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The sixth generation (6G) of mobile networks will adopt on-demand self-
reconfiguration to fulfill simultaneously stringent key performance indicators and
overall optimization of usage of network resources. Such dynamic and flexible
network management is made possible by Software Defined Networking (SDN)
with a global view of the network, centralized control, and adaptable forwarding
rules. Because of the complexity of 6G networks, Artificial Intelligence and its
integration with SDN and Quantum Computing are considered prospective
solutions to hard problems such as optimized routing in highly dynamic and
complex networks. The main contribution of this survey is to present an in-depth
study and analysis of recent research on the application of Reinforcement Learning
(RL), Deep Reinforcement Learning (DRL), and Quantum Machine Learning (QML)
techniques to address SDN routing challenges in 6G networks. Furthermore, the
paper identifies and discusses open research questions in this domain. In summary,
we conclude that there is a significant shift toward employing RL/DRL-based routing
strategies in SDN networks, particularly over the past 3 years. Moreover, there is a
huge interest in integrating QML techniques to tackle the complexity of routing in 6G
networks. However, considerable work remains to be done in both approaches in
order to accomplish thorough comparisons and synergies among various approaches
and conduct meaningful evaluations using open datasets and different topologies.
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1 Introduction

While the 5G era has just begun, the telecommunication industry and research
community are already looking into what will be the next-generation of wireless
communication, namely, 6G which is expected to outperform 5G by achieving
outstanding Quality of Service (QoS) and enabling new applications beyond Internet of
Things (IoT). However, such ambition will inevitably face multiple challenges and
opportunities (Zhang et al., 2019b). Following this logic, 6G key performance indicators
(KPIs) will increase by a factor of 10–100 (Banafaa et al., 2023). It is expected that 6G will be
the first cellular generation that will support 1 Tbps peak data rates and connectivity density
of 10 million devices/km2. The latency requirement will take a range between 10 to 100 ms,
traffic capacity will take a range between 1-10 Gbps2 and a reliability percentage up to
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99,9999%. In Table 1, a comparison between 4G, 5G and 6G KPIs
is represented. Moving beyond these metrics, one of the most
marked evolutions in 6G will be its routing complexities,
particularly concerning end-to-end routing, from user devices
to destination services. Given the complexity and dynamicity of
the topologies, the high degree of heterogeneity and the need for
dynamic, adaptive, and intelligent networking systems. These
aforementioned factors will contribute to the routing challenges
in the following ways:

1) Dynamic and complex topologies: This refers to the changing
structure of the network, where nodes (such as devices, cell
towers and other network equipment) may frequently join or
leave the network and connections between them may constantly
change. Moreover, the topology may change rapidly with
autonomous vehicles, drones, and mobile devices connected to
the network. This continuous movement requires real-time
updates to routing tables and paths, making static routing
algorithms inefficient.

2) Higher degree of heterogeneity: With 6G potentially involving the
integration of different types of networks (satellite, terrestrial, aerial)
and integrating newer technologies, there is a high degree of
heterogeneity that has to be taken into consideration. Ensuring
smooth communication and efficient routing across such diverse
networks can be very challenging (Chen et al., 2020; Cao et al., 2022).

3) Dense networks: 6G aims to support the growth of IoT devices,
the device density is expected to grow exponentially, thus,
managing connections between this massive number of
devices requires robust routing strategies that can scale
efficiently. Additionally, a higher density of devices can lead
to congestion and interference, which might result in packet
collision and delays. Furthermore, different devices and
applications may have varying QoS requirements. Meeting
these diverse demands in a network with this high number of
devices would require more fine-tuned, sophisticated and
dynamic routing strategies (Zhang et al., 2019b; Zhang et al.,
2019b).

On the other side, 5G technologies will still be valid for 6G, yet
they will be extremely stressed. Such as Software Defined
Networking (SDN).

In SDN (Lantz et al., 2010), the network intelligence is typically
centralized in one network entity, the SDN controllers. These
controllers are capable of configuring the different switching
nodes of a network virtually and autonomously throughout the
control plane, thanks to the global view and the centralized
architecture of SDN. This is referred to as the decoupling of the
data plane, which performs data processing, from the control plane
that is responsible for allocating resources, defining the traffic
routing policies and maintaining the network topology. This
decoupling makes SDN solutions hardware and vendor-
independent, thus enabling the efficient merging of different
telecom equipment. In an SDN-based network architecture, the
SDN controller holds information about the topology and the
network status and periodically updates the routing table (the
updates and the routing decisions are made in the control plane),
instead of having each node update its own table, allowing for an
adaptive network configuration, meeting diverse user requirements
and maintaining an optimal network performance.

The efficiency of SDN is proven to bemore evident in the case when
the topology scale of the network grows ((Zhang and Yan, 2015; Gopi
et al., 2017)). However, in 6G, the complexity and the density of
network traffic flows are foreseen to bring an uneven load to the SDN
controllers that must provide routing decisions constantly at a faster
pace. Additionally, many applications require not only a high
throughput but also need to ensure strict Quality of Service/Quality
of Experience (QoS/QoE) requirements. In this context, SDN routing
will become a critical problem in the large-scale and complex future 6G
networks. SDN routing in 6G is a combinatorial optimization problem
that falls under the non-deterministic polynomial-time hardness (NP-
Hard) category (Van Mieghem et al., 2003), which can be defined, in
computational complexity theory, as a category of problems that are at
least as hard as the hardest problems in NP class (Hochba, 1997).
Therefore, there is a clear need for real-time adaptive and customizable
routing strategies to provide suitable network resources and the best
service quality. For that reason, Machine Learning (ML) techniques
have been studied to enhance SDN routing applications.

TABLE 1 6G KPIs in comparison to 4G and 5G. Reproduced from Banafaa et al.,
2023, licensed CC-BY-NC-ND 4.0.

KPIs 4G 5G 6G

Peak data race Gbps 10 Gbps 1 Tbps

Latency 100 ms 1 ms 0.1 ms

Max. spectral
efficiency

15 bps/Hz 30 bps/Hz 100 bps/Hz

Energy efficiency < 1000x relative
to 5G

1000x relative
to 4G

> 10x relative
to 5G

Connection density 2000 devices/km2 1 million
devices/km2

> 10 million
devices/km2

Coverage percent < 70% 80% > 99%

Positioning
precision

Meters
precision (50m)

Meters
precision (20m)

Centimeter
precision

End-to-end
reliability

99.9% 99.999% 99.9999%

Receiver sensitivity Around
-100dBm

Around
-120dBm

< -130dBm

Mobility support 350 km/h 500 km/h ≥ 1000 km/h

Satellite integration No No Fully

AI No Partial Fully

Autonomous
vehicle

No Partial Fully

Extended reality No Partial Fully

Haptic
communication

No Partial Fully

THz
communication

No Limited Widely

Service level Video VR, AR Tactile

Architecture MIMO Massive MIMO Intelligence
surface

Max. Frequency 6 GHz 90 GHz 10 THz
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Since the seminal work of Boyan andMichael (Stampa et al., 2017),
routing approaches based on Reinforcement Learning (RL) have gained
special prominence since they do not require a supervision process and
are optimal for dynamic networks that continuously change their
topology, thus they require continuous updates of the routing tables.
In 2019, the work of Kato et al. introduced the use of Deep
Reinforcement Learning (DRL) as a solution more adapted to
topologies of great dimension and high volatility (Zhao et al., 2019).
Moreover, the advent of quantum computersmakes it of interest to solve
NP-Hard problems using quantum algorithms. An emerging effort to
integrate ML and Quantum Computing (QC), referred to as Quantum
Machine Learning (QML), was presented in (Nawaz et al., 2019). More
recently, in 2021, the first optimal path calculation solutions through a
QC-based technique has been obtained in (Harwood et al., 2021).

The objective of this paper is to survey the latest advances in the
literature concerning routing optimization, starting with the

emergent techniques based on RL/DRL and moving toward
QML, its properties and the open research questions that come
with it. The most recent studies using these three technologies are
summarized and analyzed. The remainder of this paper is structured
as follows: The background concepts related to SDN and routing and
the limitations of legacy routing techniques in an SDN network are
presented in Section 2. Section 3 is devoted to a literature review of
the classical approach for routing optimization in SDN, including
RL and DRL techniques. Section 4 presents an introduction to QC
and QML, the challenges of applying QC are also discussed, then a
discussion about Quantum Annealing (QA) and Quantum
Approximate Optimization Algorithm (QAOA) based solution
for routing optimization is presented. We review the latest works
in this field and finally, Section 6 presents conclusions and open
research directions. The structure of the paper is graphically
represented in Figure 1.

FIGURE 1
Structure and Sections of the review paper.
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2 Background concepts

In this section, we will explain three of the background
concepts which are SDN, the routing problem in the SDN-6G
scenario, and the limitation of legacy routing protocols in SDN.
This brief introduction is intended to highlight the motivation and
the key concepts behind the solutions presented in Section 3 and
Section 4.

2.1 Software Defined Networking (SDN)

SDN is a network architecture that separates the control plane
from the hardware plane, enabling more intelligent network
programmability, flexibility and automation (Bosshart et al.,
2013; Macedo et al., 2015). It is mainly composed of three layers
connected via interfaces considered communication channels, as
depicted in Figure 2.

The data plane layer is also known as the dummy devices
(physical or virtual) layer. It is responsible for managing the user
data traffic, handling the arriving frames (forward, modify or
discard the frames) and providing network data to the control

layer via Southbound Interfaces (SBIs). There are numerous
SBIs protocols that can be implemented to connect the two
layers, such as OpenFlow and Netconf (Macedo et al., 2015;
Amin et al., 2021).

The control plane layer is considered the brain of the
architecture, responsible for allocating resources, performing
traffic management functions, routing and maintaining the
network topology. Typical SDN controller platforms are Ryu,
Open Network Operating System (ONOS) and OpenDaylight
(ODL) (Macedo et al., 2015).

Above the control plane layer, the application layer executes the
typical network functions such as routing and load balancing. The
communication between these two layers is accomplished via
Northbound Interfaces (NBIs) such as the RESTCONF protocol
(Macedo et al., 2015). The main task of this layer is to define the
global behavior of the network requested by the network administrator.
Usually, SDN controllers are open-source frameworks containing
application and control layers.

In summary, SDN differs from traditional networks by
virtualizing the network components, giving the administrators
a new level of visibility, which brings significant benefits like
efficiency and agility to the network. Compared to The Open

FIGURE 2
Block diagram of SDN architecture.
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Systems Interconnection model (OSI model) (Figure 3) (Banjar
et al., 2014). The OSI is a model that describes how computer
systems communicate over a network using seven layers. As shown
in Figure 3), the SDN model reduces the seven OSI layers to three:
application, control and physical SDN layers.

Traffic demand can change swiftly depending on the type of
applications (Amin et al., 2021). This is where SDN comes in, its
logically centralized view facilitates different routing aspects
compared to legacy strategies. For example, it can easily extract
the network topology and apply Shortest Path (SSP) algorithms,
like Bellman-Ford (Goldberg and Radzik, 1993), to obtain the most
efficient path. As a result, the routing problem becomes easily
parameterized regarding resources, types of optimal routing, or
cost functions. Nevertheless, even though SDN has been
considered a key enabler technology for 5G and beyond and
one of the prominent solutions for today’s enlarging network
infrastructure, it is still immature. Indeed, benefits like
enhanced configuration, automation and cost reduction, besides
others, were presented in the literature (Thirupathi et al., 2019; Xie
et al., 2019). Various critical challenges have been identified that
affect the performance and the implementation of SDN (Shirmarz
and Ghaffari, 2020). Those challenges can be divided into five
categories: scalability, reliability and vulnerability, security,
compatibility and performance optimization.

2.1.1 Scalability
In a centralized controller architecture, the risk of the controller

becoming a network bottleneck is high. As the network enlarges the
bottleneck becomes tighter, this will become a critical issue for 6G
networks. Hence it is crucial to examine to what extent the network
monitoring should be delegated to a single controller. Hierarchical
SDN architectures were proposed as a possible solution to address
this issue where the control plane is built from multiple layers of

controllers and the load is shared between these layers (Ravuri et al.,
2022). However, this solution suffers from the problem of the
“synchronization between the controllers” and it is still an open
research question that needs to be investigated (Zhang et al., 2019a;
Domeke et al., 2022).

2.1.2 Reliability and vulnerability
A reliable system can be defined as a system that performs its

tasks or functions without failure. In SDN, due to the separation
between the control plane and the data plane, reliability relates to
both layers which add extra precautions that have to be taken in
advance to prevent any failures compared with traditional networks
(Amin et al., 2021).

2.1.3 Security of the control layer
The control plane plays a decisive role in the SDN architecture,

as it is the entity that manages and gives orders to the data plane
devices, thus it has to be fully secured and protected which is not an
effortless task. Moreover, with the advent of quantum computers,
the control plane is more vulnerable to cyberattacks. One of the
options that were proposed as a solution is Quantum Key
Distributed (QKD) and Post-Quantum Cryptography (PQC)
(Wang et al., 2019; García et al., 2023a). This research direction
is still ongoing and there is a lot of room for investigations and
research (García et al., 2023b).

2.1.4 Performance optimization of SDN
The main challenge of SDN is how it can handle high-level

packet processing flows efficiently. Moreover, with the large number
of connected devices and strict QoS requirements in 6G, it becomes
even harder to ensure a satisfactory SDN performance. To tackle this
issue, four scenarios are considered: routing optimization, resource
management, QoS/QoE prediction and traffic classification (Xie

FIGURE 3
Comparison of OSI and SDN models. Reprinted, with permission, from Banjar et al., 2014. Copyright 2014 IEEE.
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et al., 2019). In this paper, we will focus on the routing optimization
aspect and how it was addressed in the literature.

2.2 Routing optimization in 6G-SDN
networks

In networking, routing can be defined as the problem of selecting
paths to send packets from a source to destination nodes while fulfilling
QoS requirements and optimizing network resources. The main
concept behind routing optimization is to identify the best path
between source and destination nodes in terms of a defined set of
criteria and requirements. These criteria are represented as weights of a
cost function used to determine the optimal path. Generally, defining a
cost function depends on the technique chosen to address routing
(i.e., Linear programming, and QML).

However, managing efficient connectivity between endpoint
devices at first seems like a straightforward task, but the complexity
quickly grows beyondwhat is possible to comprehend andmanage with
SDN when considering a scenario with thousands of endpoints where
connections are dynamically changing. This picture becomes more
complicated and challenging when point-to-multipoint connectivity,
strict QoS requirements and a real-time decision scenario are
considered, which is the 6G SDN routing situation. For this reason,
routing in 6G becomes an NP-Hard problem (Puri and Tripakis, 2002),
consequently, finding or designing a routing algorithm that can
optimize the cost and reduce the complexity of the problem is
becoming a prominent issue to be solved.

2.3 Limitation of legacy routing techniques
in SDN environments

Conventional routing approaches do not perform well in SDN
environments. For example, implementing the unaware-state
techniques that follow fixed control methods such as shortest
path algorithms (e.g., OSPF) (McKeown et al., 2008) will not be
able to deal with dynamic topologies as they do not take advantage of
SDN’s overall view to handle dynamic networks. Also, the Heuristic
routing techniques that use specific algorithms to define quickly a
good path to a destination node that is not always optimal in SDN
(Xie et al., 2019), such as the Ant Colony Optimization algorithm.
Moreover, the above approaches are computationally expensive and
are not able to make real-time routing decisions in highly dynamic
networks. In addition, the 6G network’s complexity will be difficult
to predict, control and model. Thus, designing and implementing a
routing optimization algorithm requires deep knowledge to establish
mathematical models suitable for each type of application (Xu et al.,
2018). Therefore, learning-based methods such as ML and QML
have been introduced as promising solutions to routing optimization
problems over the SDN architecture (Fadlullah et al., 2017; Mammeri,
2019; Nawaz et al., 2019).

In light of these routing challenges and the technological
development that are coming with the development of 6G, the
author’s goal in this survey is to point out the benefits and the
limitations of classical ML and QML techniques for routing
optimization in 6G-SDN networks and to highlight and discuss
the open issues from a classical and a quantum perspective.

3 RL and DRL for routing optimization
in SDN

In this Section, we will provide answers to four questions related
to ML for SDN-routing optimization.

• Q1: How RL/DRL techniques can be applied to SDN-routing
optimization?

• Q2:What are the tools and the performancemetrics determined
to show if the optimization technique fulfills the objective?

• Q3: What are the limitations of these methods?
• Q4: Can RL/DRL handle and fulfill the strict QoS requirements
and the complexity of routing in 6G-SDN Networks?

In order to answer these questions, we present a summarized
review focusing on some of the recent works (Table 2), limitations
and open research questions.

3.1 RL concept for routing optimization
in SDN

RL is an ML category concerned with mapping a situation to an
action that can maximize/minimize the reward function. There are
six main elements of a reinforcement learning system (Lewis and
Vrabie, 2009).

• Agent: can be viewed as an AI algorithm that is perceiving its
environment and trying to solve it.

• Policy: is the mapping between a perceived state s of the
environment to action a π:s → a.

• Reward function: It tells the agent if the actions are correct or
wrong by using rewards and penalties.

• State: It is the representation of the current environment in
which the agent is.

• Action: It is the set of possible acts that the agent can take to
change the current state.

• Environment: A simulation or a task that the agent is trying to
solve (i.e., network) and it contains the set of actions, states, rewards
and the final objective the agent needs to reach. Usually, we use
Markov Decision Process (MDP) to describe the environment.

The process of the RL model can be summarized in three steps,
the agent learns by interacting with the environment, 2) observing
the resulting reward Ri, 3) modifying the action Ai accordingly to
maximize the reward.

In order to map an RL framework into a routing problem, we can
translate the components mentioned above as illustrated in Figure 4:
the agent will be the RL algorithm chosen to be implemented, the
reward function will be calculated depending on the chosen algorithm
and the metrics taken into consideration (i.e., latency, throughput . . .
), the state presents the devices in the data plane layer, the actions are
the links that we have between the devices and the environment is the
overall network topology. RL takes advantage of the SDN architecture
to obtain a centralized view and control, thereby, the RL agent can
adjust the selected paths according to the network changes.

Typically, RL algorithms are divided into the on-policy and off-
policy models (Fakoor et al., 2020). In on-policy algorithms, given a
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TABLE 2 Comparison of RL techniques for routing optimization in SDN.

Paper Algorithm Objective Implementation and Evaluation Performance

Metrics and outcomes

Jin et al. (2019) Q-learning Guarantee users’ routing QoS Mininet and Iperf tools • 0%≤ Packet loss ≤4%;

• Delay ≤5 μs

Al-Jawad et al. (2021) Q-learning QoS provisioning in a multimedia SDN
environment

ODL controller and Mininet • 14.3≤ Throughput ≤ 647 Kbps

• 0.18≤ Packet loss≤ 0.75%

• 11≤ Delay≤ 98 ms

• 42.5≤ PSNR ≤ 54.9 dB

Lin et al. (2016) SARSA QoS-aware routing multi-layer hierarchical
SDNs architecture

Sprint GIP topology • Available bandwidth

• Packet loss

• Delay

Casas-Velasco et al.
(2021)

Q-learning Obtain best set of shortest path Ryu + GÉANT topology and Iperf to
generate the traffic

• Mean link Throughput between
700–1,300 Mbps

• 4 ≤ Mean delay ≤6 ms

• Mean loss between 30%–65%

Rischke et al. (2020) Q-table Reduce network congestion Ryu controller, Mininet and Iperf to
generate the traffic

• Convergence time 410–430 steps

• ≤ Mean delay ≤28 ms

FIGURE 4
Schematic of a Reinforcement Learning approach for routing optimization in SDNwhere the SDN nodes represent the states (Si) of the RL agent and
wij represent the cost of the link.
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state, the agent translates an action into a reward value and it uses this
value for deciding future actions. i.e., the policy for updating and the
one for taking action is the same. An example of an on-policy
algorithm is the State-Action-Reward-State-Action algorithm
(SARSA) (Qiang and Zhongli, 2011). While in the off-policy
algorithms, the agent learns from observed actions (including past
and exploratory actions), then it uses the accumulated knowledge to
take future actions; this means that the policy for updating is different
than the one for taking actions. An example of an off-policy is the
Quality-Learning algorithm (Q-learning) (Mehta andMeyn, 2009). In
general, for networking problems, off-policy algorithms are more
suitable as they are able to learn from data collected by any given
policy (more flexible), unlike off-policy algorithms which can not be
used unless the learning data was collected using the same policy.

3.2 Related work on RL for routing
optimization in SDN

To put the contributions of this survey into context, the first step
is to review some of the recent works related to RL techniques
applied to SDN routing, which are summarized in Table 2. This table
presents the reviewed studies, the algorithm used, the objective of
the paper, implementation and evaluation tools, performance
metrics and the limitation.

(Jin et al., 2019) introduced a routing QoS security method based
on a Q-learning technique. The authors proposed path planning using
four modules: link discovery, link classification processing, intensive
training and the Q-value table sending module. The experimental
topology consisted of 7 switches and 16 hosts, relying on the
Mininet tool to build the underlying network. Moreover, the
experimental result of Q-learning was compared with Equal-cost
multi-path routing (ECMP) and colony algorithms. ECMP is a
routing strategy that aims to increase available bandwidth by
balancing the traffic load across multiple paths (Iselt et al., 2004).
On the other hand, a colony algorithm solves computational problems
by searching for optimal solutions in graphs within a set of possibilities,
similar to how ants search and plot (Lin and Shao, 2010). The results
showed that Q-learning outperforms the other two algorithms in terms
of packet loss and delay for four different types of services (session,
streaming media, interactive and data class service).

Al-Jawad et al. (2021) proposed an RL-based framework to
improve QoS provisioning within a multimedia-based SDN
environment. As a proof of concept, a comparison was made with
four other algorithms, MinimumHop Algorithm (MHA), which selects
the optimal route regarding the number of hops between source and
destination nodes, ShortestWidest Path (SWP) algorithmwhich chooses
the optimal route that has the maximum available bandwidth, SWP
finds the practical path with the shortest route. If there are various such
routes, it selects the one with themaximum available bandwidth and the
Minimum Interference Routing Algorithm (MIRA) that uses the
concept of ingress-egress pairs to decrease the interference between
the routes when new requests arrive. To evaluate the algorithms under
study, (Al-Jawad et al., 2021), create a dynamic network considering
three factors: Topology of the network in which three realistic topologies
picked from Internet Topology Zoo was deployed: GetNet, a small scale-
7 nodes and eight links), Sprint (middle scale- 11 nodes and eight links)
and AT&T (large scale—25 nodes and 56 links). Service type in which

four types of traffic classes (liveHDvideo streaming, SD video streaming,
Web browsing and file transfer) were associated with two types of
services (QoS and background traffic). The network load level was
configured into three scales: low, medium and high load levels. Results
reported in (Al-Jawad et al., 2021) show that the RL-based method
reduces the packet loss by up to 0.75% and fulfills the Service Level
Agreement (SLA) requirements based on QoS parameters, even in the
case of a wide networkwith high traffic demands. On the other hand, the
performance of the other algorithms dropped significantly.

Lin et al. (2016) consider the scenario of routing in a hierarchical
control architecture, where they combined the work of (Hassas
Yeganeh and Ganjali, 2012; McCauley et al., 2013) by proposing a
QoS-Aware Adaptive Routing (QAR) technique based on RL and
multi-layer control architecture. The proposed architecture
contained three levels of controllers; a slave, a master and a
super controller. The slave controllers dispatch the messages to
the switches and provide some of the control functions. Each master
controller is answerable for signaling inside its subnet, while the one-
super controller is in charge of regulating the whole network
functionalities and has full access to all the switches. The
simulations showed that the QAR outperforms Q-learning with
fast convergence when considering QoS provisioning.

Casas-Velasco et al. (2021) use the concept of Knowledge Defined
Networking (KDN) to deploy their algorithm named Reinforcement
Learning and Software-Defined Networking for Intelligent Routing
(RSIR). This concept consists of adding one extra plane, the
knowledge plane, to the traditional SDN architecture, which is fed by
data collected by themanagement plane. More precisely, they propose an
RL-based algorithm that works proactively by filling the flow tables of the
switches beforehand for all the traffic matches. The evaluation was
implemented in a prototype with real traffic matrices using GÉANT
topology in Mininet and a comparison was made against the classical
Dijkstra algorithm. The provided results showed that themean loss values
of the RSIR were on an average of 10%–50% lower than the loss ratio of
Dijkstra and the mean link throughput was 26% lower than Dijkstra
however, the mean link delay of RSIR was higher by 3% than Dijkstra.

Rischke et al. (2020) considered tackling a dynamic network where
traffic loads vary significantly by creating amodel-free framework based
on RL entitled QR-SDN. The proposed approach uses the concept of
different routing paths to distribute the traffic flows, i.e., the routing
traffic will be sent/distributed over different routes sharing the same
source-destination pairs during traffic peaks to avoid network
congestion, thus decreasing the latencies and the convergence time.
QR-SDN was compared against the classic Shortest Path First (SPF)
algorithm where the Delay was set as the cost.

In Table 2, we provided a detailed comparison of the work
related to RL techniques for routing optimization in SDN from
perspectives of algorithms, objectives, implementation and
evaluation, performance metrics and outcomes and limitations.
From the concerning studies, we conclude that most of the studies:

• Used a Q-learning algorithm and this is due to the fact that
Q-learning is an off-policy algorithm that is able to compare
the expected rewards of available actions without the need for
an environment model.

• Used Mininet for emulation and Ryu controller for their
implementations and this is because they are easy to
implement and better for prototyping.
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Moreover, all the results suffer from the lack of scalability, as
most of the proposals adopted simple and wired network topology
(GÉANT, NSFNET) to evaluate their approaches, which imposes
three research questions; how can we address the scalability issue in
the case of larger networks? Why RL is disabled to manage high-
dimension networks and how can we improve its performance?

To answer these questions, DRL techniques that combine RL
and DL were introduced as an alternative solution for routing
optimization in SDN.

3.3 DRL concept for routing optimization
in SDN

The term “Deep” in Deep Reinforcement Learning (DRL) comes
from the fact that we use Deep Learning (DL) within RL techniques
(Arulkumaran et al., 2017). DL is a sub-field of ML that utilizes
multiple Neural Network (NN) layers to extract a set of outputs from
a set of inputs. The concept behind DRL is that instead of using RL
algorithms to create the Q-tables that output the policy, a Neural
Network (NN) is incorporated to approximate the policy π(s,a,θ),
where θ is the weights of the neural network. Following the same
Logic as what we explained in Section 3.1, mapping DRL elements to
routing optimization in SDN is the same as RL, Figure 5.

Similar to RL, DRL algorithms are also divided into two big
categories: Model-based and Model-free algorithms. In the model-
free category, we assume that we have a primary model for how the
environment works and how it evolves according to the MDP. It uses

NN/Deep NN to approximate the reward function. This approach is
based on understanding the rules of the environment. Hence it does not
require a long training process to achieve acceptable rewards. Unlike the
model-based, DRL algorithms in the model-free category do not have a
primary representation of the environment. To predict the best action of
each state, NN andDeepNNare combinedwith trained parameters θ to
express the policy. Usually, the amount of information gathered from
one single action is not enough. For that, to improve the approximation
of the action’s reward, we need to go through a massive.

3.4 Related work on DRL for routing
optimization in SDN

In decision-making problems, such as routing, representing the
functions of classical RL such as the policy and Q values, might
become extremely complex when the states and the actions of the
MDP are high-dimensional (Haj-Ali et al., 2019). Unlike RL, DRL
techniques are more scalable as they have the advantage of using DL
to abstract the different levels of data and it represents the RL
learned functions as a neural network, which makes them more
suitable for high-dimension problems. In this respect, in this section,
we review the works related to DRL for routing optimization in SDN
which are summarized in Table 3.

Xu et al. (2020) integrated a Deep Deterministic Policy Gradient
(DDPG) mechanism that can continuously realize a black-box
optimization, able to enhance network performance. To simulate
the environment, a Sprint network topology that contains 25 nodes

FIGURE 5
Schematic of a Deep Reinforcement Learning approach for routing optimization in SDN where the SDN nodes represent the states (Si) of the RL
agent and wij represent the cost of the link.
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connected with 53 links was used. The proposed approach was
compared to the conventional OSPF protocol and a randomly
generated routing configurations technique regarding the delay in
terms of traffic load for the random algorithm as well as packet
transmission for OSPF. Results show that the performance of the
DDPG algorithm exceeds the one of OSPF in terms of delay under
different traffic loads.

Fu et al. (2020) addressed the problem of satisfying the demands
of different flow types in SDN-base data center networks. The
authors added an AI plane to the SDN architecture in which a
Deep Q-learning (DQL) technique that uses neural networks instead
of a Q-table was deployed, able to generate intelligent routing
strategies for two types of flow: mice flow or elephant flow, where
mice-flows transmit a small amount of data and last for a short time,
while elephant flows do the reverse. DQL was compared to ECMP
and Selective Randomize Load Balancing (SRL)+FlowFit algorithms
on a Fat-tree topology with 16 servers and 20 switches.

Zhao et al. (2019) proposed a Deep Reinforcement Learning
based smart (DRLS) routing algorithm to reduce network congestion
and boost the network capacity to support smart city services and
sectors (i.e., smart homes, smart transportation, smart building and
smart healthcare). The authors analyzed SDN-enabled Ultra-Dense
Networking (UDN) crowd management in smart cities with Mobile
Edge Computing (MEC) technology. In (Zhao et al., 2019) the problem
is defined in terms of managing the network resource considering the
high cost of deploying the infrastructure and maintenance and

balancing service access speed to guarantee a high QoE of the
crowd. To validate the efficacy of DRLS, a comparison with the
conventional OSPF and an enhanced version of OSPF (EOSPF) is
made. The study results demonstrate the high performance of DRLS in
terms of maximizing the successful service access rate and network
resource usage with a different number of request aggregation spots.

As a follow-up of their previous work (Casas-Velasco et al., 2021;
Casas-Velasco et al., 2022) used DL with RL for routing optimization in
SDN. The approach entitled DRSIR, uses path-state metrics, a Deep
Q-learning algorithm, experience memory delay, Target Neural
Networks (TNN) and Online Neural Networks (ONN) to compute
the best paths in SDN. ONN is an ML technique that trains the model
over a consecutive dataset instead of using the entire dataset at one time,
then, the model is used to predict future data. For evaluating the
performance of DRSIR, the GÉANT topology of 23 nodes with
37 links and a 48-topology with 60 links that was generated using the
Barbasi-Albert algorithm,were used, each switch in both topologies had a
host for the recipient and forward traffic. However, the weight values
(available bandwidth, path delay and packet loss ratio) in their reward
function had the same preference, so different QoS requirements were
not considered. Results reported in (Casas-Velasco et al., 2022) show that
DRSIR outperforms the RSIR and the four variants of the Dijkstra
algorithm in terms of stretch, link throughput, packet loss and delay.

Dong et al. (2021) introduced a DRL approach that makes use of
Generative Adversarial Networks (GAN) and Transfer Reinforcement
Learning (TRL) methods to tackle the three common challenges of

TABLE 3 Comparison of DRL techniques for routing optimization in SDN.

Paper Algorithm Objective Implementation and
Evaluation

Performance

Metrics and outcomes

Xu et al. (2020) DDPG Reduce the delay and maximize the throughput
continuously

TensorFlow and OMNET++. Use
Sprint topology

• Delay ≤300 ms

Fu et al. (2020) DQL Fulfill traffic demands of different flows Use of AI plane. Ryu + Mininet +
Iperf

• 3.8 ≤ Mean delay ≤83.1 s

• 18.4 ≤ Packet loss ≤40.2%

• 52 ≤ Mean throughput
≤71.12%

Zhao et al. (2019) DQL Manage multiple service requests of the crowd-
smart city

ONOS and ODL controllers +
NSFCNET topology

• Resource usage between
0.05–0.062

• 5 ≤ delay ≤24 ms

• Successful service access
between 75%–100%

Casas-Velasco et al.
(2022)

DQL, TNN
and ONN

Obtain best set of shorter and less congested paths Ryu + Mininet + GÉANT topology • 1.13 ≤ Stretch ≤1.2

• 580 ≤ Throughput
≤1110 Kbps

• 0 ≤ Packet loss ≤0.022%

• 0.3 ≤ Delay ≤0.4 ms

Dong et al. (2021) GAN and TRL Handle the divergence in network topology and
status. Improve the training process

ODL controller + Mininet + Internet
Topology Zoo

• Convergence time between
0 and 50

• 22 ≤ Mean delay ≤40 ms

• 35 ≤ Mean throughput
≤45 Mbps

Kim et al. (2022) DDPG and M/M/1/K
model

Obtain an optimal set of link weights GÉANT, GRID and InternetMCI
topologies

• 1.7 ≤ Delay ≤2.6 s

• Throughput between 11 and
13.5 Mbps

• 3.5 ≤ Packet loss ≤9%
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routing: the varying networks status distribution, the inconstant
network topology and the need of convergence speed. The GAN
which is a DL technique that uses two NNs to produce new data
instances similar to the training set was applied to speed up the
training process and improve its efficiency. TRL, which is a method
that exploits the knowledge from other sources of agents trained on
similar tasks, was used to handle the changes in the network status or
topology and to adapt the proposed model to the new environment.
GAN-based TRLwas evaluated over three real-world topologies: T-lex
in Tokyo-Japan, NSFNET in the USA and HARNET in Hong Kong-
China. The authors used ACKTR (Actor-Critic using Kronecker-
factored Trust Region—pronounced “actor”) and naive transfer as
their benchmark algorithms to evaluate the performance of the
proposed model over different network sizes (from 15 to
50 nodes) regarding convergence time, average delay and
throughput. For the GAN-based TRL model, the gap in the
convergence time between a small network (15 nodes) and a large
one (50 nodes) was minimal compared to the others. Moreover,
GAN-based TRLmaintained a decent average throughput value of up
to 45Mbps over the different network sizes. However, the average
delay values of the GAN-based TRL and ACKTR were highly close.

Kim et al. (2022) addressed the issue of routing from a different
angle by deploying an M/M/1/K queue-based network model to
overcome network performance degradation during the DRL
techniques’ learning process. In their approach, a DDPG algorithm
was adopted to compute the optimal link weights to reduce end-to-end
delay and packet losses of the network. The proposed method was
compared to the naive and de facto hop-count-based routing methods
and evaluated under three topologies (Grid, GÉANT and InternetMCI)
regarding the delay, the packet loss, and the throughput concerning the
number of iterations and the number of flows. The results indicate that
the proposed approach outperforms the alternatives. However, the
improvement was not substantial, as the outcomes were closely
comparable to those derived from the naive and de facto hop-count-
based strategies.

In Table 3, we summarized the work related to DRL techniques
for routing optimization in SDN from perspectives of algorithms,
objectives, implementation and evaluation, performance metrics,
outcomes and limitations. From the related studies, we conclude that
most of the studies.

• Compared the proposed approaches to OSPF or Dijkstra. Few
works have made a comparison with other ML techniques
(such as in Casas-Velasco et al. (2022), a comparison between
Q-learning and deep Q-learning was made).

• Used DDPG and DQL algorithms that belong to the model-
free category and this is due to the fact that model-free are
computationally cheaper and the agents are easier to train
compared to model-based algorithms.

3.5 Limitations summary of RL/DRL for
routing optimization in SDN and open
research directions

RL and DRL are powerful and advanced frameworks for decision-
making problems. The idea behind these two approaches is that the
agents take actions by interacting with the environment in order to

maximize the reward and optimize its efficiency without labeled data.
Moreover, because of their flexibility and adaptability, compared to
conventional routing methods (including supervised and unsupervised
learning), they are mostly adopted for routing scenarios, as they rely on
the trial-and-error process that can set and adjust the routing decision
based on current observed status (through the interaction with the
environments). However, when specifically considering the demands
and the challenges of 6G, there are reasons why these two approaches
might not be entirely sufficient.

• The Convergence Time: Training a DRL model is time-
consuming and does not scale efficiently because it requires
a large space-action control that depends on the network size,
thus making the algorithm difficult to converge (known as the
Curse of Dimensionality (Chen, 2009)).

• Sample Efficiency: It refers to the amount of experience that
the algorithm needs to generate during the training to reach a
certain level of performance. However, an RL algorithm,
especially DRL, requires a significant number of samples to
learn an optimal policy.

• Non-stationarity: One fundamental assumption of RL is that
the environment is not dynamic. However, 6G networks will
be highly non-stationary/dynamic due to several factors such
as user mobility, adaptive applications and integration of
different types of networks (mentioned in section 1).

• Scalability issue of large tables: The Q-tables size in RL
algorithms grows with the network size. A larger Q-table
increases the complexity of the states, the execution and the
convergence time

• Exploration vs Exploitation Dilemma: RL models, by nature,
switch between exploring new and exploiting known actions
to maximize the reward. When the size of the network
increases, the cost of exploration may become prohibitive.
Furthermore, in the scenario of a complex and dynamic
network, exploration operations may become too slow to
successfully react to any change in the environment.

Furthermore, our literature study on RL/DRL for optimal routing
in SDN, reveals that most of the authors compared their proposal
algorithms with shortest path algorithms (such as OSPF and Dijkstra)
in terms of packet loss, delay and throughput. Additionally, most of
the topologies selected for the evaluation are GÉANT and NSFNET
(all wired networks). Our conclusion is that, in the case of small and
simple topologies, RL is more suitable as it is easier to implement
(compared to DRL) and gives prominent results. However, as the
topology grows in complexity and size, DRL is preferable. On the
other hand, there is still much work to be done in tackling SDN
routing for large-scale and dynamic networks. Also, additionalmetrics
such as node energy consumption and high robustness were not
considered. On top of that, with the emergence of 6G, the complexity
of the network will be even higher, accompanied by more restricted
QoS requirements and constraints applications such as Massive-IoT
(M-IoT), than the previous cellular generation.

In conclusion, while RL and DRL have demonstrated potential
across various applications, their inherent limitations become more
noticeable, especially within the dynamic, dense, and demanding
context of 6G networks. This highlights the need to explore
alternative and more powerful computing solutions that match
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6G’s expected performance. In this light, the emergence of QC and
QML-based techniques becomes particularly interesting. These
quantum-based technologies, with their ability to address
complex problems in high-dimensional spaces, offer a promising
approach to address the routing challenges of 6G.

4 Quantum machine learning for 6G
routing optimization

4.1 Introduction and motivation of QC
and QML

Unlike classical computers that use bits to process information,
quantum computers use quantum bits (qubits). Quantum computers,
unlike classical ones, can rely on three quantum physics principles.

• Superposition: qubits can be in superposition which means
they can represent from just two states 2n unique binary
pattern in parallel, where n is the number of qubits in the
quantum system.

• Entanglement: it is the state where two qubits are strongly
correlated so that gaining information about one of them gives
you immediate information about the other no matter how far
these systems are (Steane, 1998).

• Quantum Parallelism: it is considered the most crucial
characteristic in numerous quantum algorithms. This
property allows quantum computers to process a large
number of classical inputs in one single quantum
computational step.

The power provided by combining the techniques of ML and the
inherent features offered by QC led to a new framework called
Quantum Machine Learning (QML). The main principle of QML is
to encode classical data and classical algorithms into a manageable
quantum language so that they can be processed by a quantum
computer (Khan and Robles-Kelly, 2020). There are several
encoding methods that were proposed such as Hamiltonian
encoding, Qsample encoding and amplitude encoding (Sergioli,
2020; Sierra-Sosa et al., 2020). Because QML proved that it can
outperform classical ML by decreasing the computational complexity
of some heavy operations, reducing the learning process and providing
an exponential speed-up (Nawaz et al., 2019; Bhat andAlqahtani, 2021),
numerous scientific research propose it as a convenient solution for
real-time optimization and computationally complex 6G applications
such as Massive-IoT (M-IoT), robotics, unmanned vehicles, Virtual
Reality (VR) and Augmented Reality (AR) (Nawaz et al., 2019; Akyildiz
et al., 2020; Duong et al., 2022).

Moreover, several works presented QML as a potential solution that
can reduce/break the complexity of NP-hard optimization problems
(Zahedinejad and Zaribafiyan, 2017; Khumalo et al., 2022), more
specifically, combinatorial optimization problems. One of the well-
known applications of combinatorial optimization problems is routing
optimization (Oliveira and Pardalos, 2005). With the huge surge in the
number of connected devices (everything is connected to everything and
everywhere), QML can be considered a potential solution for routing
optimization, especially in M-IoT scenarios in 6G. In fact, when solving
combinatorial optimization problems, Classical Parallelism (CP) with

conventional hardware typically can reduce the complexity by order of
O(P), where P is the number of parallel processes, while Quantum
Parallelism (QP) reduces the complexity to the order of O( ��

N
√ ), where

N is the size of the dataset. Therefore, in this section, we will survey the
latest works related to QML for routing optimization.

4.2 Types of quantum computing

Many Industry and research institutes can already provide access
to advanced cloud-based quantum hardware as well as gate-based
quantum computers (James, 2022). In addition, fault-tolerance
quantum computers are expected to become available within the
upcoming years (Chow et al., 2021;Wang and Liu, 2022). Today, there
are three designs of quantum computers based on the number and the
type of qubits (Ladd et al., 2010), as represented in Table 4:

• Quantum Annealers: They are a type of Adiabatic Quantum
Computation (AQC) processors. Quantum annealers are the
least powerful and most restrictive type of quantum computing.
In order to use quantum annealer processors, the problem has
to be expressed as an optimization task. D-wave and Fujitsu
have made their quantum annealing computers publically
available (Fijutsu, 2016; McGeoch et al., 2019).

• Analog Quantum simulators: They are able to simulate complex
quantum systems. However, they are limited to solving specific
types of problems. An example of this processor is the Ion Trap
systems built by Harvard University and the National Institute of
Standards and Technology (NIST) (NIST, 1995). Thesemachines
comprise between 50 and 100 qubits. Both quantum annealer
and analog quantum computers are considered as Not-Universal
QuantumComputers as they are built specifically to solve certain
niche problems better than classical computers.

• Universal Gate Quantum Computers: They are the hardest to
build and the most powerful as they can “theoretically”
implement any quantum system (Tacchino et al., 2020).
They are considered “universal” because they can execute all
the quantum algorithms known till now (Stephen Jordan, 2011),
and they can run any complex computation task and achieve the
best solution faster than classical computers (Quantum
Supremacy). In Universal Gate Quantum Computers, as the
name indicate, the problem to solve has to be expressed in terms
of quantum gates. Ideally, it is conjectured that Universal
quantum computers will contain between 100,000 qubits to
1 M qubits. IBM, Google and Rigetti among others are trying to
build quantum computers using this technology paradigm
(Chow et al., 2021; James, 2022; Wang and Liu, 2022).

Generally, in Quantum Annealing (QA), the idea is to harness
the natural evolution of quantum states without any control over
that evolution. On the other hand, in gate model quantum
computers, the aim is more ambitious. The goal is to control and
manipulate the evolution of that quantum states over time using
quantum gates; such a goal is difficult to achieve because quantum
systems tend to be incredibly delicate to work with. However, having
that amount of control enables solving a wider range of problems.
These differences are the reason why it is been possible to scale up
the quantum annealing-based processors to over thousands of
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qubits (D-Wave; 5640 qubits, Fujitsu; 8192 qubits), where the state-
of-the-art in gate model quantum computing is around hundreds of
qubits (IBM; 433 qubits, Google; 53 qubits).

4.3 Challenges of quantum machine
learning

Despite many efforts toward building the first quantum
computer, we are still in the Noisy-Intermediate-Scale Quantum
(NISQ) era where we can run only hybrid algorithms. The core of
hybrid algorithms is to use NISQ processors to compute and
measure the results and the classical computer is used to
improve these results by correcting some of the generated noise.
Fully quantum-based algorithms face three main challenges.

• Complexity: Encoding and mapping a problem to a quantum
computer require deep knowledge of mathematics, quantum
physics and classical physics, especially for NP-Hard problems.

• Lack of standards: QML is still relatively a young field and
there are not yet any general standards that can be followed in
order to implement QML solutions for networking scenarios.

• Universal set of quantum gates: The type of algorithms that we
can run on a quantum computer or a quantum simulator is
bounded by the number and the quality of the quantum gates.
Therefore, the type of problems we can solve using a quantum
computer is still limited.

Researchers are trying to overcome these key barriers. Google and
IBM for example, are targeting to build a “fault-tolerance-quantum
computer” with one million qubits by 2030 (Lucero, 2021; IBM, 2022a)
where more powerful quantum algorithms such as Grover’s algorithm
for searching and Shor’s algorithm for factorization can be processed.
Moreover, small-scale quantum computers with 50–100 qubits are
already available and ready to be used and accessed via QuantumCloud
computing (Lucero, 2016). Furthermore, to standardize and facilitate
the integration of QC techniques in 6G, researchers aim to design its
architecture based on QC (Vista et al., 2021).

4.4 Benefits of QML over ML for routing
optimization in 6G networks

The core of most ML algorithms is to repeat the computation of
complex mathematical models, for example, DRL mostly consists of

matrix operations such as matrix multiplication. However, with an
ever-growing amount of data, ML techniques are getting closer to
their limits (Ciliberto et al., 2018). In this sense, QML techniques are
able to provide faster solutions to process data. Moreover, for high-
dimension problems, the training and learning phases of most DL
systems become extensive (as mentioned in Section 3.5). In this
respect, QML can offer a speedup of the training time up to O( ��

N
√ )

(Biamonte et al., 2017).
QML can be implemented on both gate-based quantum

computers/simulators and quantum annealing processors. Both
techniques have their advantages and caveats. In the next section,
we will survey the latest work from 2019 to 2022 and provide
answers to four questions related to QML for routing optimization.

• Q1: How can QML techniques be applied to routing
optimization?

• Q2: What are the tools to implement the proposed solutions?
• Q3: What are the limitations of these two methods?
• Q4: Can QML solve the problem of high-complex routing in
6G Networks?

4.5 Adiabatic Quantum Computation

A Hamiltonian in quantum physics is an operator that
represents the total energy of a system (including the potential
energy and the kinetic energy) (Odzijewicz, 2011). In general, in
order to solve NP-Hard problems andmore precisely, combinatorial
optimization problems using quantum-based methods, we have to
transform them into problems of characterization of a quantum
Hamiltonian, in which the optimal solution corresponds to the
ground energy state of the quantum system and this is one of the
fundamentals of the Adiabatic Quantum Computation (AQC).

AQC was proposed in the early 2000s by Edward Farhi et al
(Farhi et al., 2000; Farhi et al., 2001) based on the adiabatic theorem.
The idea is that if a quantum system evolves slowly enough from an
initial HamiltonianHinit to a final HamiltonianHfin and if the system
starts in the ground energy state of theHinit, then it will remain in the
ground energy state of Hfin that will correspond to the optimal
solution to the problem. This is known as the adiabatic transition
and “adiabaticity” occurs only when a physical system remains close
to or stays in its ground energy state of the initial Hamiltonian
throughout the change/evolution (Kato, 1950). This change should
be made with a speed limit of 1/min (Δ(t))2, where Δ is the gap
between the ground energy state and the first excited energy state

TABLE 4 Types of quantum computers. Based on data from Das and Chakrabarti (2008) and Tacchino et al. (2020).

Type of quantum
computer

Generalitya Computational
power

Application

Quantum Annealer Restrictive Same as classical
computers

Optimization and Probabilistic Sampling

Analog Quantum (Gate
model)

Partial High Quantum chemistry, Optimization, Sampling, Quantum Dynamics

Universal Quantum (Gate
model)

Complete with guaranteed
speed up

Very high Secure Computing, Machine Learning, Cryptography, Quantum Chemistry,
Optimization, Sampling, Searching, Quantum Dynamics

aGenerality in this table refers to the type of problems that can be solved using a quantum computer.
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(Bauch et al., 2006). One of the most advanced forms of AQC is
Quantum Annealing (QA).

4.5.1 Quantum annealing based solution
Quantum Annealing (QA) was first introduced in the 1989

(Apolloni et al., 1988; Apolloni et al., 1989) as a combinatorial
procedure based on the theory of using the time-dependent
Schrödinger equation to find the global minimum of a specific
objective function over a given set of candidate solutions, by
decreasing the quantum fluctuations (Kadowaki and Nishimori,
1998). With the advent of quantum computing, QA was adopted by
many high techs, such as D-Wave, as a metaheuristic optimization form
of AQC to build their quantum machines (Quantum Annealers
mentioned in section 4.2) to solve combinatorial optimization problems.

The procedure of QA for all the types of combinatorial
optimization problems can be summarized in six steps (Santoro
and Tosatti, 2006).

• Step 1, Formulating a Quadratic Unconstrained Binary
Optimization (QUBO) function and graph representation:
QUBO is the standard input format of quantum annealers
that is used in order to convert a real-world problem into a
mathematical formulation. After defining the QUBO, it has to
be converted into a graph where each variable represents a
node and the interactions between the variables are
represented as the edges of the graph.

• Step 2, Minor Embedding: it is considered the most important
and the hardest step in the process as it consists of mapping
the graph that we had in step 1 into the physical hardware of
the annealing machine (for example, fit the graph into chimera
topology used by D-Wave 2000Q processor (Yang and
Dinneen, 2016))

• Step 3, Programming the machine: it consists of setting the
parameters that define the QUBO problem we need to solve,
which is the final Hamiltonian, involving the weight of each qubit
and the coupling strength to control interactions between qubits.

• Step 4, The Initialization: start the initial Hamiltonian (energy
function) in a fully entangled set of N qubits (that represent
the graph) in an equal superposition of all the possible states
(the ground energy state of the system).

• Step 5, The annealing process: the system evolves into the
Hamiltonian of the optimization problem following the time-
dependent Schrödinger equation trying to minimize the energy.

• Step 6, Readout the solution: ideally and according to the
principle of AQC, at the end of the annealing process, the slow
evolution of the energy function allows the system to stay close to
the ground energy state of the initial Hamiltonian, therefore, find
the optimal solution to the problem we want to solve.

Computing by adiabatic evolution started in 2003 (Moser, 2003)
with the first theoretical work that combines QC and the well-known
routing problem, the Traveling Salesman Problem (TSP). (Martoňák
et al., 2004). introduced the formulation of the TSP based on QA
theorem. The authors evaluated their formulation by means of an
experiment executed using some classical techniques and TSP
models of sizes up to 1,200 nodes. In (Chen and Zhang, 2006),
the authors proposed a substitutional formulation to the TSP that
can improve the efficiency by escaping from local optima. In 2011,

(Chen et al., 2011), presented one of the first experiments on
simulated quantum hardware that was applied to a small TSP
graph consisting of four nodes.

Most works in that time interval (2003 to late 2013) focused on
addressing the routing problem from a theoretical point of view when
quantum computers were not reachable. Nowadays, with the advent of
quantum computers (especially quantum annealers), many works were
published in the last few years that implemented QA-based solutions for
different applications. In (Warren, 2013), the authors gave a very detailed
and comprehensible explanation of TSP and how to translate it into a
real adiabatic processor. In the same year, (Crispin and Syrichas, 2013),
introduced the formulation of the Vehicle Routing Problem (VRP) for a
Quantum Annealer processor. These two works gave inspiration to
numerous subsequent studies such as (Feld et al., 2019; Irie et al., 2019;
Mehta et al., 2019; Papalitsas et al., 2019; Dixit et al., 2021).

Turning our attention to the routing optimization problem for a
network scenario, (Krauss and McCollum, 2020), used QA to solve the
network Shortest PathProblem (SSP). In their work, they presented three
approaches (Hope-based, Directed edge-based and undirected edge-
based approaches). The time complexity of the proposed approaches was
compared to one of Dijkstra and Bellman-Ford algorithms and they
claim that if the degree of connectivity of the graph remains constant, the
Directed edge-based and undirected edge-based approaches will be faster
than the fastest known implementation of Dijkstra’s algorithm. To
formulate the energy function of the optimization problem they used
the QUBO technique and to evaluate the performance of the proposed
formulas, they used D-Wave quantum annealers.

Dixit et al. (2021) proposed a QUBO formulation for the
Scenario-based Least Expected Time (SLET) algorithm, to find the
shortest path in Stochastic Time-Dependent networks (STDSP). For
the implementation of the formula, they used the D-Wave Advantage
quantum annealer and the quantum hybrid solver, they demonstrated
that in the case of independent link costs where the size of the problem
increases exponentially, their proposed approach provides a linear
computational experience with respect to the problem size. To the best
of our knowledge, these two works were the only ones that attempted
to use QA for solving the lowest cost problem in a network scenario.

In Table 5, we present a general overview of reported applications
of QA techniques to solve real-world optimization problems focusing
on routing optimization. From these studies, we conclude that.

• Almost all the studies formulate the problem as a QUBO
instance. This is due to the fact that the QUBO facilitates
mapping the problem into a quantum annealer (step
2 mentioned in section 4.5.1).

• Boutique applications: Most of the practical work applied QA
for small sizes of problems (boutique problems) and this is
because of the immature state of the knowledge and the
Hardware in this field.

4.6 NISQ computing for routing
optimization

In this section, we review the application of routing optimization
in near-term gate-based quantum computers, referred to as the
NISQ era (Noisy-Intermediate Scale Quantum) (Preskill, 2018). The
term “Noisy” refers to the fact that these quantum devices are very
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sensitive to the external environment and they may collapse quickly
(lack of stability), this is known as “Quantum Decoherence.” In
order to overcome this problem, Peter Shor introduces the Quantum
Error Correction method (Shor, 1995). However, this method
-practically- is still under the scope of research due to the lack of
enough qubits to implement it. The term “Intermediate-scale” refers
to the quantum volume, which is the number of qubits and quantum
gates that exist in this processor which is not too large, the largest
quantum computer that exists nowadays is IBM’s 433-qubit Osprey
which was released on the 9 of November 2022 (Fadelli, 2023), and
when we talk about fault-tolerance quantum computers we refer to
processors with more than one million qubits. In this regard and in
order to benefit from the quantum speed-up given by those devices
to solve nowadays complex problems, a new breed of algorithms has
been developed specifically for these NISQ devices called Hybrid
Quantum-Classical Algorithms. The main tactic behind those
hybrid algorithms is combining quantum computers and classical
computers to solve a specific problem (De Luca, 2022). In practice,
the term “hybrid” can be defined as a technique that follows a process
of back-and-forth cooperation where different parts of the problem
under study are passed between the classical and the quantum devices
best fit for each stage. To the best of our knowledge, there are three gate-
based hybrid algorithms presented in the literature: the Quantum
Approximate Optimization Algorithm (QAOA), the Variational
Quantum Eigensolver (VQE) and the Multistate Contracted Variant
of the Variational Quantum Eigensolver (MC-VQE) (Endo et al., 2021).
VQE is used to compute the ground energy state of a givenHamiltonian
(Tilly et al., 2022), while MC-VQE is used to derive the excited states of
bigmolecules in high accuracy (Parrish et al., 2019). Both algorithms are
mainly applied in quantum chemistry and condensed matter physics.
On the other hand, QAOA is mostly used to solve combinatorial
optimization problems, more precisely, 6G routing optimization
(Nawaz et al., 2019).

4.6.1 QAOA for 6G routing optimization
QAOA was introduced in 2014 by Edward Farhi to find a “good

enough approximate” solution for combinatorial optimization

problems (Farhi et al., 2014). It was designed to run on gate-
based quantum computers. It takes a combinatorial optimization
problem as input and outputs a string that maximizes/minimizes the
objective function. Moreover, in (Farhi and Harrow, 2016), QAOA
was proposed as a candidate for solving optimization problems and
proving “Quantum Supremacy”. In order to use QAOA for an
optimization problem, we need to translate the problem in a way
that the gate-based quantum computer can understand it, meaning
we have to encode the problem in terms of quantum gates. The most
common technique is to translate the problem into unitary operators
using the Hamiltonian encoding method (IBM, 2022b). For this
reason, the QAOA applied to a combinatorial problem, in a general
manner, will consist of two unitary operators, as depicted in
Figure 6.

• The Mixing Unitary U(β) = e−iβHB

• The Cost/Problem Unitary U(γ) = e−iγHC

Where HB is the mixing Hamiltonian, HC is the problem
Hamiltonian and β and γ are angles used to rotate the state
vector of the quantum circuit, where β represents the rotation
around the x-axis applied to all the qubits and usually it has to
be 0 ≤ β ≤ π while γ represents the rotation around the z-axis and it
has to be 0 ≤ β ≤ 2π, making sure thatHB andHC are anti-commute.
These two unitaries form a quantum circuit, known as Variational
Quantum Circuit (VQC), that works by alternating between the cost
Hamiltonian and the Mixing Hamiltonian gates. Usually, the input
of the VQC consists of the number of rounds of iterations p (depth
of the circuit), βand γ.

For the sake of simplicity, we summarized the hybrid process of
QAOA in seven steps, as illustrated in Figure 6.

• Step 1: prepare the first part of the quantum circuit setting all
the n-qubits in an equal superposition by applying the
Hadamard gate to each qubit.

• Step 2: pick a p and initialize the parameters β and γ (angles
for the quantum gates).

TABLE 5 Quantum Annealing for real-world routing optimization problems.

Paper Problem and year of
publication

Main contribution Quantum hardware

Mehta et al. (2019) Traffic flow optimization—2019 Extensive work on the optimization of robotic movement inmanufacturing
including how to model the problem with a weighted graph, formulating

the objective function and the equivalent QUBO formula

D-Wave 2000Q (2048 qubits)

Irie et al. (2019) Capacitated Vehicle Routing Problem
(CVRP)—2019

Formulating a VRP based on QUBO taking into consideration the capacity
and the time as constraints. They solved an instance consisting of 3 vehicles

and 6 customers

D-Wave 2000Q (2048 qubits)

Feld et al. (2019) CVRP -2019 Introducing a new hybrid scheme that consists of dividing the problem into
sub-optimization phases that are the clustering phase represented as a
Knapsack Problem with the constraint of minimizing the distance between

customers and a routing phase represented as the TSP

D-Wave (not specified) and
DWave’s QBSolv tool

Papalitsas et al.
(2019)

TSP with Time-Windows
(TSPTW)—2019

Proposing a QUBO formulation with Tim-Windows constraints for a very
complex TSP instance

Theoretical

Krauss and
McCollum (2020)

SPP—2020 Presenting three adiabatic quantum formulations of the SSP: Hop-based,
directed-edges-based and undirected-edge-based approach

D-Wave 2000Q (2048 qubits)

Dixit et al. (2021) STDSP—2021 first to propose a QUBO formulation to STDSP known as Scenario-based
Least Expected Time (SLET)

D-Wave Advantage
(5640 qubits)
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• Step 3: apply the set of gates corresponding to the cost andmix
Hamiltonians.

• Step 4: the classical optimizer (such as COBYLA, ADAM)
feeds the set of parameters (β and γ) to the quantum circuit.

• Step 5: then the outcome of the circuit (optimized objective
function) is measured and it communicates back to the
classical optimizer, completing one loop of the
computational procedure.

• Step 6: the classical optimizer suggests a new set of parameters
that may lead the quantum circuit to produce a new optimized
objective function.

• Step 7: then the quantum circuit with the new parameters is
executed and the outcome is measured again. The process is
repeated until the objective function converges to its meaning
(maximum or minimum).

Many works attempted to use QAOA to solve NP-hard problems,
focusing more on the Max-Cut problem, from different angles (e.g.,
improving the approximation accuracy and reducing the quantum
circuit depth) as the first time QAOA was introduced, it was
formulated and evaluated over the Max-Cut problem. The results
of these works are reported in (Crooks, 2018; Wang et al., 2018; Zhu
et al., 2022) among others. However, there are very few works that
addressed the problem of path-finding or routing using QAOA. One
of these works was proposed by (Radzihovsky et al., 2019). The

authors suggested using QAOA as a solution for the TSP, inspired by
the work presented in (Srinivasan et al., 2018). The proposed formula
was implemented using pyQuil, a Python library for quantum
programming developed by Rigetti. Yet, details about the quantum
circuit used or the achieved performance were not provided. The
second one was from IBM where a deep explanation of how to
formulate and solve the vehicle routing problem with time windows
(VRPTW) on a quantum computer is presented (Harwood et al.,
2021) and a comparison between QAOA and VQE performance was
made using the Qiskit Qasm-Simulator backend.Moreover, In (Fitzek
et al., 2021), the authors proposed QAOA as a solution to the
heterogeneous vehicle routing problem (HVRP). A detailed study
on how tomap an HVRP formula into an Ising Hamiltonian to fit the
QAOA structure and a deep analysis of how the quality of the solution
found by the QAOA depends on the type of classical optimizer and
the depth of the circuit, are presented.

One of the latest works regarding the QAOA for routing
optimization was proposed in (Azad et al., 2022), where the
authors gave, first, a representation of the QUBO formulation
used to solve the VRP instances composed of 4 and 5 nodes,
then the mapping into an Ising Hamiltonian. For evaluating their
approach they use IBM Qiskit and they compared the QAOA using
the different types of optimizers provided by the Qiskit platform and
several circuit depths, with the CPLEX model, which is a classical
optimization solver. The authors provide also a discussion about the

FIGURE 6
p-depth of the Quantum-Classical hybrid loop of QAOA for optimization problems.
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impact of increasing the circuit depth on the optimization process. A
summary of these studies from perspectives of problem and year of
publication, main contribution and the quantum resources used for
the implementation of the proposed approaches are represented in
Table. 6.

Nevertheless and to the best of the author’s knowledge, there is no
practical study yet that applied the QAOA to the routing optimization
problem in networking. In this regard, the application of QAOA for
routing optimization in a network scenario can be considered an
interesting future research direction for the 6G routing optimization
problem, as it can be implemented on current NISQ devices and is
expected to reduce or even break the complexity of routing in 6G
networks (Farhi and Harrow, 2016).

5 Open research directions

Routing optimization remains a dynamic and critical domain of
research with significant scope for enhancement and exploration. In
parallel, both classical ML and QML have already begun to impact in
several areas such as face recognition, and biomedicine among
others. For this reason, we aim to summarize our vision for
some of the future research directions in these three domains,
hoping it will serve as an inspiration for the research community.

• Modeling Complex and Dynamic Environment: 6G will
feature highly complex and dynamic environments due to
several factors (e.g., device mobility, dynamic spectrum, etc.).
How RL and DRL can model and adapt to these ever-changing
is a critical area of research.

• Scalability issues in RL and DRL: With the massive number of
devices in 6G networks, the scalability issue of RL and DRL
approaches becomes more serious, Techniques to make RL and
DRL more scalable such as hierarchical RL or distributed RL,
should be explored (Shin et al., 2020; Pateria et al., 2021).
Moreover, the Multi-Agent RL (MARL) approach can be also
adopted. This method involves multiple agents learning and
making decisions simultaneously, potentially optimizing
response times and decision-making processes (Zhang et al.,
2021).

• Transfer-Learning and Meta-Learning: In dynamic networks,
using meta-learning and transfer-learning techniques can
significantly speed up the learning process of DRL by

transferring knowledge from one task or environment to
another. When integrated with SDN, these techniques can
provide potential solutions to the routing optimization
problem in 6G.

• Quantum Reinforcement Learning: Integrating QC principles
with RL/DRL techniques can lead to new algorithms that
could potentially outperform the classical versions, especially
in terms of computation speed and handling vast state spaces
(Dong et al., 2008; Bouchmal et al., 2023).

• Combining SDN and QML: An interesting future research
direction that can fulfill 6G routing requirements such as the
on-demand configuration, high-dynamic and heterogeneous
networks, real-time routing decisions and high QoS
obligations could be combining the flexibility and automation
given by SDN and the power provided by QML algorithms.

6 Conclusion

This paper has reviewed the latest advances in the literature onML
routing optimization, starting with RL and DRL techniques for SDN
routing optimization. As a potential solution for routing optimization
with the advent of 6G, the Quantum Annealing and the hybrid QC-
based mechanism have also been introduced. The analysis highlights
that so far most researchers have focused on using DRL for routing
optimization in SDN. However, most of the studies were based on
simple topologies and particular network scenarios, such as centralized
SDN architecture and wired networks. The reported classical
algorithms were evaluated based on packet loss, delay, and
throughput. Furthermore, in most cases, the proposed RL/DRL
approaches outperform conventional routing methods (e.g.,
Dijkstra, OSPF), yet a comprehensive study on their scalability
remains to be conducted. On the other hand, QML-based
techniques appear as a potential solution that can reduce the
complexity of routing, which is expected to increase with the
advent of 6G. However, it is still a young and fertile field that
needs to be explored and investigated in order to overcome the
challenges that arise with it. Taking into account the growing
interest in QML-based techniques to solve optimization problems,
we presented a review that combines classical and quantum approaches
that have been applied to routing optimization. Moreover, we provide
some open research directions regarding RL, DRL and QML, that will,
hopefully, serve as an inspiration for the research community.

TABLE 6 QAOA for optimization problems.

Paper Problem and year of
publication

Main contribution Quantum resources

Radzihovsky et al.
(2019)

TSP—2019 Propose a formulation based on QAOA to solve the TSP instance on a gate-based
quantum computer

Simulation using PyQuil

Harwood et al.
(2021)

VRPTW -2019 Hybrid-based solution using QUBO formula to implement the QAOA and VQE
solvers for VRPTW with an instance consisting of 4 nodes

IBM Qasm-simulator

Fitzek et al. (2021) HVRP -2021 QAOA-Based solver for the HVRP with three problem instances composed of 5 nodes
and 4 nodes with a heterogeneous fleet of vehicles

Simulation on a classical
computer

Azad et al. (2022) VRP -2022 This paper provides a comparison of the QAOA-based solution for the VRP for
various instances taking into consideration the circuit depth and the types of
optimizer used in the process

IBM Qiskit simulations
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