharing play a crucial role in power infrastructure
construction. However, in an outdoor remote area, the data collection efficiency
is reduced because of the sparse distribution of base stations (BSs). Unmanned
aerial vehicles (UAVs) can perform as flying BSs for mobility and line-of-sight
transmission features. In this paper, we propose a multiple temporary UAV-
assisted data collection system in the power infrastructure scenario, where
multiple temporary UAVs are employed to perform as relay or edge
computing nodes. To improve the system performance, the task processing
model selection, communication resource allocation, UAV selection, and task
migration are jointly optimized. We designed a QMIX-based multi-agent deep
reinforcement learning algorithm to find the final optimal solutions. The
simulation results show that the proposed algorithm has better convergence
and lower system costs than the current existing algorithms.
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1 Introduction

With the rapid economic development, more electric power infrastructures have been
built rapidly, which causes more cases of outdoor power line erection, distribution station
construction, and other types of facilities (Kumar et al., 2017). The South China Power Grid,
along with other companies, has initiated comprehensive power infrastructure management
measures. They utilize advancements from the Internet of Things (IoT), communication
networks, and artificial intelligence technologies to oversee the power infrastructure
processes to enhance the safety protocols for the construction workers and maintain
the quality standards of the projects rigorously. The holistic strategy marks significant
progress in integrating modern technology with traditional power systems, reflecting an
evolving landscape in infrastructure management. Along with the process, a large amount
of onsite data need to be collected and fused for processing (L’Abbate, 2023; Stoupis et al.,
2023). For example, in order to construct a digital twin (DT) for outdoor power
infrastructure construction systems, the ground nodes with sensing devices need to
share information with other nodes continuously. In particular, the shared information
is not only associated with the ground nodes but also with the environment and the
construction workers. However, the various types of data to be processed and the complex
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construction environment make the data collection of outdoor
power infrastructure extremely difficult.

Due to the superior mobility, ease of deployment, and direct
line-of-sight (LoS) communication advantages, unmanned aerial
vehicles (UAVs) are increasingly utilized as relay or edge computing
nodes in data collection networks (Jayakody et al., 2020; Rahman
et al., 2022), specifically in power infrastructure contexts. Notably, in
addition to those that are strategically deployed, there exist multiple
UAVs undertaking separate missions, such as package delivery,
target tracking, and environmental monitoring, often operating in
areas encompassing the power infrastructure facilities. A significant
portion of the computational and communication resources on
these incidental UAVs are typically idle. Engaging these UAVs in
infrastructure monitoring initiatives could profoundly enhance the
network communicative efficiency and computational capacity.
However, it is critical that these UAVs are primarily dedicated to
their original assignments; their operations are designed and hard to
be changed.

Currently, in the UAV-assisted IoT, UAVs function as relay
nodes (Rahman et al., 2022; Jayakody et al., 2020; Zhang et al., 2018)
or edge computing nodes (Jeong et al., 2018; Liu et al., 2020)
primarily, with particular emphasis on their flight trajectories,
energy consumption, and task offloading strategies. For instance,
Jeong et al. (2018) optimized UAV communication resource
allocation and trajectory planning to minimize the overall system
energy consumption, ensuring service quality. Conversely, Liu et al.
(2020) introduced an edge computing framework utilizing a fleet of
UAVs as relay nodes. The task offloading and UAV flight planning
are optimized jointly to meet the users’ computational demands and
latency sensitivities. Addressing the issue of base station (BS) edge
servers in power infrastructure networks occasionally failing to
satisfy the users’ computational needs, Hu et al. (2019) and Peng
et al. (2020) advocated for deploying UAVs equipped with edge
computing servers to overwhelmed areas; the proposed strategy can
mitigate resource scarcity in roadside units during peak periods
effectively. Zhang et al. (2022) established a UAV-assisted edge
vehicular network computing structure with energy harvesting.
UAVs aid vehicles in executing onboard task computations.
Employing wireless power transfer (WPT) technology, UAVs
harvest energy from base stations and vehicles. The UAV speed,
computation, and communication resource allocation are jointly
optimized to enhance UAV data-processing efficiency. Ng et al.
(2020) utilized UAVs as relay nodes to improve the efficiency of the
interactions between Internet of Vehicles (IoV) components and the
federated learning (FL) server in the IoV with an FL edge computing
server, thereby enhancing FL precision. However, the primary
objective is to escalate UAV profitability, and the results indicate
that the system stability also needs be enhanced. Furthermore, Liu
et al. (2022) proposed the strategic deployment of UAVs within edge
vehicular networking contexts, aiming to cater to network-
connected autonomous vehicles that exhibit intensive
computational and communication resource requests; the
allocation of UAV communication and computational resources
is optimized to maximize the system accessible resource capacity.
Sun et al. (2023b) optimized the schedules among UAVs to ensure
the shortest response time in the UAVs with edge computing
services that cover the IoV users for data collection. Moreover,
the communication bandwidth allocation and flying trajectory are

jointly optimized by Wang et al. (2023b). Lyu et al. (2019) and Peng
et al. (2020) confronted the disparity between fluctuating vehicle
densities and the static establishment of roadside unit (RSU), and
the flexible UAV deployment strategy is proposed to equilibrate
network Quality of service (QoS) and UAV deployment frequency.

However, in power infrastructure scenarios, the ground nodes
(such as wind generator and wire tower) have several types of tasks
that need to be processed. Because the UAV can function as both the
relay and edge computing node, it can select a suitable task
processing model based on the mobility of the UAV and the task
computing resource requests. The UAV can select a suitable task
processing model. In addition, when a single UAV acts as a relay
node or edge computing node, its resources are not sufficient, and it
is difficult to handle intensive task processing requests in complex
outdoor scenarios. A UAV swarm composed of multiple UAVs can
solve this problem effectively. Compared with the single-UAV
scenario, the design of the multiple UAV-assisted edge network
optimization strategy also needs to consider the problems of relay
selection and task migration. Thus, it is necessary to select the
appropriate node in the data uploading phase and the selection of
the task migration node when the ground node is moving away from
the communication range of the UAV, where the current task is
located. In this paper, we propose a UAV selection, communication
resource allocation, and task migration joint optimal strategy based
on a multi-agent deep reinforcement learning algorithm via QMIX
(Rashid et al., 2018), and the main optimization objective is to
minimize the cost of the ground users under the task completion
delay constraint. The main contributions of this paper are
summarized as follows:

1) We construct a temporary UAV-assisted data collection
system model in the power infrastructure scenario, and
multiple UAVs are employed to function as relay or edge
computing nodes.

2) We formulate a joint optimization method to minimize the
system cost, where the task processing model, communication
resource allocation, UAV selection, and task migration are
jointly optimized.

3) We present a QMIX-based multi-agent deep reinforcement
learning algorithm to find the final optimal solutions.

Moreover, several simulation examples are presented to show
that the proposed UAV-assisted data collection method can reduce
the task-completion delay and the system cost. The rest of this paper
is organized as follows: the system model is proposed in Section 2;
Section 3 describes the joint problem solution via the QMIX-based
algorithm; Section 4 presents multiple simulations and discusses the
simulation results; and finally, the conclusion of the paper is
presented in Section 5.

2 System model

Figure 1 illustrates the system model of the multiple temporary
UAV-assisted data collection network. We consider a power
infrastructure scenario in the wild, as shown in Figure 1; several
ground nodes (including wind generator and wire tower) have a
high demand for task transmission to build a DT system for the
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reconstruction of the infrastructure scenario to improve the
management quality. Multiple temporary UAVs pass the power
gird construction site, and the temporary passing UAVs have their
own missions; the available resources of a single UAV are not
enough, and multiple UAVs can cooperative to finish the data
collection efficiently. They form a UAV network and can
function as both the relay and edge computing nodes. To obtain
enough information to improve the advanced decision-making
system accuracy, the ground nodes in the infrastructure scenario
need to continuously share information with other nodes through
the edge network, and the tasks are collected by relying on their own
sensing devices. The information is not only associated with the
ground nodes but also with the environment and the construction

workers. The decision-making center cannot change the flying
trajectory and other parameters, and we set that the ground
nodes should pay when they use the UAVs for data collection.
The energy consumption and available varying computation
resources are not considered in this paper. The main symbols
used are summarized in Table 1.

When a task node collects information, it first sends out an
information task via the common orthogonal frequency-division
multiplexing access (OFDMA) technology (Xia et al., 2021), and
then, a volunteer node receives the task. After receiving the task, the
volunteer node immediately packages its own collected real-time
information and sends it directly back to the task node via wireless
communication or to the UAV, which then acts as a relay node to
forward the data to the task node. For clarity in the discussion, we
assign numbers to both the task nodes and volunteer nodes. The task
node is numbered as 0, while the volunteer nodes are designated as i,
with i belonging to the set i ∈ I � 1, 2, . . . , I{ }. Similarly, the UAV
index is denoted by j, and j ∈ J � 1, 2, . . . , J{ }. In addition, using the
UAV as a relay node to collect information is the main scenario. The
data transmission model for collecting information by the task
nodes is shown in Figure 2.

In the single-UAV scenario, there are no idle UAV nodes
available for selection, eliminating the need for volunteer nodes
to make relay choices when uploading data. However, with multiple
UAVs, volunteer nodes must identify and select an appropriate
UAV as a relay node before data transmission to ensure the
completion of the data collection task as effectively as possible.
The UAV is denoted by ui, representing the relay UAV number
chosen for task i. Concurrently, Ij denotes the set of volunteer
vehicles that have selected UAV j as their relay node. As shown in
Figure 2, after finalizing their relay selection, the volunteer nodes
initiate the data uploading process to the corresponding UAVs
through wireless links. For tasks that have designated the same
UAV as a relay node, the UAV has the capability to process the tasks
in a parallel manner. Following the completion of these uploads,
immediate commencement of task processing occurs, affecting the
system performance. Due to the uncontrolled flight paths of the

FIGURE 1
Multi-temporary unmanned aerial vehicle (UAV)-assisted data collection system model.

TABLE 1 Main symbols.

Notation Description

i Index of volunteer nodes

j Index of unmanned aerial vehicle (UAV)

hij(t) Communication channel gain between UAV j and node i at time t

Si Size of task i

β0 Channel power per unit distance

piu Transmission power of a volunteer node

σ2 Gaussian white noise

B0 Sub-channel bandwidth

CT Data transmission unit price

CP Data processing unit price

Oi Processing result size

Ci Computing resource requirement

Tu,i Time of successful task uploading

Tp,i
′ Total processing time of task i
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FIGURE 2
Multi-temporary UAV data transmission model.

TABLE 2 Task migration process in different situations.

Situations Specific migration action

Situation 1: no migration needed No migration action

Situation 2: occurs during the task uploading phase Migrates the uploaded data to the new temporary unmanned aerial vehicle (UAV) when the upload is completed

Situation 3: occurs during the task processing phase Migrates the results to the new temporary UAV when data processing is completed

Situation 4: occurs during the download phase Transfers the remaining processing results to the new temporary UAV

FIGURE 3
Task migration in different situations.
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temporary UAVs and the mobility of ground users, the task node
might exit the communication range of a UAV before task
completion. Under these scenarios, if the task is still valid and
not yet completed, a process called task migration is initiated. It
transfers the task to a UAV corresponding to a neighboring node,
thereby ensuring the continuation and subsequent task completion.
The efficiency and reliability of tasks amidst dynamic operational
environments can thus be ensured. During the task migration

process, it is essential to select a target UAV first. The selected
target UAV for task i is denoted as gi, where gi is a member of the set
G and gi ∈ G � J ∪ 0{ }. Considering the task consumes more
communication resources and time after migration, i.e., the cost
of the task will increase while the success rate of the task will
decrease, it is necessary to optimize the migrating selection to avoid
possible greater losses. gi � 0 signifies the direct abandonment of the
task, reflecting a conservative option under consideration.

FIGURE 4
Framework of the QMIX-based selection strategy on relay and migration target.

TABLE 3 Parameters.

Parameter Description Value

β0 Channel power per unit distance 50 dBm

piu Transmission power of a volunteer node 10 dBm

σ2 Gaussian white noise −30 dBm

B0 Sub-channel bandwidth 1 M

CT Data transmission unit price 0.2

CP Data processing unit price 0.5

Oi Processing result size Si, 0.7Si, 0.01Si{ }

Ci Computing resource requirement 0, Si, 2Si{ }

θh Initialized hypernetwork parameters [2, 10]

Frontiers in Communications and Networks frontiersin.org05

Lai et al. 10.3389/frcmn.2024.1390909

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1390909


FIGURE 5
Reward curve of different algorithms.

FIGURE 6
Relationship between the cost and number of UAVs.
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Moreover, the task node departure from the UAV communication
coverage can transpire any moment during the data transmission
phase. The specific content should be migrated, and it depends on
the exact timing; the detailed scenarios are outlined in Table 2. This
variability necessitates a dynamic approach to task management,
ensuring that task transitions are handled efficiently based on the
circumstances of the network connectivity and the task progress.

2.1 Delay calculation

2.1.1 Scenarios with no migration needed
UAVs can function as aerial platforms, establishing LoS links

with ground nodes; thus, we utilize the free space path loss (FSPL)
model to characterize the communication channel between the
UAVs and the ground nodes (Hossein Motlagh et al., 2016). The
communication channel gain between UAV j and node i at time t is
denoted as hij(t), which can be expressed as follows:

hij t( ) � β0d
−2
ij t( ),

where β0 is the channel power gain per unit distance and dij denotes
the straight-line distance between the UAV j and the node i. The
channel bandwidth is B � Kb, i.e., the bandwidth B is divided intoK
copies of the sub-channel with bandwidth b. The match between the
sub-channels and the volunteer node is the resource allocation
problem. nij denotes the number of sub-channels obtained by
node i when uploading data to UAV j, where i ∈ Ij and

∑
i∈Ij

nij � K. The upload link channel capacity from the volunteer

node i to the UAV j at time t is as follows:

Rij t( ) � nijb log2 1 + pijhij t( )
∑k≠ipkjhkj t( ) + σ2

( ),
where pij denotes the signal transmit power of the volunteer node
i; nijb denotes the channel bandwidth for uploading data.∑k≠ipkjhkj(t) indicates an interfering signal and σ2 denotes

Gaussian white noise. The size of task i is represented by Si,
which is calculated as follows:

Si � ∫teu

tsu

Rij t( )dt,

where tsu and teu denote the upload starting and ending
time, respectively. Denoting the preparation time of task i
by Tg

i , the time consumed for successful task uploading is
as follows:

Tu,i � Tg
i + teu − tsu. (1)

After the data processing phase, the processing results are sent to
the task node immediately. We consider the Time Division
Multiple Address (TDMA) technology so that the task in the
current transmission has all the available channels currently.
The data download rate can be expressed as follows:

Rji t( ) � B log2 1 + pjihji t( )
∑k≠jpkihki t( ) + σ2

( ). (2)

FIGURE 7
Relationship between the cost and transmission power of UAVs.
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The size of the processed results after the completion of task i is
denoted as oi, which is as follows:

oi � ∫ted

tsd

Rji t( )dt,

where tsd and ted denote the download starting time and ending
time, respectively. The time consumption in the download phase
Tdownload,i is denoted as follows:

Td,i � ted − tsd .

2.1.2 Scenarios containing task migration
Task migration is accomplished through communication links

between the UAVs (Huang et al., 2021), for which the channel rate is
expressed as follows:

Rjg t( ) � B log2 1 + pjghjg t( )
∑k≠jpkghkg t( ) + σ2

( ).
As shown in Figure 3, task migration can occur at any stage. For

scenario 2, where the task migration occurs during the task
uploading phase, the starting and ending times for migration are
set as tsm and tem, respectively. Consequently, the total time
consumption for the data-uploading phase of task i is
represented as follows:

Tu,i
′ � Tu,i + Tm,i � Tu,i + tem − tsm.

In addition, tsm and tem satisfy the following equation:

Si � ∫tem

tsm

Rij t( )dt.

For situation 3, the total processing time of task i is as follows:

Tp,i
′ � Tp,i + Tm,i � Tp,i + tem − tsm.

In addition, tsm and tem satisfy the following equation:

oi � ∫tem

tsm

Rjg t( )dt,

where Tp,i is the time consumed for the complete data processing.
For scenario 4, the total time consumed during the result

download phase, denoted as Td,i
′, comprises three segments: the

duration of the initial data download T1
d,i, the time taken for the

migration of the remaining data Tm,i, and the time required to
download the remaining data T2

d,i. It is assumed that the starting
time of the first download is tsd, the ending time of the remaining
data download is ted, the starting time and ending time of task
migration are tsm and tem, respectively, and the size of the remaining
data is o′i ; then,

Td,i
′ � ted − tsd,

where tsd and tsm satisfy the following equation:

oi − o′i( ) � ∫tsm

tsd

Rij t( )dt.

In addition, tsm, tem, and ted satisfy the following equation:

FIGURE 8
Relationship between the cost and UAV computing capacity.
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o′i � ∫tem

tsm

Rjg t( )dt � ∫ted

tem

Rg0 t( )dt,

whereRg0(t) is the download link communication rate between the
new temporary UAV g and the mission vehicle 0.

The total time Ttot,i spent in completing task i can be described
as follows:

Ttot,i �
Tu,i + Tp,i + Td,i, case 1
Tu,i
′ + Tp,i + Td,i, case 2

Tu,i + Tp,i
′ + Td,i, case 3

Tu,i + Tp,i + Td,i
′ , case 4

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

where mi � (mi,1, mi,2, mi,3) is used to indicate whether task i
has migrated or not, mi,1, mi,2, mi,3 ∈ 0, 1{ }, mi,1 � 1 indicates
that the migration occurs in the data uploading phase, mi,2 � 1
indicates that it occurs in the data processing phase, and mi,3 � 1
indicates that it occurs in the data downloading phase.
Considering the impact of task migration on the efficiency of
data collection, and to simplify the model, we restrict the task
migration behavior to occur only once (i.e., ‖mi‖1≤ 1). The value
of mi depends on the moment of the occurrence of task
migration, tsm, and the migration target, gi. Thus, Ttot,i can be
rewritten as follows:

Ttot,i � 1 −mi,1, mi,1( ) · Tu,i, Tu,i
′( ) + 1 −mi,2, mi,2( ) · Tp,i, Tp,i

′( )
+ 1 −mi,3, mi,3( ) · Td,i, Td,i

′( ).
The time taken to complete all the tasks in a cycle is as follows:

Ttot � max
j,j∈J

max
i,i∈Ij

1 −mi,1, mi,1( ) · Tu,i, Tu,i
′( ){ } +∑

i∈Ij
1 −mi,2, mi,2( )(

· Tp,i, Tp,i
′( ) +∑

i∈Ij
1 −mi,3, mi,3( ) · Td,i, Td,i

′( )).

2.2 Cost calculation

The total system costs are divided into communication costs and
computational costs. PT represents the unit price of data
transmission (the cost of transmitting 1 Mb of data), and PP

represents the unit price of computational resources (the cost for
consuming 1 G CPU cycles). ci denotes the computational resources
consumed by task i. Under typical circumstances, the cost required
for task nodes to successfully complete data task i can be expressed
as follows:

FIGURE 9
Relationship between the cost and number of ground nodes I.
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costi � PT Si + oi( ) + PPci.

When task migration is included, the cost also includes the
expenses incurred for task migration. The main costs incurred
during task migration are communication costs, which can be
expressed as follows:

costm,i � PT mi,1Si +mi,2oi +mi,3o
′
i( ).

Then, costi can be expressed as follows:

costi � PT Si + oi( ) + PPci + PT mi,1Si +mi,2oi +mi,3o
′
i( ).

It is important to highlight that costi accounts for the cost
associated with a successful task, but not every task necessarily
reaches completion. Tasks are often highly time-sensitive, which
means that they might be terminated at any stage due to exceeding
the time constraints. To uniformly describe the costs related to both
successful and unsuccessful tasks, we employ coefficients ξu, ξp,
ξd and ξm. These coefficients represent the progress in data upload,
data processing, processing result download, and task migration
throughout the data collection process, respectively. With binding
coefficients ξu, ξp, ξd, and ξm, the total cost consumed by the task i
can be re-expressed as follows:

costi � PT ξuSi + ξdoi( ) + PPξpci + PTξm mi,1Si +mi,2oi +mi,3o
′
i( ).

Among these, ξu, ξp, ξd, ξm ∈ [0, 1]. It should be noted that the
ξu, ξp, ξd, ξm corresponding process has a time-sequence
relationship, so the value of the coefficient corresponding to the
process earlier in time will affect the coefficient corresponding to the
process later in time. For example, when ξu < 1, the uploading phase
is not completed; there must be ξp � 0, i.e., the processing phase
cannot be started.

2.3 Optimized problem description

According to the description of the above system model, we
establish the joint optimization problem. Under the premise of
satisfying the task delay constraints, channel resource
constraints, and decision space constraints, the relay selection
decision variable ui, the number of channel allocations nij, the
task processing decision variable αi, and the task migration
decision variable gi are jointly optimized to minimize the cost
incurred by the users to complete the information collection task
in the multi-UAV-empowered power infrastructure data
collection network system. The optimization problem P1 is
expressed as follows:

P1: min
ui,nij ,αi ,gi{ }∑i∈I costi

Subject to:
C1: Ttot,i ≤Treq,i,∀i ∈ I
C2: Ttot ≤Tth

req

C3: ui ∈ J,∀i ∈ I
C4: ∑

i∈Ij

nij � K

C5: ‖αi‖1 � 1
C6: nij ∈ 1, 2, . . . , K{ },∀i ∈ Ij, gi ∈ G � J ∪ 0{ },∀i ∈ I
C7: ⋂ j∈J Ij � ∅, ⋃ j∈J Ij � I

where Tth
req represents a single task collection period. P1 is an

integer nonlinear optimization problem, which is usually difficult to
solve directly. To solve P1 effectively, we analyze the system model
and the optimization problem first. We find that the optimization
problem can be decomposed into four sub-optimization problems,
which are the relay selection decision problem, the channel
allocation problem, the processing mode decision problem, and
the task migration decision problem. The channel allocation
problem and the processing mode decision problem are not
related to other UAV states but are only related to the current
UAV state. The UAVs can perform their own decisions. Thus, an
algorithm based on multi-agent reinforcement learning can be used
to solve it jointly.

3 QMIX-based solution algorithm

Since the states of all temporary UAVs at the next moment are only
associatedwith the state of the currentmoment, they are independent of
the states corresponding to the last moments. Therefore, the decision-
making problem in this paper satisfies the Markovian properties. In the
proposed multi-temporary UAV-assisted data collection network
scenario, multiple temporary UAVs interact with the environment at
the same time, and the uncertain behaviors among the UAVs will cause
significant instability to the system. At the same time, limited by the
means of information acquisition, it is difficult for the UAVs to obtain
an accurate and real-time overall state of the environment in a large
airspace. The decision-making center cannot control the temporary
UAVs. Therefore, the relay selection and mission migration problem
can be solved by the QMIX-based multi-agent deep reinforcement
learning algorithm. In addition, the solution is described as a partially
observable Markov decision process (POMDP) (Peng et al., 2020;
Hossein Motlagh et al., 2016), which contains the following
important parts.

3.1 Global states and locally
observable states

To reduce the data transmission time and improve the real-time
and accuracy of the data, the UAV can only obtain the immediate
positional and directional information of other UAVs, while its
trajectory information needs to be obtained by itself internally. st is
used as the global state information.

st � l1, d1, l2, d2, . . . , lj, dj, . . . , lJ, dJ, δ( ).
Here, lj � (xj, yj, zj) denotes the 3D position information of UAV
j, dj denotes the instantaneous heading angle information of UAV j,
δ indicates whether the current task is a relay selection or a
migration target selection, δ � 0 indicates relay selection, and δ �
1 indicates migration target selection. The accuracy of the
environmental state information observed by the agents is
negatively correlated with the distance between the agents,
i.e., the greater the distance between the agents, the lower the
accuracy of the acquired correlated states. The location
information observed by the agent is a superimposition of the
actual location information and environmental white noise.
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Consequently, we designed a Gaussian noise distribution with a
variance that changes with the actual distance between the agents,
i.e., N(0,Dab), where  is a constant coefficient set at 0.02 and
Dab represents the line-of-sight distance between agents a and b. In
detail, Dab ≥ 50m, where the observation information of agent a about
agent b is superimposed with noise sampled from the Gaussian
distribution N(0,Dab). However, where 0m<Dab < 50m, the
observational information of agent a regarding agent b does not
contain the sampled noise. In summary, the locally observable
information oit of agent i mainly consists of the position coordinates
lot , heading angle dot , its own position coordinates lst , its own heading
angle dst , and its own number i superimposed on the noise in the other
UAVs in the system. Assuming that there are N+1UAVs in the system,
the locally observable information oit is as follows:

oit � lo,1t , do,1
t , lo,2t , do,2

t , . . . , lo,Nt , do,N
t , lst , d

s
t , i, δ( ).

3.2 Movement

Relay selection and migration target selection are both carried
out for UAVs assuming that there are N UAVs in the system. The
action of the agent i is denoted as μit � (μi,1t , μi,2t , . . . , μi,Nt ),
μi,nt ∈ 0, 1{ }, and ‖μit‖1 ≤ 1. μi,nt � 1 chooses the UAV n. The joint
action μt � (μt,1, μt,2, . . . , μt,N) is the additive combination of the
actions of all the agents, which is calculated as follows:

μt � ∑N

i�1μ
i
t.

It can be expressed as follows:

μt,1, μt,2, . . . , μt,N( ) � ∑N

i�1μ
i,1
t ,∑N

i�1μ
i,2
t , . . . ,∑N

i�1μ
i,N
t( ).

When a unique maximum element μt,n
max exists for μt,

performing a joint action μt means selecting the UAV n. When
there are a number of elements that are the same as the maximum
element, the action μt means that the UAV corresponding to one of
the largest elements is randomly selected. For example, assuming
that there are three UAVs numbered 1, 2, and 3 in the system, the
movements of each UAV are shown as follows:

• μ1t � (0, 0, 1)
• μ2t � (0, 1, 0)
• μ3t � (0, 0, 1)

then, the joint action μt � (0, 1, 2); executing μt at this point
means selecting UAV 3. Otherwise, if the movements of each
UAV are

• μ1t � (1, 0, 0)
• μ2t � (0, 1, 0)
• μ3t � (0, 0, 1)

then, the joint action μt � (1, 1, 1), and executing μt at this point
means selecting one UAV from those three UAVs randomly.
Furthermore, if ‖μt‖1 � 0, the data are discarded.

3.3 Incentive

In multi-agent reinforcement learning, the design of the reward
function significantly differs from that in single-agent reinforcement
learning. We consider the design of the reward function from a
global perspective, which is expressed as follows:

ri � η
λ1Si
Ttot,i

+ λ2Si
costi

( ).
In the formula, η denotes whether the task is successful, with

η � 1 indicating success and otherwise indicating failure; λ1, λ2
denote weight coefficients; Si denotes the original size of the data;
costi denotes the cost of task. It is important to note that the rewards
here are for an individual task and not per time step t. In other
words, agents do not receive immediate rewards after the joint action
is performed. Instead, they must wait until the task is completed to
obtain the rewards. The overall detailed flow of task processing via
the QMIX-based selection strategy on the relay and migration target
is shown in Figure 4.

As shown in Figure 4, QMIX is a novel value-based multi-agent
reinforcement learning method. Each UAV makes the decisions
with its own environment and sends the decisions to the mix
network. The form of the QMIX fusion function is not directly
assumed but is estimated through a neural network. Hence, the total
action value function Qtot(τ, u) in QMIX is represented as follows:

Qtot τ, u( ) � MIXθ̂ Q1 τ1, u1( ), . . . , Qn τn, un; _θ( )( ),
where θ̂ represents the parameters of the fusion function neural
network. To meet the individual–global maximization criterion,
QMIX requires the global action value function Qtot(τ, u) to be
monotonic. It demands that the derivative of the global action value
function Qtot(τ, u) with respect to each agent action value function
Qi(τl, ul) be non-negative, which is mathematically described
as follows:

∂Qtot τ, u( )
∂Qi τl, ul( ) � gl ≥ 0,∀l ∈ N � 1, 2, . . . , n{ },

where N represents the space of the agent indexes within the system.
To ensure the monotonicity of Qtot(τ, u), QMIX incorporates
parameters θh from the hypernetworks (Rashid et al., 2018), with
the global state s as an input to generate the parameters for the
fusion function neural network. The generated parameters are
directly taken in absolute value to ensure the non-negativity of
the fusion neural network parameters, thus ensuring the validity of
the equation. The pseudocode for the QMIX-based solution
algorithm is presented in Algorithm 1.
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1 Initialize the experience pool, setting the upper

and lower storage limits as Bmax and Bmin and the

timestep counters as C1 and C2, setting C1 � C2 � 0.

2 Initialize the real neural network parameters for

agents _θ and the fusion function neural network

parameters θ̂; for the target neural network

parameters for agents _θ
−
and the fusion function

neural network parameters θ̂
−
, set _θ

− � _θ, θ̂
− � θ̂, and

the hypernetwork parameters θh.

3 For e ∈ 1,2, . . . ,E{ } do:
4 Initialize the state st � s0, set t � 0.

5 Initialize an empty list L for

historical sequences.

6 While st is not a terminal state, do:

7 C1 � C1 + 1, C2 � C2 + 1

8 For l ∈ N � 0,1,2, . . . ,n{ } do:
9 Under the global state st, agent l observes its

local observable state ol
t.

10 Based on its local state ol
t, agent l decides an

action μl
t using an ε − greedy strategy.

11 End for

12 Combine the actions μl
t of all agents to form the

joint action μt � (μ1
t ,μ

2
t , . . . ,μ

n
t).

13 Execute the joint action μt, receive reward rt,

and complete the global state transition st → st+1.
14 Store the sequence (st ,ot,μt,rt) in the

historical sequence list L, where ot � (o1
t ,o

2
t , . . . ,o

n
t).

15 If the time step counter C1 equals the preset

training cycle, and the number of sequences in the

experience pool is not less than Bmin, then

16 Randomly draw a batch of historical sequence

segments from the experience pool.

17 Each segment contains complete historical

information from the initial state to the

terminal state

18 For l ∈ N � 0,1,2, . . . ,n{ } do
19 Combine ol

t and μl
t to form τl and ul, and

combine ol
t+1 to form τl′.

20 Agent l calculates the online neural

network, based on τl and ul and its identifier l, and

computes Ql(τl ,ul; _θ).
21 Agent l calculates the target neural

network, based on τl′, and obtains max
u1′

Qi(τl′,ul′; _θ
−)

22 End for

23 The hypernetwork takes the global state st as

input and output parameters, which are then taken in

absolute value to obtain θ̂

24 All Ql(τl,ul; _θ) are input to the online neural

network of the fusion function to obtain Qtot(τ,u; θ)
25 All max max

u1′
Ql(τl′,ul′; _θ

−) are input to the target

neural network of the fusion function to obtain

Qtot
max(τ′,u′; θ−).

26 Compute the loss function L(θ) and optimize

using gradient descent.

27 Reset the time step counter C1 � 0

28 End if

29 If the time step counter C2 equals the update

cycle for _θ
−
and θ̂

−
, then

30 _θ
− � _θ, θ̂

− � θ̂.

31 Reset the time step counter C2 � 0

32 End if

33 Complete the global state transition, set

st � st+1, t � t + 1.

34 End while

35 Store the historical sequence list L in the

experience pool.

36 End for

Algorithm 1. QMIX-based solution algorithm.

4 Simulation analysis

4.1 Parameter settings

In the simulation, we consider a power infrastructure data
collection network environment assisted by multiple temporary
UAVs. The maximum one-hop communication distance between
the nodes is set to 30 m. In addition, the UAVs are configured with a
communication radius of 300 m and a flight altitude of 50 m. Their
starting locations and flight direction are given randomly. The CPU
speed of the UAV is set to 1~3 GHz (GC = 109 cycles; GHz = GC/s),
the raw data are set between 2 and 10 Mb, and the computational
demand-to-data size ratio of the task ranges from 1 GC/Mb to 2 GC/
Mb. The number of ground volunteer nodes is set to 30, which is
denoted as I = 30. The starting location is given randomly, while the
starting locations of the task nodes are known. The latency
requirement of the task satisfies Treq,i ~ U(1, 5)s and Tth

req � 100s.
For the QMIX-based multi-agent network, for each UAV, the
hidden layers of the neural network are set as two layers 64 p 64,
the learning rate is 0.005, and the discount factor is 0.9. In terms of
software, the simulation model was developed using Python 3.8 and
TensorFlow 2.0. The experimental platform is a workstation based
on the AMD R3600. More detailed parameters are shown in Table 3.

The simulation experiments are conducted from two aspects. On
one hand, the convergence of the proposed algorithm is evaluated.
On the other hand, the performances of the proposed algorithm and
the comparative strategies under different operating conditions are
observed by modifying variables such as the number of temporary
UAVs Nu, the computational speed of the UAVs Cu, and the
transmission power of the UAVs pu0.

4.2 Analysis of results

In this paper, the multi-agent deep reinforcement learning
algorithm (QMIX) is used to find the optimal relay node
selection and task migration target. The proposed algorithm is
denoted as the QMIX-based selection strategy on relay and
migration target (QSSRMT), and we design three groups of
comparative schemes, which are as follows:

1) ISSRMT (Zhu et al., 2021): independent learning approach-
based selection strategy on relay and migration
target algorithm.
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2) DSSRMT (Xia et al., 2021): deep Q-learning-based selection
strategy on relay and migration target algorithm.

3) VSSRMT (Sunberg et al., 2016): value function decomposition
method-based selection strategy on relay and migration
target algorithm.

Figure 5 shows the reward variation curves for the number of
UAVs Nu � 5, the computational speed of UAVs Cu � 2GHz, and
the transmission power of UAVs pu0 � 20dBm. The blue curve
represents the QSSRMT scheme, while the red curve represents
the VDN-based VSSRMT scheme. Both schemes are multi-agent
reinforcement learning algorithms based on the generic value function
decomposition method, and the QSSRMT slightly outperforms
the VSSRMT in terms of their reward value curves. The QMIX
and VDN algorithms both fall under the category of value
function decomposition methods. However, they differ significantly
in their value function combination functions. QMIX utilizes a fusion
neural network to approximate its fusion function, concurrently
ensuring through parameter design that it upholds monotonicity,
thereby complying with the IGM criterion. VDN simply believes that
the fusion function is a summation function; i.e., the global action
value function is equal to the summation of the action value functions
of each agent. QMIX, which employs a neural network to approximate
the fusion function, is more adaptable to the experimental
environment of the model proposed in this chapter. In addition,
the other orange and green curves in the figure indicate the DSSRMT
and ISSRMT, respectively, and it can be found that both schemes
perform relatively poorly. The DSSRMT employs the joint learning
approach, treating the global environment as a whole and making
centralized decisions for all agents. Essentially, the system transitions
from amulti-agent framework to a single-agent one. The disadvantage
of the joint learning method is that as the number of agents increases,
the joint action value function will experience dimensional catastrophe,
which ultimately leads to an unsolved problem. However, from the
results of this experiment, the DSSRMT scheme can still provide a
suboptimal solution to the optimization problem in this paper. The
ISSRMT adopts the independent Q-learning method, where each agent
learns its own action value function individually. According to the
experimental results, it is difficult for ISSRMT to have a more stable
performance in the experimental model.

Figure 6 shows the cost curves of various algorithms under the
condition of UAV computational speed Cu � 2GHz and UAV
transmission power pu0 � 20dBm, with varying numbers of UAVs.
Figure 5 shows that as the number of UAVs increases, the average cost
of tasks decreases slightly. Having more UAVs can provide more
computing resources, thereby reducing the impact of service request
congestion. It also affords more opportunities and options for task
migration, consequently lowering the task failure rate. A higher task
success rate leads to a lower average cost per task.

Figure 7 illustrates the relationships between the system cost and
different UAV transmission power levels. From the figure, we can
find that as the UAV transmission power increases, there is a
significant reduction in the average cost of task processing. The
main reason is that the magnitude of the UAV transmission power
influences the transmission rate of the communication link quality
between the UAV and the ground nodes directly. As discerned from
Eqs 1, 2, the larger the UAV transmission power, the higher the
transmission rate of the downloading communication links. When

the download rate is higher, the fine-grained task computationmode
struggles to offer additional time-saving advantages; yet, it remains a
more costly option. Under these conditions, adopting model 1 to
simply package the data and then send them to the users directly
becomes a more cost-effective choice.

Figure 8 shows the relationships between the average system cost
and different UAV computational capacities. From the figure, we
can find that when the UAV computational capacity is between
1 and 2 GHz, an increase in computational power leads to a rapid
decrease in the average task cost. However, when the computational
capacity exceeds 2 GHz, further increases have a negligible effect on
the task processing cost. The enhancement in UAV computational
capacity can reduce the time consumed for task processing, thereby
decreasing the probability of task failure to a certain extent.
However, once the task processing time is reduced to a certain
level, it no longer remains the primary factor contributing to task
failure. In other words, when the UAV has sufficient computational
capacity, further reductions in task processing time no longer affect
the task completion success rate significantly. Figure 9 shows the
relationship between the average system cost and different numbers
of ground nodes I; we set that the data size and latency requirement
of the generation tasks of each node are the same. From the figure,
we can find that when the number of ground volunteer nodes
increases, the whole system cost increases; because more tasks
need be processed, the system delays, and the cost increases. The
performance of the proposed QMIX-based QSSRMT is evidently the
best when compared with the other three algorithms.

5 Conclusion

In this paper, we investigate an efficient data collection and
sharing strategy in outdoor data collection for power infrastructure
networks aided by multiple temporary UAVs. A multi-constraint
integer nonlinear optimization problem is established that jointly
optimizes relay selection, channel allocation, task processing mode
decision, and migration target selection. We propose a decision-
making scheme via a QMIX-based multi-agent deep reinforcement
learning method to accomplish the joint solutions of relay selection
and migration target selection issues. Simulation experiments
validate the effectiveness of the proposed strategies based on
QMIX. For future work, we will investigate the cooperative data
collection scheme by taking into account the UAVs and vehicles on
the ground simultaneously for improving the efficiency.
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