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Future communication systems are faced with increased demand for high capacity,
dynamic bandwidth, reliability and heterogeneous traffic. To meet these requirements,
networks have become more complex and thus require new design methods and
monitoring techniques, as they evolve towards becoming autonomous. Machine
learning has come to the forefront in recent years as a promising technology to aid in
this evolution. Optical fiber communications can already provide the high capacity required
for most applications, however, there is a need for increased scalability and adaptability to
changing user demands and link conditions. Accurate performance monitoring is an
integral part of this transformation. In this paper, we review optical performance monitoring
techniques where machine learning algorithms have been applied. Moreover, since many
performance monitoring approaches in the optical domain depend on knowledge of the
signal type, we also review work for modulation format recognition and bitrate
identification. We additionally briefly introduce a neuromorphic approach as an
emerging technique that has only recently been applied to this domain.

Keywords: machine learning, optical performance monitoring, reservoir computing, modulation format recognition,
bitrate identification

1 INTRODUCTION

Communication system evolution has led to the emergence of numerous novel applications with
diverse capacity and reliability needs. As a result, many aspects of the network have had to become
more complex and scalable. Fiber-optic channels currently meet the high capacity demands required,
however, these optical networks will need to become elastic in the near future to support
heterogeneous traffic and bitrates. Elasticity means that they are able to provide scalable
bandwidth on demand and continuously adapt to ensure efficient resource utilization (Liu et al.,
2020) for example through the use of Bandwidth Variable Transcievers (BVT’s) that can generate
variable bitrates (Yoo et al., 2012), Re-configurable Optical Add-Drop Multiplexers (ROADM’s)
(Berthold et al., 2008; Yoo et al., 2012) that utilize wavelength selective switches to switch between
flexible spectrum, and virtualization at network or transponder level (Jinno, 2017). A draw back of
the resultant flexibility is that impairments experienced on the network vary with time because of the
constantly changing light paths. To account for this, large safety design margins are often employed
for such links to guarantee reliability which leads to inefficient use of network resources. In order
guarantee good spectrum efficiency, low margins must be used hence it becomes crucial to monitor
the performance of the optical links in real-time (Morais and Pedro, 2018; Liu et al., 2020). In
addition, networks are also becoming more intelligent which means that they have to be capable of
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self-optimization and self-diagnosing. In the case of fiber
networks, this would mean that the network can detect
anomalies along specific paths and therefore re-route traffic to
other links, adapt the modulation format of signals based on link
conditions and traffic and predict future network demands or
failures along paths. In order to do this, they need to consistently
acquire the quality of signals along the various paths. In EON’s,
once signal quality has been obtained through Optical
Performance Monitoring (OPM), it can then be used in
impairment-aware Routing, Modulation and Spectrum
Assignment (RMSA) for example Chen et al. (2018) applied a
Quality of Transmission (QoT) estimator which acquired the
modulation format and physical layer performance using
machine learning and then used it as input to a broker that
made intelligent routing and spectrum assignment decisions,
while Pointurier and Heidari (2007) and Yang and Kuipers
(2012)have also shown routing algorithms that are
impairment-aware and achieved better blocking performance
than similar ones that were unaware of the physical impairments.

To increase capacity for EON’s, Space Division Multiplexing
has been proposed recently including multi-core and few mode
fiber, which introduces core assignment as another problem that
needs to be solved when multi-core fiber is used. This necessitates
knowledge of the physical impairments especially crosstalk
introduced by multi core fiber (Tode and Hirota, 2014; Chen
et al., 2019).

Aside from spatial multiplexing to improve efficiency and
capacity, network coding is being researched in the optical
domain for multiplexing and data protection (Hai et al., 2020).
Network coded networks allow signal processing to be done at
intermediate nodes and routers for example (Yang et al., 2016)
presented a multicast-capable RMSA in EON’s considering the
quality of transmission resulting from physical impairments. In
their method, an Optical-Electric-Optical (OEO) conversion
relay was used at certain intermediate nodes to easily allow
network coding. Once the signal is already tapped at these
points, the OPM function can be facilitated. Other works have
also shown how all-optical network coding is implemented using
optical logic gates inWDM and elastic optic networks. Hai (2017)
has applied an all optical XOR gate to protection in transparent
WDM networks while Kamal and Mohandespour (2014), Hai
et al. (2020), and Savva et al. (2020) have shown the same applied
to EON’s for security, protection and multicast communication,
and provided solutions to the routing, spectrum and network-
coding assignment problem. This can be beneficial to the all-
optical OPM module by reducing the number of intermediate
monitoring nodes (for example signal type estimation) since the
encoding node re-transmits a linear combination of multiple
signals after the XOR operation and for providing protection such
that all signals can be acquired by the OPM equipment in case of
failure on a single-signal path. Moreover, impairment knowledge
can be helpful to the routing and modulation format assignment
problem in these networks similar to the O-E-O case.

Optical performance monitoring (OPM) involves measuring
and estimating different physical parameters of transmitted
signals and components in an optical network either at the
receiver or at an intermediate node along the path (Dong

et al., 2016). This enables the transmission system parameters
relating to the channel quality to be known so that they can be
compensated for. Common parameters include Chromatic
Dispersion (CD), Polarization Mode Dispersion (PMD),
Optical Signal to Noise Ratio (OSNR), Q-factor, Polarization
Dependent Loss (PDL) and fiber non-linearities. Conventional
OPM techniques have either been in the time domain where the
signal is post processed in the electrical domain or in the
frequency domain based on RF tones and optical power and
they generally required complete recovery of the transmitted
signal. These techniques have been extensively reviewed in
Chan (2010), Pan et al. (2010), and Dong et al. (2016). In
order to compensate for resultant signal degradation, these
performance metrics need to be known at distributed points
on the fiber link hence traditional techniques would add
significant complexity and cost to the monitoring system
which is not desired. Machine Learning (ML) has emerged as
a key technique that can be used to process the received signal at
different points and learn relationships between different
characteristics of the received signal and impairments without
having to completely demodulate the signal (Dong et al., 2016;
Khan et al., 2019a). In order to reduce costs, it is also required to
monitor multiple impairments simultaneously and
independently. Many of the OPM techniques are capable of
single-impairment monitoring which would make the cost
prohibitive, moreover they can only perform static monitoring.
ML methods on the other hand, can track and learn the state of
the path in real time and monitor multiple impairments
simultaneously. Figure 1 shows a possible configuration of an
OPM enabled network.

This paper aims to survey existing work where machine
learning has been applied to aid in OPM and discuss the
performance of the different techniques. Moreover, since the
bulk of the techniques employed in the current literature require
advance knowledge of the signal type, we also review some works
that identify the modulation format and bitrate. Furthermore, we
briefly explore work on photonic reservoir computing which has
more recently been shown to be applicable to modulation format
recognition.

2 RELATED WORK

There are a number of review works on utilization of Machine
Learning for various applications in optical networks. Existing
and future technologies for OPM for both direct and coherent
detection systems are reviewed in Dong et al. (2016), however,
their work presented a broad range of techniques and did not
focus on ML techniques. A detailed review of the different optical
ML techniques was given in Mata et al. (2018), Khan et al.
(2019b), and Musumeci et al. (2019) highlighting how they
have been used in optical communications and networking
functions such as for OPM, fault detection, non-linearity
compensation and software defined networking. They,
however, had limited coverage of OPM and Modulation
Format Recognition (MFR). A detailed survey on OPM and
MFR has been done in Saif et al. (2020). We update the

Frontiers in Communications and Networks | www.frontiersin.org January 2022 | Volume 2 | Article 7565132

Tizikara et al. ML for OPM

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


current literature in this work as well as include the application of
photonic reservoir computing which has only recently been
applied to modulation format identification. The work in
Amirabadi (2019) considered a detailed description of
machine learning techniques and reviewed works that had
applied them in the optical communications space.

3 INTRODUCTION TOMACHINE LEARNING
ALGORITHMS

Machine learning can be generally viewed as either supervised,
unsupervised or reinforcement learning. In supervised learning,
there exists a dataset of labelled examples (xi, yi), i � 1. . .,Mwhere
xi are input variables or feature vectors that describe
characteristics of the example and yi are the output variables
(Burkov, 2019). The machine learning algorithm then aims to
define a model to fit the data. It consists of either a regression
problem or a classification problem. Regression predicts a
continuous valued output function from the data whereas
classification predicts discrete valued output. Once the model
has been developed/trained, it can then be used to predict an

output from unlabeled inputs. Unsupervised learning takes
unlabeled data as input and finds structure or relationships
among the data. Clustering algorithms group the data and
return the cluster identity value for each example while other
algorithms transform the data into other useful vectors or values.

3.1 Support Vector Machine
An SVM classifies data by viewing all data points as vectors in a
high dimensional space and then deciding hyper-planes that
separate the data into regions. The data is labelled as either
positive or negative (+1 or −1) which determines in which region
it falls. The optimal decision boundary is the one that separates
the data with the largest margin. Kernel functions can also be used
to decide non-linear decision boundaries. Kernel functions map
the data onto higher dimensional spaces to make it more
separable (Cristianini and Shawe-Taylor, 2000).

3.2 K-Nearest Neighbors
In this method, all the labelled data examples are kept in memory
after training. When a previously unseen example is encountered,
it is compared to the existing data for example using euclidean
distance and the k closest examples are determined. The predicted

FIGURE 1 | OPM enabled intelligent network diagram.
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output is then themajority label or average depending on whether
it is a classification or regression problem (Burkov, 2019).

3.3 Decision Tree
This algorithm classifies labelled data by evaluating the different
features. If a particular feature being examined is below a certain
threshold, the left branch is followed and right otherwise until a
leaf node is arrived at which determines the class to which the
data belongs (Burkov, 2019). Figure 2 shows these three ML
algorithms.

3.4 Artificial Neural Network
ANN’s are machine learning algorithms that try to imitate the
human brain. The most common structure used in literature is a
multiple layer perceptron which is made up of input and output
layers and several hidden layers in between. Each hidden layer
consists of one or more nodes known as neurons. The nodes in
each layer are connected to each and every node in the subsequent
layer and the connections characterized by parameters known as
weights which define the strength of each connection. The

weights are in the form of matrices which determine the
mapping from one layer to another. Figure 3 shows one such
ANN. The basic operation of each intermediate node is as follows;
it receives a vector of input variables, transforms it linearly,
applies an activation function and then passes the output to
the nodes in the next layer and so on Burkov (2019). The goal of
the ANN algorithm is to determine the weights that minimize the
error between the predicted output values and the actual outputs.
The ANN is presented with inputs and outputs and it learns the
relationships between them through training. In the training
phase, the weights are initialized to random values, and the
output predicted. The predicted values are then compared to
the actual output values and an error computed. Next, error
derivatives are calculated and summed for each weight until the
entire training dataset has been evaluated. The error derivatives
are utilized to update the weights and the training is continued
until an acceptable minimum error is obtained (Jargon et al.,
2009b; Musumeci et al., 2019). This method of updating the
weights is known as back propagation. Training a neural network
can get computationally complex and time intensive as the
hidden layers increase. Networks with multiple hidden layers
are known as Deep Neural Networks (DNN’s). Several
improvements have been made over time to optimize the
training process for DNN’s such as Convolutional Neural
Networks (CNN’s), Long Short Term Memory (LSTM) etc.
For a more in depth description of these methods, the reader
is referred to Hochreiter and Schmidhuber (1997), Gers et al.
(1999), Cristianini and Shawe-Taylor (2000), and Burkov (2019).

The algorithms discussed above are supervised learning
algorithms. We shall briefly review two unsupervised learning
algorithms that have been applied in OPM literature.

3.5 K-Means Clustering
This method takes unlabeled data and groups it into K clusters. It
works by randomly initializing K centroids in the feature space
and then assigning the data points to K clusters depending on
which centroid they are closest to for example by calculating the
Euclidean distance of each example from each of the K centroids.
The data point is then assigned to the cluster whose centroid has
the shortest distance to it. A new centroid is calculated by

FIGURE 2 | Illustration of different ML algorithms. (A) SVM, (B) K-nearest neighbors and (C) Decision Tree.

FIGURE 3 | 3 layer ANN with a single input, hidden and output layer.
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averaging all the examples in the cluster and the method repeated
until the cluster assignments do not change anymore (Burkov,
2019).

3.6 Principal Component Analysis
PCA is a method used to reduce the dimension of the feature
space. It works by computing eigen vectors called principal
components which define the axes of the new feature space.
The first axis is in the direction of the highest variance of the data,
the second is perpendicular to it and in the direction of the second
highest variance of the data and so on (Burkov, 2019). It is
normally used in data compression.

4 FEATURE SELECTION FOR OPTICAL
PERFORMANCE MONITORING

From the previous section, it can be seen that machine learning
algorithms typically take input data features and learn
relationships between them, thereby being able to group the
inputs in a certain way or map the relationship to a function
that can predict a required output. For OPM, the outputs are the
type of impairment and its amount, while the inputs are signal
representations. The signal representations are obtained from
monitoring the signal waveform, polarization or spectrum (Dong
et al., 2016) or fromDigital Signal Processing (DSP) techniques in
the electrical domain after detection in direct detection schemes.
Coherent receivers already include powerful DSP blocks and
input features can directly be obtained from the
asynchronously sampled output of these blocks (Tanimura
et al., 2016; Cho et al., 2019), or from constellation diagrams
that can be constructed from them (Kashi et al., 2017;Wang et al.,
2017).

The output of these various methods can then be utilized in the
form of direct images or their properties, or statistical
representations for example histograms, means, variances and
moments to extract different features that can then be fed to the

machine learning processing blocks. The features are chosen
either manually by visual inspection or learnt by the ML
algorithm and they show a clear distinction among different
types of impairments and their levels. Table 1 shows a summary
of monitored impairments for different feature types in
current works.

4.1 Eye Diagrams
An eye diagram is a graphical representation of a signal waveform
showing the amplitude distribution over one or more bit periods,
with the symbols overlapping each other. The quality of the signal
can then be determined from various characteristics of the eye
opening for example jitter, SNR, dispersion, non-linearities.

Eye diagrams have been used in the current literature to
monitor OSNR, PMD, CD, non-linearity, and crosstalk.
Figure 4 shows the eye diagrams for an RZ signal subjected to
different impairments (Wu et al., 2009). Visual inspection shows
that different impairments and different levels of the same
impairment produce distinct characteristics. These
characteristics can be exploited by applying image processing
techniques such as in Skoog et al. (2006), by defining statistical
features from the sampled amplitudes for example means and
variances at specific points on the eye diagram (Thrane et al.,
2017), or by calculating the widely used parameters of the eye
diagrams (Jargon et al., 2009b; Wu et al., 2009). Construction of
eye diagrams is dependent on the modulation format and
requires timing synchronization hence some form of clock
recovery is required which can be expensive. An eye diagram
also has no phase information about the signal.

4.2 Asynchronous Delay Tap Plots
This technique also provides a visual representation of a signal
known as a phase portrait. The signal waveform is split and one
part of the signal delayed by a certain amount Δt. The signal and
its delayed version are then sampled at the same instant and the
pair of values (x,y) obtained plotted in a 2D histogram (Dods and
Anderson, 2006; Chan, 2010). Figure 5 illustrates how a phase

TABLE 1 | Summary of features and monitored impairments used in current works.

Feature source Impairments References

Eye diagram OSNR, PMD, CD, Non-linearity, and
crosstalk

Thrane et al. (2017); Jargon et al. (2009b); Wu et al. (2009); Skoog et al. (2006)

ADTP (Phase portrait) OSNR, PMD, CD, and crosstalk Dods and Anderson (2006); Anderson et al. (2009b); Jargon et al. (2009a); Chan, (2010); Wu
et al. (2011); Tan et al. (2014); Fan et al. (2018)

Asynchronous sampled signal
amplitude

OSNR, PMD, and CD Khan et al. (2012)

Asynchronous constellation
diagram

OSNR, PMD, and CD Jargon et al. (2010)

Spectrum OSNR Wang et al. (2019c)
AAH OSNR Khan et al. (2017); Wan et al. (2018); Xia et al. (2019); Cheng et al. (2020)
Asynchronous eye diagram OSNR, PMD, and CD Vítor et al. (2012)
Optical power OSNR Zheng et al. (2020)
Asynchronous sampled raw data OSNR Tanimura et al. (2016); Cho et al. (2019); Wang et al. (2019b)
Constellation diagram OSNR and Non-linearity Kashi et al. (2017); Wang et al. (2017); Caballero et al. (2018a)
ASCS OSNR, PMD, and CD Fan et al. (2019)
IQH OSNR and CD Saif et al. (2021)
Stokes-space constellation OSNR Xiang et al. (2021)

PMD refers to 1st order PMD in this paper.
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portrait is created from delay tap sample pairs (Anderson T. B.
et al., 2009). The sampling period, Ts is independent of the bit
duration, T and can therefore be several magnitudes larger. The
portraits can be treated as images and exploited using pattern
recognition (Anderson T. B. et al., 2009; Tan et al., 2014;
Anderson T. et al., 2009) and then image processing

algorithms applied, or specific features extracted from them
for example the work in Jargon et al. (2009a) divided the
phase portrait into quadrants and then defined statistical
means and standard deviations of the (x,y) pairs and radial
coordinates. Phase portraits are also dependent on the signal
properties such as bitrate and modulation format and the tap
delay. The tap delay is usually a certain fraction or multiple of the
symbol rate and thus needs to be adjusted exactly for different
datarates to allow accurate monitoring (Khan et al., 2011).
ADTP’s have been used for multiple impairment monitoring
of OSNR, CD, crosstalk and 1st order PMD. In Figure 6, the effect
of various impairments on the ADTP of a 10 Gbps NRZ signal at
two different delays, T and T/4, as well as the corresponding eye
diagrams are shown (Chan, 2010).

4.3 Asynchronous Amplitude Histograms
AAH’s are obtained from random asynchronous sampling of the
signal within the bit period. The authors in Chen et al. (2004)
showed that with a sufficient number of samples, the amplitude
distribution can be accurately represented within a bit period. The
amplitude samples are arranged in bins corresponding to their
level, and then the count of samples within each bin is plotted
against the bin. This is in contrast to the synchronous AH where
the considered samples are within a specific window for example
10% (Chan, 2010) of the bit period around the center of the eye
diagram at the optimal decision time. The peaks in the AAH
correspond to the samples around the maximum and minimum
values of the eye, and the samples in between correspond to those
around the crossings of the rising and falling edges of the
waveform. Amplitude histograms are simple and transparent
to the transmitted signal characteristics such as modulation
format and bitrate, however, the contribution of each
individual impairment cannot be independently extracted

FIGURE 4 | Impact of various impairments on the eye diagram of an RZ signal (Wu et al., 2009).

FIGURE 5 | Generation of phase portrait (Anderson T. B. et al., 2009).
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hence they have not been used for multiple impairment
monitoring. Furthermore, the monitoring accuracy is
dependent on the number of samples (Wan et al., 2018; Dong
et al., 2016; Cheng et al., 2020). The count of occurrences at each
bin can then be used as input features such as inWan et al. (2018)
and Khan et al. (2017). Xia et al. (2019) additionally used the
variance of the amplitude values in each bin. Figure 7 shows
results of varying the OSNR on the AAH for a 16-QAM signal
(Khan et al., 2017).

4.4 Asynchronous Single Channel Sampling
In this method, shown in Figure 8, the signal y(t) is sampled
asynchronously using one tap, and then the samples are shifted by
k samples and the sample pairs yi(t) and yi+k(t) used to construct a

phase portrait. This method is less expensive than two-tap
sampling (Yu et al., 2014; Fan et al., 2019; Fan et al., 2020).
The generated phase portraits can be used as images for example
in Fan et al. (2019) and Fan et al. (2020).

4.5 Constellation Diagrams
A constellation diagram is a graphical representation of a digitally
modulated signal, where received samples are represented in an
I/Q diagram. They are used in coherent detection schemes and
can be generated by techniques such as linear optical sampling
(Dorrer et al., 2005). However, since coherent receivers already
have embedded Digital Signal Processing (DSP) blocks, they can
be directly constructed from the asynchronously sampled data
output of the DSP. Thereafter, they can be used to generate

FIGURE 6 | ADTP’s for a 10 Gb/s NRZ signal in the following scenarios: (A) OSNR � 35 dB, (B) OSNR � 25 dB, (C) CD � 800 ps/nm, (D) DGD � 40 ps, (E)
crosstalk � −25 dB and (F) a combination of (B–F) (Chan, 2010).

FIGURE 7 | Impact of varying OSNR on the AH of a 16-QAM signal (Khan et al., 2017).
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manually defined features for example Caballero F. J. et al. (2018)
defined tangential and normal components of the noise of each
symbol and then used averages and amplitude noise covariances
as inputs, or their images can be directly input the ML algorithm
for image processing without the need for manual feature
generation for example in Wang et al. (2017). Constellation
diagrams have only been used to measure OSNR and non-
linear noise in coherent detection system since the coherent
receiver can already compensate for CD and PMD and
therefore these impairments can be directly monitored.

4.6 In-Phase Quardrature Histograms
IQH’s were proposed in Saif et al. (2019) as an extension of
AAH’s to include phase information for coherent systems. They
contain similar information as constellation diagrams but with an
additional representation of the amplitude in color. They showed
that it can be used to identify OSNR, PMD and CD although
performance degraded in the presence of multiple impairments.
Figure 9 shows resulting IQH’s AH’s and constellation diagrams
for different impairments. Saif et al. (2021) derived 1D features
from projections of IQH’s on diagonal and horizontal axes.

4.7 Stokes Space Constellation
This diagram is obtained by plotting the last three components of
the Stokes vector of the received complex signals from a coherent
receiver in a 3D Stokes space. Different modulation formats
present a specific number of distinguishable clusters in this
space (Szafraniec et al., 2010; Boada et al., 2015; Mai et al.,
2017). The authors in Xiang et al. (2021) obtained the
cumulative distribution function (CDF) of one Stokes
parameter while Zhang et al. (2020) projected the constellation
onto three different 2D planes and used the resultant plots as
images such as in Figure 10.

4.8 Other Methods
The nature of asynchronous sampling means that certain
information in the signal is lost, which could make it difficult
in some cases to separate the effects of different impairments

from the overall received signal in case they produce similar
changes in the plots (Dods and Anderson, 2006). Furthermore,
there is overlap in the distribution of signal amplitudes which
makes it more challenging to extract individual distributions
from AAH’s in practice (Khan et al., 2011). Asynchronous eye
diagrams (Ribeiro et al., 2012) and asynchronous constellation
diagrams (Jargon et al., 2010) can be constructed to mitigate this.
In addition, Khan et al. (2011) also proposed asynchronously
sampled amplitudes as a solution for better CD monitoring since
previous works had shown that CD was severely impacted by
changes in OSNR and Differential Group Delay and to eliminate
the requirement for continuously adjusting the tap delay for
multiple bitrates.

Optical spectral data from an optical spectrum analyzer (OSA)
and optical power have also been used in Wang and Luo (2006)
and Zheng et al. (2020), respectively.

5 SURVEYOFMACHINE LEARNING-BASED
OPTICAL PERFORMANCE MONITORING
TECHNIQUES

5.1 Optical Performance Monitoring for
Networks Using Direct Detection
OPM modules in systems employing direct detection can be as
straightforward as a photo-detector in combination with an
Analog to Digital Converter.

Skoog et al. (2006) utilized multiple Support Vector Machines
(SVM’s) to classify different impairments using images of eye
diagrams, characterized by 23 low order zernike moments.
Simulation data was used to train the model after impairments
of CD, PMD and cross talk were applied. Four SVM’s were
required, one for each impairment and an additional one for the
normal case since they are binary classifiers. The number of input
images used for training the model were 31, 107, 20 and 6 for CD,
PMD, crosstalk and normal respectively. Experimental
verification was then done using the model. Results collected
from 3, 11 and 3 images for CD, PMD and crosstalk respectively
showed that the method could classify the simulated and
experimental data with accuracies of 95 and 60%. However, it
could only identify the type of impairment but not the amount.
Application of a nearest neighbors technique after the SVM was
proposed to enable this.

In Jargon et al. (2009b), an Artificial Neural Network (ANN)
consisting of a single hidden layer and 12 hidden neurons was
demonstrated to predict multiple impairment levels simultaneously.
The eye diagrams of signals with different bitrates and modulation
formats i.e., 10 Gb/s non-return to zero on-off keying (NRZ-OOK)
and 40 Gb/s return-to-zero differential phase shift keying (RZ-
DPSK), to which different combinations of CD, PMD and
OSNR had been applied, were used to train the ANN. 4 input
features were extracted from each of 189 eye diagrams i.e. (Q-factor,
closure, jitter and crossing amplitude/level of transition between
adjacent zeros for NRZ-OOK/RZ-DPSK, respectively). 125 eye
diagrams were used for training while 64 were used for
validation. The ranges used for OSNR, CD and Differential

FIGURE 8 | Generation of a phase portrait from ASCS (Fan et al., 2020).
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Group Delay (DGD) were 16–32 dB, 0–800 ps/nm, and 0–40 ps for
NRZ-OOK, and 16–32 dB, 0–60 ps/nm and 0–10 ps for RZ-DPSK.
A correlation coefficient of 0.91 was achieved for the NRZ-OOK
signals while 0.96 was found for the RZ-DPSK case. A similar
investigation was done in later work in Jargon et al. (2009a), but
using sevenmanually defined parameters fromADTP’s as input to a
single layer, 28 neuron ANN for the 10 Gbps NRZ-OOK case. A
higher correlation coefficient of 0.97 was obtained over similar
impairment ranges. The work was further extended to monitor the
same three impairments for a 40 Gbps RZ-QPSK signal and
manually defined input parameters using asynchronous
constellation diagrams (Jargon et al., 2010). An identical ANN
was used in Jargon et al. (2009a) achieving a correlation coefficient
of 0.987, and root mean square errors (RMSE’s) of 0.77 dB,
18.71 ps/nm and 1.17 ps for OSNR, CD and DGD respectively.
The impairment ranges tested were 12–32 dB, 200 ps/nm and
0–20 ps for OSNR, CD and DGD. The same ANN technique
with one hidden layer and 12 hidden neurons was used in (Wu
et al., 2009) to monitor the effect of multiple impairments on
40 Gbps RZ-OOK and RZ-DPSK data signals. four input
parameters (Q-factor, eye-closure, RMS jitter, and RMS
jitter) were defined from eye diagrams. The ANN was trained
and tested with data from both simulation and experiment. In
the simulation, 125 and 64 eye diagrams were used for training
and validation, respectively, achieving a correlation coefficient

of 0.97 and 0.96 for OOK and DPSK, respectively and average
errors for OSNR, CD and DGD of 0.57 dB, 4.68 ps/nm and
1.53 ps for OOK and 0.77 dB, 4.47 ps/nm and 0.92 ps for DPSK.
The simulations were followed up with an experiment, in which
20 and 12 eye diagrams were used for training and testing
respectively to estimate OSNR and CD. The results showed a
better performance than simulation with 0.99 correlation
coefficient for both signals. The average errors for OOK were
0.58 dB and 2.53 ps/nm while those for DPSK were 1.85 dB and
3.18 ps/nm. The ranges tested for OSNR, CD and DGD were
16–32 dB, 0–60 ps/nm and 1.25–8.75 ps. The authors then
monitored the impact of accumulated fiber non-linearity in a
40 Gb/s RZ-DPSK Wavelength Division Multiplexed (WDM)
system consisting of 3-channels using a simulation in which
additional features consisting of statistics of the 1 and 0 values
were defined giving a total of 8 inputs. The input optical power
was varied from −5 to 3 dB m, while OSNR, CD and DGD were
tested over the ranges from 20 to 36 dB, 0–40 ps/nm and 0–8 ps.
Equally good results were obtained: correlation coefficient of
0.97, and mean error of 0.46 dB, 1.45 dB, 3.98 ps/nm and 0.65 ps
for optical power, OSNR, CD, and DGD from 135 training
samples and 32 testing samples.

Anderson et al. (2009b) simultaneously measured CD and
DGD for a 40 Gb/s NRZ-DPSK signal. ADTP’s were generated
and then kernel based ridge regression applied to predict the

FIGURE 9 | Comparison of constellation diagram, AAH and IQH (Saif et al., 2019).

Frontiers in Communications and Networks | www.frontiersin.org January 2022 | Volume 2 | Article 7565139

Tizikara et al. ML for OPM

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


impairments using 900 features. Simulation was done for various
combinations of CD, DGD and OSNR ranging from 0 to 700 ps/
nm, 0–20 ps and 13–26 dB, respectively. 1,200 phase portraits
consisting of 900 features each were used for training, and
independent training for a single impairment in the presence
of all other impurity ranges was done. 500 phase portraits were
used for verification. RMSE’s of ±11 ps/nm and ±0.75 ps for CD
and DGD respectively were achieved. Experimental verification
was also done using a split of 1,500:500 phase portraits for
training: validation for OSNR, CD and DGD ranging from 15
to 25 dB, −400 to 400 ps/nm and 0–22.5 ps. The total training
time was 3 h and RMSE of ±11 ps/nm and ±1.9 ps for CD and
DGD obtained. Prior knowledge of modulation and bit rate was
assumed.

OSNR, PMD and the magnitude and sign of CD were
monitored in Khan et al. (2012) using an ANN whose input
features were derived from the empirical moments of
amplitude samples. The ANN consisted of a single hidden
layer with 42 neurons and was trained with simulation data for
56 Gb/s RZ-DQPSK and 40 Gb/s RZ-DQPSK and DPSK
signals. For each datarate-modulation format combination,
3,627 groups of moments were collected over varying ranges of
OSNR (10–26 dB), CD (−500 to 500 ps/nm) and DGD
(0–14 ps). A root mean square errors of 0.1 dB was obtained
for OSNR in all three cases while the values obtained for CD
and DGD were CD (27.3, 29, 17 ps/nm) and DGD (0.94, 1.3,
1 ps) for 40 Gb/s RZ-DQPSK, 56 Gb/s RZ-DQPSK and 40 Gb/s
RZ-DPSK systems, respectively. The authors proposed
increasing the number of moments to improve the results.

Table 2 summarizes existing works for direct detection
systems.

The work presented in Tan et al. (2014) monitored multiple
impairments and identified both modulation format and bit rate
using Principal Component Analysis (PCA). Input features were
derived from images of ADTP’s and the method was shown to be
suitable for heterogeneous networks. Simulations were used to
generate 26,208 ADTP’s from different combinations of
impairments, modulation schemes and bitrate. Previous
methods seen so far have assumed knowledge of both bitrate
and modulation. The impairments were varied in the range
14–28 dB (OSNR), −500 to 500 ps/nm (CD) and 0–10 ps
(DGD). The signal combinations used were 10 and 20 Gb/s
RZ-OOK, 40 and 100 Gb/s PDM RZ-QPSK and 100/200 Gb/s
PDM NRZ 16-QAM. The results showed an overall mean
estimation error of 1 dB (OSNR), 4 ps/nm (CD) and 1.6 ps
(DGD). The performance of the method under fiber non
linearity was also investigated and found to be slightly less
accurate, increasing the mean errors to 1.2 dB for OSNR,
12 ps/nm for CD and 2.1 ps for DGD. To mitigate this,
selection of additional features to characterize different non-
linearity coefficients and link/span lengths was proposed. In
this way CD, OSNR and DGD could be monitored without
advance knowledge of the signal type, it was part of the
training data.

The authors in Thrane et al. (2017) used an ANN for in-band
OSNR monitoring on 32 Gbaud directly detected PDM-QAM
signals. The input features were selected from eye diagrams. In
addition to the modulation format, this method required

FIGURE 10 | 3D Stokes constellation of a BPSK and QPSK signal, as well as their corresponding projections in the 2D Stokes planes at OSNR � 18 dB (Zhang
et al., 2020).
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knowledge of the pulse shape therefore it was necessary to train a
separate neural network for each pulse-MF pair. It was composed
of one hidden layer, three hidden neurons and only one input
feature i.e. the variance at the maximum amplitude points on the
eye diagram. Experimental verification was done for OSNR’s in
the range of 4–30 dB but only in white Gaussian noise. The results
showed that OSNR estimation was accurate between 4–17 dB
with a mean error of 0.2 dB but worsened from 17 to 30 dB. This
was attributed to the fact that eye diagrams at higher OSNR’s did
not vary very significantly and hence had less distinguishable
features. Since real transmission channels face other
impairments, simulation was done for chromatic dispersion
(CD) and the method found to be unimpaired up to 250 km
on a dispersion uncompensated link. Verification of the method
in the presence of other effects was left to future work.

Multi-impairment monitoring was investigated in Wu et al.
(2011) using a single layer, 12 hidden neuron ANN that was
trained with simulated data from 180 ADTP’s. Seven statistical
features were extracted from each ADTP obtained from sampling
a 100 Gb/s QPSK signal over impairment ranges of OSNR
(14–32 dB), CD (0–50 ps/nm) and DGD (0–10 ps),
respectively. The validation was done with 144 samples.
Balanced detection was shown to perform better than single
ended detection through simulation with correlation
coefficients of 0.995 and 0.96, respectively. The RMSE’s were
obtained as OSNR (1.62/0.45 dB), CD (8.75/3.67 ps/nm) and
DGD (7.02/0.8 ps) for single/balanced detection. Experimental
data was used to validate the performance for balanced detection
and produced correlation of 0.997.

Simultaneous monitoring of PMD, CD, and OSNR using a
single layer, 40 neuron ANN was shown in Ribeiro et al. (2012)
used a single hidden layer ANN with 40 neurons. Parametric
asynchronous eye diagrams (PAED’s) of a 40 Gbps QPSK signal
were collected, from which 24 statistical position features were
extracted. In this work, RMSE’s of <20 ps/nm, <1.3 ps, and
1.5–2 dB were found via simulation for impairments in the
ranges 0–200 ps/nm, 0–25 ps and 0–30 dB.

InWan et al. (2018) a Multi Task Learning ANN (MTL-ANN)
was investigated using features extracted from amplitude
histograms and used to acquire both OSNR and the
modulation format. Simulations were done on 28-Gbaud
NRZ-OOK, PAM4 and PAM8 over an OSNR range of
10–25 dB, 15–30 dB and 20–35 dB, respectively and CD range
of −100 to 100 ps/nm. A total 9,072 and 1,008 simulated AH’s
were used for training and testing respectively. Different
combinations of OSNR and modulation format at specific CD
values were tested achieving a MSE of 0.12 dB. Experimental
verification was done for OSNR ranges of 14–29, 17–32 and
22–37 dB for OOK, PAM, PAM8 and datasets consisting of 4,320
and 480 AH’s for training and testing. The results showed higher
accuracy than single task learning ANNS (STL-ANN’s), achieving
MSE of 0.11 dB compared to 0.4 dB for a STL-ANNwith a similar
structure. This method required optimization of the bin number.
Fewer bins were shown to have less accuracy while more bins led
to a more complex ML structure. The authors used an optimal
number of 100 in this work.

OSNR and modulation format monitoring was done in Cheng
et al. (2020) using a mutli-task deep neural network with transfer

TABLE 2 | Summary of existing OPM works for direct detection.

Algorithm Signal type Impairment (range) References

SVM — CD, DGD, Crosstalk Skoog et al. (2006)
ANN 10 Gbps OOK OSNR (16–32), CD (0–800), DGD (0–40) Jargon et al. (2009b)

40 Gbps DPSK OSNR (16–32), CD (0–60), DGD (0–10)
ANN 10 Gbps OOK OSNR (16–32), CD (0–60), DGD (0–10) Jargon et al. (2009a)
ANN 40 Gbps QPSK OSNR (12–32), CD (0–200), DGD (0–20) Jargon et al. (2010)
ANN 40 Gbps OOK OSNR (16–32), CD (0–60), PMD (1.25–8.78) Wu et al. (2009)

40 Gbps DPSK OSNR (16–32),CD (0–60), PMD (1.25–8.78)
40 Gbps DPSK, 3 channel WDM Optical power (−5 to 3 dBm), OSNR (20–36), CD (0–40),

PMD (0–8)
ANN 40 Gbps QPSK OSNR (10–30), CD (0–200), DGD (0–25) Ribeiro et al. (2012)
ANN 32 Gbd 64-QAM OSNR (4–30) Thrane et al. (2017)
ANN 40 Gbps DQPSK OSNR (10–26), CD (−500 to 500), DGD (0–14) Khan et al. (2012)

56 Gbps DQPSK
40 Gbps DPSK

Kernel ridge
regression

40 Gbps DPSK CD (0–700), DGD (0–20) Anderson et al.
(2009b)CD (−400 to 400)*, DGD (0–22.5)*

PCA 10/20 Gbps OOK, 40/100 Gbps PDM QPSK, 100/200 Gbps
PDM 16-QAM

OSNR (14–28), CD (−500 to 500), DGD (0–10) Tan et al. (2014)

ANN 100 Gbps QPSK OSNR (14–32),CD (0–50), DGD (0–10) Wu et al. (2011)
MTL-ANN 28 Gbd OOK, PAM4, PAM8 OSNR (10–25), (15–30), (20–35) Wan et al. (2018)
MT-DNN 10 Gbd PDM 16, 64 QAM OSNR (14–24), (23–34) Cheng et al. (2020)
MTL-ANN 10 Gbd QPSK, 32 Gbd, PDM-16QAM OSNR (1–30) Zheng et al. (2020)
MTL-CNN 10/20 Gb/s OOK, NRZ-OOK, DPSK OSNR (10–28), CD (0–450), PMD (0–10) Fan et al. (2018)
MTL-CNN 60/100 Gbps QPSK, 16, 64 QAM OSNR (10–28), CD (0–450), PMD (0–10) Fan et al. (2019)
MTL-DNN 14/28 GBd QPSK, 16QAM OSNR (10–24), (15–29), CD (0, 858.5, 1,507.9) Luo et al. (2021)
ANN 4, 16, 32, 64, 128 QAM OSNR (15–20) Zhang et al. (2018)

All units for OSNR, CD, PMD are in dB, ps/nm, and ps, respectively. *indicates experimental results and simulation results otherwise.
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learning (DNN-TL) using AH’s as inputs. The DNN was trained
with 400 AH’s generated from simulation and then experimental
verification for PDM-16 and 64-QAM, 10 Gbaud signals was
done and the results achieved RMSE of 1.09 dB for OSNR ranging
between 14 and 24 dB for PDM-16 QAM and 23–34 dB for 64-
QAM, respectively. The ANN structure had 4 hidden layers with
100/50/30/2 neurons respectively. Application of transfer
learning was able to reduce the required training samples from
322 to 243 (243) for the same RMSE.

A modulation format independent method was proposed to
monitor the OSNR for a WDM system in Zheng et al. (2020).
Optical power measured at different center wavelengths was
used as input features to a MTL-ANNwith 64 neurons per layer.
Five samples for each OSNR (1–30 dB) were collected and a
ratio of 70:30 samples was used for training: testing and shown
experimentally to estimate the OSNR with a Mean Absolute
Error (MAE) of 0.28 dB and RMSE of 0.48 dB for both the 10
Gbaud NRZ-QPSK and 32 baud PDM-16QAM over an OSNR
range of 1–30 dB. It was also shown to be insensitive to CD and
PMD. The same ANN was shown to be capable of
simultaneously monitoring baud rate and launch power
without deploying two additional ANN’s. For launch power
in the range of 0–8 dBm, MAE and RMSE were 0.034 and
0.066 dB, respectively.

A MTL-CNN was used in Fan et al. (2018) to do multiple
impairment monitoring in combination with joint bit rate and
modulation format identification. 6,600 Phase portraits were
generated from simulations of six different signal types i.e., 10/
20 Gb/s RZ-OOK, NRZ OOK and NRZ-DPSK and impairments
varied over the ranges 10–28 dB, 0–10 ps and 0–450 ps/nm for
OSNR, DGD and CD, respectively. 90% of the images were used
to train the CNN while 10% were reserved for testing. The results
showed RMSE’s of 0.73 dB, 1.34 ps/nm, and 0.47 ps. The same
authors improved their method by using phase portraits from
ASCS in Fan et al. (2019) and features from the various CNN
layers as opposed to only those in the last layer. In this method,
the features were extracted from all the layers and transformed
into the same space and then multiple tasks were trained for each
of OPM, MFR and bitrate identification (BRI). 60/100 Gb/s
signals for three modulation formats QPSK, 16 and 64-QAM
were generated by simulation and the same impairment ranges
and number of phase portraits were used. RMS errors of 1.52 ps/
nm, 0.81 dB, and 0.32 ps were obtained.

In the work presented in Luo et al. (2021), adaptive ADTP’s
and AAH’s were used as multiple inputs to a multi-task DNN to
monitor OSNR in the range 10–24 dB and 15–29 dB for QPSK
and 16 QAM signals respectively and identify the bitrate,
modulation format and chromatic dispersion. 2 baudrates (14/
28) and three values of CD (0, 858.5, and 1,507.9 ps/nm) were
experimentally tested. In the AADTP, a single ADC is used to
sample the data generating xm, samples (m > � 1) as opposed to
two tap delay sampling and then a fixed time delay is introduced
by setting the second sample pair as a ym � xm + n, n > � 1. The
same samples are used to generate AAH’s. 36,000 AADTP’s and
AAH’s were generated and 28,800 of them used to train the DNN.
The method achieved a MAE of 0.2867 dB and CD identification
accuracy of 99.83%.

A simple three layer ANN was used in Zhang et al. (2018)to
jointly monitor OSNR (15–20 dB) and identify the MF in an IM-
DD QAM-OFDM system. Two ANN’s were used; one for MFI
and then once the MF was known, passed to the second ANN
which was trained for each modulation format separately to
identify the OSNR. AAH’s were derived from the IQ output
by considering either the I or Q samples of 4, 16, 32, 64 and 128
QAM signals. To improve the OSNR accuracy at low OSNR’s, 5
distinct features were calculated from the AH’s and used as input
to the second ANN i.e. mean, variance, range, interquartile and
median. The errors obtained OSNR prediction were < 1 dB.

Table 3 shows the performance of the different techniques that
have been surveyed.

5.2 Machine Learning Applied to Coherent
Detection Systems
Coherent detectors already incorporate impairment
compensation techniques at the receiver and therefore linear
impairments—CD and PMD can be monitored. OSNR then
becomes the key impairment that still requires monitoring.
Many of the previous methods discussed required the careful
selection of features from sampled data. These features varied for
different system parameters. As networks evolve, they will
transmit data at varying bitrates and modulation formats
which may change randomly hence more advanced techniques
are required.

The authors in Tanimura et al. (2016) used experimental data
to train a Deep Neural Network (DNN) to monitor OSNR of a
16 GB d DP-QPSK signal with asynchronously sampled raw data
from a coherent receiver. The DNN was trained with three
different hidden layer structures (1, 3, 5) each comprising 512
neurons, and three training sample sizes (4,000, 40,000 and
400,000). The four tributary output from the coherent receiver
was then fed to the DNN, each tributary containing 512 samples
generated from experiment. The five layer, 400,000 case was
selected as the best case. The trained DNN was then used to test
10,000 samples resulting in an average error of 1.6 dB over an
OSNR range of 7.5–31 dB.

In Cho et al. (2019), the same method was extended to a
Convolutional Neural Network (CNN) which was trained with
experimental data containing 1,000,000 samples from 14 to
16 GBd DP-QPSK, 16-QAM and 64-QAM signals that had
been subjected to different OSNR’s within a range of
11–33 dB. The CNN was validated using 10,000 test samples
for each modulation format. The results obtained showed a bias
error of less than 0.3 dB, however the training phase took several
hours. They showed the method to be insensitive to CD and left
non-linearity to future work.

A single layer ANNwith six hidden neurons was used in Kashi
et al. (2017) to estimate non-linear noise present in a 56.8 GB d
DP 16-QAM signal transmitted over fiber channels with varying
characteristics for example transmission distances, optical power,
number of channels, types of fiber etc. The ANN was provided
with the link parameters as well as amplitude noise co-variance
(ANC) of the input symbols resulting from fiber non-linearity for
240 simulated cases. 70% of the samples were used for training
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and 30% for testing resulting in the errors obtained in the OSNR
being less than 0.6 dB for two experimental cases.

In Caballero et al. (2018b) a neural network was used to
estimate both linear and non-linear noise simultaneously using
input features derived from constellation plots and the amplitude
noise co-variance. The ANN consisted of one hidden layer and
seven neurons and was trained with a 35 Gbd DP-16 QAM signal
transmitted over different WDM channels, with varying fiber
types and lengths of 320–1,200 km, launch power of −2.5 to
0.5 dBm and different applied Amplified Stimulated Emission
(ASE) to non-linear noise ratios. The total samples were 2,160.
Simulations and experimental data for varying optical power in
an 800 km link were used and produced results with a std error of
0.23 dB.

In Wang et al. (2019b), a Long Short-Term Memory (LSTM)
neural network was used to approximate the OSNR without need
for manual feature extraction. The four tributary output from the
coherent receiver was used as input. The LSTM-NN was trained
from simulation of 28/35 GBd PDM 16 and 64-QAM signals and
OSNR varied between 15–30 dB. 512 data samples were collected

for each OSNR value for a total of 32,768 samples with 70% used
for training and the rest for testing. The Mean Absolute Error
(MAE) was found to be 0.1, 0.04, 0.05, and 0.04 dB for 28 GBd
PDM 16 and 64-QAM and 35 GBd PDM 16 and 64-QAM
respectively. The accuracy of the method was shown to be
unaffected by linear impairments of CD and PMD through
simulation with variable fiber length. Experimental verification
of the model was done on a 34.94 GBd PDM 16-QAM signal with
5,632 samples over an OSNR range of 15–25 dB, resulting into a
MAE of 0.05 dB.

The work in Khan et al. (2017) used a DNN to simultaneously
identify modulation format and monitor OSNR. One DNN
consisting of two hidden layers (45 and 10 neurons,
respectively) determined the modulation format and then the
result was passed to a second stage with multiple 2-hidden layer
DNN’s (45/40 and 10 neurons respectively) trained per
modulation format and the second DNN selected based on 1st
stage results. The OSNR could then be predicted for different
modulation formats. The input features were obtained from
amplitude histograms of varying combinations of modulation

TABLE 3 | Performance comparison of existing OPM works for direct detection.

ML algorithm Features
(number)

Performance* References

SVM 187 a � 95% and a � 60%* Skoog et al. (2006)
ANN(1; 12) 189 10 Gbps OOK; c � 0.91 Jargon et al. (2009b)

40 Gbps DPSK; c � 0.96
ANN 9,600 MAE � 0.167* Li et al. (2020)
ANN(1; 28) 189 10 Gbps OOK; c � 0.97 Jargon et al. (2009a)
ANN(1; 28) 341 40 Gbps QPSK; c � 0.97 Jargon et al. (2010)

RMSE � (0.77, 18.71, 1.17) (OSNR, CD, DGD)
ANN(1; 12) 189 32* 167 40 Gbps OOK; c � 0.97 Wu et al. (2009)

ME � (0.57, 4.68, 1.53) (OSNR, CD, PMD)
40 Gbps DPSK; c � 0.96
ME� (0.77, 4.47, 0.92) (OSNR, CD, PMD)
40 Gbps OOK; c � 0.99*
ME (0.58, 2.53)* (OSNR, CD)
40 Gbps DPSK;c � 0.99*, ME (1.85, 3.18)*
40 Gbps DPSK; c � 0.97
ME�(0.46, 1.45, 3.98, 0.65) (power, OSNR, CD, PMD)

ANN(1; 3) 2496* 32 GB d 64-QAM 0.2 dB MSE Thrane et al. (2017)
ANN(1; 42) 3,627 40 Gbps DQPSK; RMSE�(0.1, 27.3, 0.94) (OSNR, CD, PMD) Khan et al. (2012)

56 Gbps DQPSK; RMSE� (0.1, 29, 1.3)
40 Gbps DPSK; RMSE� (0.1, 17, 1)

Kernel ridge regression 1,700, 2,000* RMSE ± 11 ± 0.75 (CD, PMD) RMSE ± 11* and ± 1.9* Anderson et al.
(2009b)

PCA 26,208 10/20 Gbps OOK, 40/100 Gbps QPSK, 100/200 Gbps 16-QAM; ME� (1, 4, 1.6) (OSNR,
CD, PMD)

Tan et al. (2014)

ANN(1; 12) 324 100 Gbps QPSK; balanced detection c � 0.995, 0.997* RMSE; 0.45, 1.27* (OSNR), 3.67, 2.22*
(CD), 0.8, 0.91* (PMD) single detection; c � 0.96, RMSE 1.62, 8.75, 7.02 (OSNR, CD, PMD)

Wu et al. (2011)

MTL-ANN (1,100; 2;50) 10,080 (4,320:
480)*

28 Gb d OOK, PAM4, PAM8; MSE 0.12 0.11* Wan et al. (2018)

MTDNN-TL
(4,100,50,30,2)

683* 10 Gbaud PDM 16, 64 QAM; RMSE 1.09 Cheng et al. (2020)

ANN(1; 40) 24 40 Gbps QPSK; ME < 20, <1.3, 1.5–2 (CD, PMD, OSNR) Ribeiro et al. (2012)
MTL-ANN 1,205 32 Gbaud 16 QAM and 10 Gbaud QPSK MAE 0.28, RMSE 0.48 (OSNR) Zheng et al. (2020)
MTL-CNN 6,600 RMSE 0.73, 1.34, 0.47 (OSNR, CD, PMD) Fan et al. (2018)
MTL-CNN 6,600 RMSE 1.52, 0.81, and 0.32 (CD, OSNR, PMD) Fan et al. (2019)
MTL-DNN 36,000 MAE 0.2867 (OSNR) a � 99.83% (CD) Luo et al. (2021)
ANN(5,40,1) 5 error < 1.1 OSNR Zhang et al. (2018)

Units for OSNR, PMD, DGD are dB, ps/nm, ps, respectively, Performance* indicates experimental results, else simulation results are indicated; a, accuracy, c, corellation.
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formats and OSNR’s. 133 experimentally generated AH’s for
different combinations of modulation format and OSNR were
used to train the DNN’s and then tested on 57 AH’s for 112 Gb/s
PDM QPSK, 112 Gb/s PDM 16-QAM, and 240 Gb/s PDM 64-
QAM signals resulting in mean errors of 1.2, 0.4 and 1 dB
respectively. This method however was shown to take
significant training time and computational power. The same
technique was employed in Li et al. (2020) for multiple QAM
formats with an added anomaly detector between the MFI ANN
and OSNR monitor to improve accuracy. 9,600 AH’s of 100 bins
each were generated for 12.5 GBd signals and 6 modulation
formats. The OSNR was varied over the ranges (10–25) for
QPSK and 6-QAM, (15–30) for 16-QAM and (20–35) for 16,
48 and 64-QAM. Experimental results showed a MAE of
0.167 dB.

The authors in Wang et al. (2017) used a CNN to estimate
OSNR and recognize modulation format using as input images of
constellation diagrams. Simulations were done for 6 modulation
techniques i.e., QPSK, 8PSK, 8-QAM, 16-QAM and 32-QAM
over OSNR ranges of 15–30 dB and 64-QAM in the OSNR range
of 20–35 dB. Experiments were carried out for 2-QPSK and 16-
QAM. CD was also varied between −100 and 100 ps/nm. The
training set consisted of 9,600 constellations. The simulation
results showed >95% accuracy for 64-QAM and >99%
accuracy for other formats. They also compared 4 other
commonly used algorithms; decision tree with 100 splits,
SVM, k-nearest neighbors with 10 neighbors, and BP-ANN
with 50 hidden neurons, and found that the CNN achieved
better results than the rest at the expense of some
computational complexity and large training time. Similar to
other methods using constellation diagrams, it performed better
for low SNRS <21 dB. Experimental verification was done for
QPSK and 16-QAM signals, testing with 20 constellations and
results showed maximum error of 0.6 and 0.7 dB, respectively.

In Xia et al. (2019), a DNN with transfer learning was studied
to monitor OSNR on 56 Gb/s QPSK signals. AH’s of the signals
were used as input features and trained over an SNR range of
5–35 dB. Each sample AH consisted of 80 bins and the variances
were also considered for a total of 81 features per sample. Physical
layer parameters were also varied for example launch power
(6–8 dB), dispersion (0–600 ps/nm) and bitrates (28–56 Gb/s).
The ANN with 5-hidden layer structure bearing 64, 32, 16, 8 and
4 neurons, respectively was trained with simulated data and then
tested with 128,000 experimentally generated samples, achieving
a RMSE of <0.1 dB.

In Wang et al. (2019c), four different algorithms were applied
to spectral data from a 20 Gbps QPSK signal i.e., SVM, ANN with
1 hidden layer and 100 hidden neurons, k nearest neighbors with
10 neighbors and decision tree with 20 splits in a coherent system
to estimate OSNR. Training was done with 30 spectra consisting
of 4,096 samples each collected over an OSNR range between
15–30 dB and the ratio of training:testing data was 2:1.
Experimental verification using the same amount of data
found that the SVM performed better for the test parameters
and took the least computation time. Estimation accuracy was
found to be 100, 100, 73.124, and 65.625 for SVM, k-nearest
neighbors decision tree and ANN respectively. The poor

performance of the ANN was attributed to a large number of
input neurons (4,096) hence making it prone to under fitting due
to increased model complexity. The testing time was also checked
and the SVM and KNN found to take the least and longest time,
respectively.

A binary CNN in which the activation weights were
constrained to ±1 as opposed to floating values was used in
Zhao et al. (2020) to predict OSNR for 9 different 12.5 GBdM-ary
QAM signals. Experimental data consisting of gray-scale images
of ring constellation diagrams were used. The total dataset
consisted of 14,400 images, 100 images per modulation format
for each of the 16 OSNR values. With OSNR ranging from
10–35 dB, and average accuracy of 98.91% was found, and was
shown to be slightly less accurate than a floating CNN (99.95%)
and similar to a multi-layer perceptron (98.86%) of similar
structure, however with reduced energy and execution time.

In Yu et al. (2019), the authors used a MTL-ANN to do OSNR
estimation and MFI identification similar to their earlier work in
Wan et al. (2018), but applied to a coherent receiver and
9 M-QAM formats at 12.5 GBd. Experimentally generated ring
constellation diagrams were transformed to AH’s consisting of
200 bins each and used as input features. They were generated
over an OSNR range of 10–25 dB for QPSK, 6, 8 and 12-QAM,
15–30 dB for 16 and 24-QAM and 20–35 dB for 32, 48, and 64-
QAM. 100 AH’s were generated per OSNR value and modulation
format for a total dataset of 14,400 split into a training:test set of
90:10. The ANN consisted of one input layer with 200 neurons,
and two specific hidden layers for OSNR, while one specific
hidden layer was used for MFI, consisting of half the neurons in
the previous layer. The optimal neuron number for the shared
hidden layer was found to be 350. Results showed 98.7% accuracy
and RMSE of 0.68 dB when using regression and classification,
respectively.

A method to simultaneously monitor impairments
independent of the signal type was shown in Wang et al.
(2019a). An LSTM-NN(160,128,2) was used to predict CD
(1,360–2040 ps/nm) and OSNR (15–30 dB) for 28/35 GBd
PDM 16/64 QAM signals, using as input the 4 tributary
output of the coherent receiver. 512 data samples are
generated by simulation for different MF, BR, OSNR, and CD
and 70% used for training. The prediction performance obtained
was MAE of <0.1 dB and 0.64 ps/nm, respectively.

In Wang et al. (2020), an ANN was shown to estimate OSNR
using eigen values consisting of 2nd and 4th order moments and
various OSNR’s extracted from the rings of the constellation
diagrams as input features. The system was then simulated with
112 Gb/s QPSK, 16 QAM and 120 Gb/s 64-QAM signals and
OSNR ranges of 15–26, 19–29 and 22–31 dB, respectively. The
number of input features for each of the modulation schemes is 3,
3, 9 and the hidden neurons are 5, 5, 12. RMSE’s of 0.17, 0.3,
0.68 dB were obtained. Experimental results produced RMSE’s of
0.46 and 0.65 for 10/20 Gbd QPSK/16-QAM generated in OSNR
ranges of 13–26 and 20–30 dB.

The authors in Feng et al. (2020) use a MTL-CNN to
experimentally estimate OSNR and identify MF for 28 GBd
PDM 8, 16, 32, 64 QAM and 8-PSK and QPSK signals
resulting in mean errors of 0.26, 0.4, 0.85, 0.64, 0.17, and 0.19,
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respectively. A total of 30,600 images of intensity density and
differential phase density at different OSNR ranges QPSK
(10–30), 8PSK, 8, 16 QAM (12–30), 32 QAM (17–33), 64
QAM (18–33) are used as input features and 85% used for
training.

The authors in Ye et al. (2021) monitored OSNR using an
LSTM-NN but considered the prediction as a classification
problem by defining the continuous OSNR range (15–24 dB)
into discrete 1 dB intervals. The NN consisted of 8, 48, 64, 10
neurons for the input, memory, hidden and output layers
respectively and the dataset size was 3,000 generated from the
IQ output of the coherent receiver, with 75% of the samples used
for training. Simulation was done on a 30 GBd PDM 16 QAM
signal resulting in standard deviation within 0.4 dB while
experimental verification on a 20 GBd DP-QPSK signal
resulted in a standard deviation within 0.67 dB.

OPM for few mode fibers was considered in Saif et al. (2021).
In this work, OSNR, CD andmode coupling were monitored with
the aid of three ML algorithms i.e., SVM, random forest and
CNN. The input features were obtained by considering 2D IQH’s
and their 1D projections in different planes. 200 datasets were
generated for each impairment value. In their simulation, the
CNN showed the best performance and was then chosen to
experimentally verify the accuracy of the proposed technique,
resulting in coefficients of determination of 0.98, 0.92, and 0.91
for OSNR, CD and MC respectively. A 10 GBd DP-QPSK signal
and ranges of 0–20 dB, 160–1,120 ps/nm were used for OSNR
and CD, respectively, as well as different mode coupling
coefficients.

A single ANN was applied in Xiang et al. (2019) to jointly
monitor the MF and OSNR for a 28 GS/s PDM QPSK and 8, 16
and 64 QAM signals over the OSNR range of 10–16, 12–18,15–22
and 22–29 dB, respectively. Their ANN had 50 hidden neurons
and took as input two statistical features derived from the
amplitude of the signals i.e., kurtosis and variance. Simulation
showed mean estimation errors for the OSNR to be 0.005, 0.2,
0.17, and 0.67 using a dataset size of 400 per OSNR and MF.
Experimental verification over the ranges 10–17, 14–20, 17–25 dB
for QPSK, 8 and 16 QAM showed mean errors 0.15, 0.41 and
0.49 dB when 15 hidden neurons are used. The method was
extended in Xiang et al. (2021) but 50 bins of the cdf of one stokes
parameter was selected as the input. With a dataset size of 200 per
OSNR and MF, OSNR ranges 10–18 dB, 12–20 dB, 12–20 dB,
16–24 dB, and 22–28 dB for QPSK, 8PSK, 8,16, 64 QAM, and 60
hidden neurons, simulation produced mean square errors of
0.086, 0.125, 0.038, 0.17, and 0.40 dB. Experimental
verification resulted in mean OSNR estimation error of 0.13,
0.29, and 0.41 dB for QPSK, 8PSK and 16QAM.

Table 4 summarizes the current work on OPM for coherent
detection.

5.3 Recognition of Modulation Format
Many of the OPM methods presented have assumed either
advance knowledge of the modulation format or bitrate of the
signal, or that it can be obtained from upper layer protocols. As a
result, training of the ML algorithms and hence have been
investigated for specific modulation formats and bit rates as

seen in the previous section and would need to be retrained
for a different signal type. It is also not practical to communicate
across layers for simple OPM modules (Tan et al., 2014; Zhang
et al., 2016) therefore it is necessary to review some works which
have been done that have identified MFI and/or bitrate.

Since elastic optical networks utilize bandwidth variable
transmitters, it would be useful for the OPM module to
identify modulation format and bitrate. Tan et al. (2014)
proposed one such method using Principal Component
Analysis (PCA), where ADTP’s for different combinations of
bit rate, modulation format and impairments (CD, PMD, and
OSNR) were generated by simulation and PCA used to create a
reference database for the training dataset, and then identified test
data with 100% accuracy in the case when the PC’s > 2.

The work in Khan et al. (2017) utilized four DNN’s to identify
OSNR and MF for three different signal types viz 112 Gbps PM
QPSK and 16-QAM and 240 Gbps 64 QAM. One DNN was used
to identify the modulation format, and the three DNN’s in the
second stage trained to estimate the OSNR for one of the three
modulation formats. Once the MF was identified, the signal was
passed to the respective DNN in stage 2. The method was applied
to experimental data from the output of a coherent receiver with
AH’s used as input features. The method showed 100% accuracy
in all three cases. The authors in Li et al. (2020) proposed an
improvement to this method by adding an anomaly detector
between the MFI identifier and OSNR monitor to ensure that the
MF was accurately identified before being passed to the OSNR
monitor. AH’s were constructed from constellation diagrams and
the method experimentally verified for M-ary QAM. They
achieved accuracies of 97.5%.

A MTL-ANN in conjuction with signal AH’s were applied
for MFI and OSNR monitoring in Wan et al. (2018).
Simulation and experiment for NRZ-OOK, PAM 8 and
PAM 4 both yielded 100% accuracy for MFI. The authors
extended their work in Yu et al. (2019) to 9 M-QAM
modulation formats and used an adaptive weight loss ratio
for their ANN as opposed to a fixed optimal one and also
achieved 100%MFI identification accuracy. ANN’s and AAH’s
were shown to correctly identify six commonly used
modulation formats at several datarates and impairment
levels with 99.6% accuracy in Zhang et al. (2016). Similarly,
Huang et al. (2021) also used an ANN and AAH’s to identify
the MF for NRZ, PAM4 and PAM8 signals under stringent
bandwidth conditions. The results showed 95 and 100%
accuracy for simulation and experiment.

Studies were done on the use of a Binary-CNN in Zhao et al.
(2020) to identify the MF for 9 different M-ary QAM signals over
different OSNR ranges. An experimentally generated data set
consisting of 1,600 gray scale images of ring constellations per
modulation format from the I/Q output of a coherent receiver,
with a signal datarate of 12.5 GBd was used. The OSNR was
varied from 10 to 35 dB and all the different formats were
identified with 100% accuracy. This technique required less
memory and execution time compared to a multi-layer
perceptron and floating CNN.

In Zhang et al. (2020), MFI was done using a CNN that took as
input 3 images generated mapping the IQ output from a coherent
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receiver onto a 3D stokes space, and then projecting it onto 3 2D
stokes planes. Numerical simulations were done for 28 GBd PDM
signals and 6 modulation formats (BPSK, QPSK, 8, 16, 32, and 64
QAM) in OSNR conditions varying from 9 to 35 dB. 68,400 and
16,200 images in total are used to train and test the CNN
respectively. Results show identification accuracy of 99.96%
when the OSNR is above 15 dB.

PCA was used in Xu et al. (2020) to identify the MF of 6
formats (BPSK, QPSK, 8, 16, 32 and 64 QAM). 3 PC’s were
extracted from 2048 symbols of the stokes parameters from the
received signals of a coherent receiver with OSNR varied from 8
to 40 dB and used as a reference database. Testing showed that
100%MFI accuracy could be obtained at minimumOSNR’s of 10,
8, 12, 18, 14 and 23 dB for BPSK, QPSK, 8, 16, 32 and 64 QAM
PDM 28 GB d signals respectively. Experimental verification was
also done on a dataset containing 30,720 symbols after
construction of a reference from 2048 symbols for 20 GBd
QPSK, 8, 16 and 32 QAM signals and also achieved 100%
accuracy.

In Fan et al. (2018) MF and bit rate were determined by a
MTL-CNN using 10/20 Gbps RZ-OOK, NRZ-DPSK and NRZ-

OOK signals and phase portraits over various impairment
ranges for OSNR, CD and PMD. Both MF and BR were
identified with 100% accuracy. 100% accuracy was also
attained by the same authors using a similar MTL-CNN
structure but combining features from the different CNN
layers and constructing phase portraits from ASCS (Fan
et al., 2019).

Amulti-inputMTL-DNNwas used to ascertain themodulation
format and bitrate and simultaneously monitor OSNR and CD in
Luo et al. (2021). An experiment was carried out over different
OSNR ranges and three CD values using as input AADTPs and
AAHs on 14/28 Gbd QPSK and 16QAM signals. MF and BR were
identified with accuracy of 100 and 99.81%, respectively.

In Fan et al. (2018) MF and bit rate were identified by a MTL-
CNN using 10/20 Gbps RZ-OOK, NRZ-DPSK and NRZ-OOK
signals and phase portraits over various impairment ranges for
OSNR, CD and PMD. BothMF and BR were identified with 100%
accuracy. 100% accuracy was also attained by the same authors
using a similar MTL-CNN structure but combining features from
the different CNN layers and constructing phase portraits from
ASCS (Fan et al., 2019).

TABLE 4 | Summary of existing OPM works-coherent detection.

ML algorithm Signal type (BR-MF) Impairment Performance References

DNN 16b- QPSK OSNR (7.5–31) ME � 1.6 Tanimura et al.
(2016)

CNN 14b- and 16b- QPSK, 16 QAM,
64 QAM

OSNR (11–33) Bias error < 0.2 Cho et al. (2019)

ANN 56.8b-16 QAM OSNR Error < 0.6 Kashi et al.
(2017)

ANN 35b-16 QAM non-linear SNR Std error < 0.23 Caballero et al.
(2018b)

ANN 12.5b- M-ary QAM OSNR (10–35) MAE 0.167
LSTM NN 28b-/35b-16 and 64 QAM OSNR (15–30) MAE 0.1/0.05, 0.04/0.04 Wang et al.

(2019b)
DNN 112- QPSK, 16-QAM, and 240-

64 QAM
OSNR Mean errors 1.2, 0.4, 1 Khan et al.

(2017)
CNN 25b- QPSK, 8PSK, 8 QAM, 16 QAM,

32 QAM 25b- 64 QAM, 25b- QPSK*,
16 QAM*

OSNR (15–30) OSNR (20–35) >99% accuracy >95% max. error
0.6*, 0.7*

Wang et al.
(2017)

TL-DNN 56- QPSK OSNR (6–20) RMSE <0.1 Xia et al. (2019)
SVM, ANN, K nearest
neighbors, Decision tree

20- QPSK OSNR accuracy 100%, 65.625, 100,
73.124%

Wang et al.
(2019c)

CNN 12.5b- M-ary QAM OSNR (10–35) 98.91 accuracy Zhao et al.
(2020)

MTL-ANN 12.5b M-QAM OSNR (10–35) Accuracy 98.7% Yu et al. (2019)
LSTM-NN 28b-/35b- 16/64 QAM OSNR (15–30), CD (1,360–2040) MAE <0.1 and <0.64 Wang et al.

(2019a)
ANN 112- QPSK, 16 QAM, 120- 64 QAM

10b/20b- QPSK* 16 QAM*
OSNR (15–26,19–29,22–31) OSNR (13–26,
20–30)*

RMSE 0.17, 0.3, 0.68 RMSE 0.46
and 0.65*

Wang et al.
(2020)

MTL-CNN 28b- (8, 16), 32, 64 QAM and 8-PSK,
QPSK

OSNR (12–30), (17–33), (18–33), (12–30),
(10–30)

Mean errors 0.26, 0.4, 0.85, 0.64,
0.17, 0.19

Feng et al. (2020)

LSTM-NN 30b- 16 QAM, 30b- QPSK* OSNR (15–24) STD < 0.4, <0.67* Ye et al. (2021)
CNN 10b- QPSK OSNR (0–20), CD (160–1,120) and different

mode coupling coefficients
Coefficients 0.98, 0.92, 0.91 Saif et al. (2021)

ANN 28- QPSK, 8, 16, 64 QAM QPSK, 8
and 16 QAM*

OSNR (10–16, 12–18, 15–22, 22–29)
(10–17, 14–20, 17–25)*

Mean errors 0.005, 0.2, 0.17, 0.67
(0.15, 0.41, 0.49)*

Xiang et al.
(2019)

ANN 28- QPSK, 8 PSK, 8, 16, 64 QAM
QPSK, 8PSK, 16 QAM*

OSNR (10–18, 12–20, 12–20, 16–24, and
22–28) (9.8–16.8, 12–19, 16–23)*

MSE 0.086, 0.125, 0.038, 0.17,
0.40. Mean error (0.13, 0.29,0.41)*

Xiang et al.
(2021)

All units for OSNR,CD, PMD are in dB, ps/nm, and ps, respectively. *indicates experimental values and simulation otherwise. BRb-MF represents bitrate (GBd)-modulation format and
bitrate in Gbps otherwise.
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A multi-input MTL-DNN was used to find modulation
format and bitrate and simultaneously monitor OSNR and
CD in Luo et al. (2021). An experiment was carried out over
different OSNR ranges and three CD values using as input
AADTPs and AAHs on 14/28 Gbd QPSK and 16QAM signals.
MF and BR were identified with accuracy of 100 and 99.81%,
respectively.

The authors in Zhang et al. (2018) used a 3-layer
ANN(202,40,5) to identify 5 QAM formats in an
experimental IM-DD QAM-OFDM system using AH’s as
input. The MFI accuracy obtained was close to 100% for 4
and 16 QAM over the entire range of received optical power,
while 32, 64 and 128 QAM got similar accuracy when the
optical power exceeded −11 dBm.

In Feng et al. (2020) a MTL-CNN was shown to identify MF
with 100% accuracy for mPSK and mQAM signals at a baud rate
of 28 GBd and OSNR varied from 10 to 33dB.

A 3-layer ANN was also shown in Xiang et al. (2019), and
Xiang et al. (2021) that achieved 100%MFI accuracy for different
values of OSNR between 10–28 dB for 5 modulation formats.

The reviewed works on MFI are summarized in Table 5.

5.4 Application of Photonic Reservoir
Computing in Optical Performance
Monitoring
Photonic reservoir computing in the optical domain has been
considered as an alternative to Digital Signal Processing for
some years (Pachnicke and Li, 2020). A reservoir computer (RC)
typically consists of an input, reservoir and readout. A input
signal is fed to the reservoir, consisting of multiple randomly
connected non-linear nodes, that function like a neural network.
The input signal can alter the current and future states of the
reservoir. The output of the reservoir is then readout as a linear

combination of the different states in the reservoir. The input
weights and node connections are fixed and thus the training
complexity is reduced to a linear one at a single node at the
readout (Vandoorne et al., 2008; Appeltant et al., 2011;
Pachnicke and Li, 2020). A common implementation that
has been presented in the literature uses a single non-linear
element in combination with a delay loop (Appeltant et al.,
2011), which can be implemented in the optical domain using a
semiconductor laser and a fiber loop (Appeltant et al., 2011;
Larger et al., 2012; Brunner et al., 2013). Other approaches have
used a network of several interconnected Semiconductor
Optical Amplifiers (SOA’s) (Vandoorne et al., 2008;
Vandoorne et al., 2011), and silicon micro-ring resonators
(Mesaritakis et al., 2013). (Vandoorne et al., 2014) has also
shown a RC implementation using a passive silicon chip where
the non-linearity is transferred to the readout, whose output is
then passed to a linear classifier. Implementing the RC using
photonic devices brings several advantages such as speed due to
their inherently parallel computation nature, low power
consumption and high bandwidth operation which are direct
results of using light rather than electrical signals (Larger et al.,
2012; Vandoorne et al., 2014). The authors in Cai et al. (2021)
have applied this concept of reservoir computing using a
semiconductor laser and delay line to identify the
modulation format of 10 Gb/s OOK, 40 Gb/s DQPSK and
100 Gb/s 16-QAM signals in varying OSNR (12–26 dB), CD
(−500 to 500 ps/nm) and DGD (0–20 ps) conditions. The input
features were derived fromAAH’s. From a dataset size of 11,700,
2,700 modulation signals were used to train the model using
ridge regression and 100 samples used for testing. The training
and testing process is repeated five times with the different
sample sets and using 400 virtual nodes. The method achieved a
classification accuracy of 95.1, 95.7 and 95.5% for OOK, DPQSK
and 16-QAM.

TABLE 5 | Summary of ML methods used for MFI.

ML method Feature type Modulation format Accuracy (%) Ref

PCA ADTP 10/20 Gb/s OOK, 40/100 Gb/s QPSK, 100/200 Gb/s 16 QAM 100 Tan et al. (2014)
DNN AH 112 Gb/s QPSK, 16 QAM, 240 Gb/s 64-QAM 97.5 Khan et al. (2017)
ANN AH M-ary QAM 95.7 Li et al. (2020)
MTL-ANN AH OOK, PAM4, PAM8 100 Wan et al. (2018)

M-QAM 100 Yu et al. (2019)
ANN AH 10 Gb/s OOK, 40 Gb/s DPSK, 40 Gb/s ODB, 40 Gb/s

DQPSK, 100 Gb/s QPSK, 200 Gb/s 16QAM
99.6 Zhang et al. (2016)

ANN AH PAM4, PAM8 95 simulation, 100
experiment

Huang et al. (2021)

B-CNN Ring constellation images M-ary QAM 100 experiment Zhao et al. (2020)
CNN 2D stokes plane images M-QAM 99.96 Zhang et al. (2020)
PCA Stokes parameters M-QAM 100 Xu et al. (2020)
MTL-CNN ADTPs 10/20 Gb/s OOK, OOK, DPSK 100 Fan et al. (2018)
MTL-ANN ASCS phase portraits 60/100 Gb/s QPSK, 16, 64 QAM 100 Fan et al. (2019)
MTL-DNN AADTP’s and AAH’s 14/28 Gbd QPSK, 16 QAM 100 Luo et al. (2021)
ANN
(202,40,5)

AHs 4, 16, 32, 64, 128 QAM close to 100 Zhang et al. (2018)

MTL-CNN Intensity density and differential
phase density diagram

28 GBd mQAM and mPSK 100 Feng et al. (2020)

ANN Amplitude statistics and stokes
parameter

mPSK and mQAM 100 Xiang et al. (2019); Xiang
et al. (2021)
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6 DISCUSSION

The most common features used in the current OPM works for
feature selection are eye diagrams, phase portraits and
amplitude histograms. In some cases, widely known features
from these plots such as statistical means, variances, standard
deviations etc, counts of occurrences per bin, eye diagram
parameters like eye closure, crossing amplitude etc. have been
used, while in others new features have been defined to exploit
visible differences in the plots (Jargon et al., 2009a; Caballero
F. J. et al., 2018; Saif et al., 2021). Manual definition of features
is a difficult task which requires experience and also makes it
impossible to distinguish patterns when there are only slight
differences for example, the performance of ANN’s have been
shown to deteriorate beyond certain OSNR’s because there is
very little distinction between the eye diagrams especially for
higher modulation formats (Thrane et al., 2017). It also makes
it difficult to scale the ML algorithm to a different signal type
than what it was trained with. To mitigate this, deep learning
techniques have been studied where the algorithm can learn its
own features from the input data, the commonest way being by
supplying it with processed images (Wang et al., 2017; Fan
et al., 2019; Fan et al., 2020; Zhang et al., 2020) and the 4-
tributary output of the coherent receiver. Of course, this comes
with more complexity since deep learning algorithms are
generally more difficult to train. Furthermore, in cases
where images are used, some amount of image processing is
required (Skoog et al., 2006; Zhang et al., 2020).

Artificial neural networks have been very widely used for OPM
in direct detection systems. The reviewed works have shown that
in some cases, even simple ANN’s with one hidden layer and as
low as three hidden neurons and as few as one input feature are
capable of accurately predicting OSNR, CD, and PMD.
Correlations of upto 0.997 have been obtained. The
performance of the ANN depends on the input features
selected and their number and also on the signal type. SVMs,
PCA and ridge regression have also been used for but in very
limited works. Deep learning techniques have also been shown in
the literature but require significant time and more features to
accurately train.

Many of the techniques used are dependent on the signal type
hence it is assumed that the monitoring unit already has
knowledge of the signal type. Moreover, in the cases where
multi-impairment monitoring is required of different signal
types, the ANN has to be trained more than once or multiple
ANN’s have to be used for each signal type. Tan et al. (2014)
proposed amethod using PCA and that was transparent to the BR
and MF but required training with multiple combinations of MF-
BR-impairments hence required a significant amount of training
data. More recently, Zheng et al. (2020) has shown a method
which is transparent to the signal type and only requires input
power as a feature. However, it has only been used to measure
OSNR. Other works have also utilized multi-task learning and
deep learning (Fan et al., 2018; Wan et al., 2018; Cheng et al.,
2020) to simultaneously identify the signal type and impairments.
These also required generating large training datasets with
different combinations of the signal type and impairment

levels. Very few works have measured other impairments such
as non-linearity whose monitoring is also crucial for optical
networks.

For coherent detection systems, neural networks have been
used and shown to perform better than other methods where
there have been compared except in one case in Wang D. et al.
(2019). ANN’s still suffer frommanual feature generation and as
such most of the literature uses DNN’s and CNN’s for coherent
detection systems which can learn their own features from the 4
tributary output of the coherent receiver, images of
constellations in the Jones or Stokes space or AH’s. The
challenge is that the training takes a considerable amount of
time and a very large number of samples are required to produce
accurate models. Nevertheless, after the training stage, the
monitoring stage takes a shorter time, which is the critical
time for an OPM monitor in a real system, since he training
can be done off-line. Many of the methods have also been shown
to maintain their accuracy in the presence of linear
impairments. Zhao et al. (2020) tried to compare the
performance of their joint MFI and SNR predictor by
simulation for different transmission parameters noting that
future networks will have varying parameters. They varied the
transmission distance and launch power. They showed that if
the DNN’s were trained each time there was a change in one
parameter, 100% accuracy could be obtained for both MFI and
OPM, whereas lower accuracy was obtained if trained once with
a dataset consisting of all the possible parameter variations.

It is difficult to directly compare one ML implementation in
one work over the other because different authors have carried
out their simulations/experiments for different impairment
ranges, signal types and they have classified the performance
of their algorithms in different ways.

In the reviewed literature where MFR and BRI have been
investigated, again ANN’s and deep learning neural networks
have been the most commonmethod of choice and the bulk of the
work has achieved 100% identification accuracy.

Photonic reservoir computing is a promising technology
for OPM and MFR since it reduces the training complexity of
neural network based methods which has been highlighted as
a key challenge in the reviewed works that have employed
them. Moreover, signal processing in the optical domain
allows for high speed and high bandwidth operation which
are critical for future communication networks.

7 CONCLUSION

Optical performance monitoring has been an important aspect of
optical communications for a very long time. As networks have
becomemore heterogeneous and dynamic, they have also become
more complex. Fiber network technology, which can already
provide sufficient capacity, has had to evolve to meet the
reliability demands. In addition to the light paths that will
have to constantly change in order to provide bandwidth on
demand, the signal parameters are also expected to be dynamic
during transmission in accordance with link conditions. As a
result, real time link performance has become important.
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Application of machine learning to Optical Performance
Monitoring has garnered significant interest as a promising
technology to aid in this task and has been shown to be
possible, and to provide accurate prediction for multiple
impairments as long as the algorithm is well trained.
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