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In this paper, the problem of audio semantic communication over wireless networks is
investigated. In the considered model, wireless edge devices transmit large-sized audio
data to a server using semantic communication techniques. The techniques allow devices
to only transmit audio semantic information that captures the contextual features of audio
signals. To extract the semantic information from audio signals, a wave to vector (wav2vec)
architecture based autoencoder is proposed, which consists of convolutional neural
networks (CNNs). The proposed autoencoder enables high-accuracy audio
transmission with small amounts of data. To further improve the accuracy of semantic
information extraction, federated learning (FL) is implemented over multiple devices and a
server. Simulation results show that the proposed algorithm can converge effectively and
can reduce the mean squared error (MSE) of audio transmission by nearly 100 times,
compared to a traditional coding scheme.
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1 INTRODUCTION

Future wireless networks require high data rate and massive connection for emerging applications
such as the Internet of Things (IoT) (Saad et al., 2020; Lee et al., 2017; Hu et al., 2021; Al-Garadi et al.,
2020; Huang et al., 2021). In particular, in human-computer interaction scenarios, humans may
simultaneously control multiple IoT devices using speech, thus making audio communication
pervasive in wireless local area network such as smart home. However, due to bandwidth constrains,
the wireless network in smart homemay not be able to support a broad and prolonged wireless audio
communication. This, in turn, motivates the development of semantic communication techniques
that allow devices to only transmit semantic information. Semantic communication aims at
minimizing the difference between the meanings of the transmitted messages and that of the
recovered messages, rather than the recovered symbols. The advantage of such an approach is that
semantic communication transmits less amounts of data than traditional communication
techniques. However, despite recent interest in semantic communications (Guler et al., 2018; Shi
et al., 2020; Xie et al., 2020; Uysal et al., 2021; Xie and Qin, 2021), there is still a lack of reliable
encoder and decoder models for audio semantic communication (ASC).

Existing works in Shannon, (1948), Bao et al. (2011), Guler et al. (2018), Shi et al. (2020), Uysal
et al. (2021), Xie et al. (2020), Xie and Qin (2021) studied the important problems related to semantic
communications. In Shannon (1948), the authors pointed out that semantic communication should
consider higher-level information such as content or semantic-related information rather than
relying only on data-oriented metrics such as data rate or bit error probability. To efficiently transmit
information, the work in Bao et al. (2011) investigated a model-based approach for semantic data
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compression and showed that classical source and channel coding
theorems have semantic counterparts. Furthermore, the authors
in Guler et al. (2018) proposed Bayesian game theory to design
the transmission policies for transceivers and minimize the end-
to-end average semantic metric while capturing the expected
error between the meanings of intended and recovered messages.
Besides, the authors in Shi et al. (2020) proposed a semantic-
aware network architecture to reduce the required
communication bandwidth and significantly improve the
communication efficiency. In Uysal et al. (2021), the authors
defined a semantic based network system to reduce the data
traffic and the energy consumption, hence increasing the wireless
devices that can be supported. The work in Xie et al. (2020)
proposed a deep learning (DL) based text semantic
communication system to reduce wireless traffic load.
Meanwhile, in Xie and Qin (2021), the authors developed a
new distributed text semantic communication system for IoT
devices and they showed that nearly 20 times compression ratio
can be achieved without any performance degradation. However,
most of these existing works (Shannon, 1948; Bao et al., 2011; Shi
et al., 2020; Guler et al., 2018; Uysal et al., 2021; Xie et al., 2020;
Xie and Qin, 2021) that focused on the use of semantic
communication for text data processing did not consider how
to extract the meaning out of the audio data. Here, we note that
audio data is completely different from text data since audio
signals have a very high temporal resolution, at least 16,000
samples per second (Jurafsky and Martin, 2009).

The prior art in Jurafsky and Martin (2009), Schneider et al.
(2019), Amodei et al. (2016), Oord et al. (2016) studied the
problem of audio feature extraction. In Jurafsky and Martin
(2009), the authors adopted the so-called Mel-frequency
cepstral coefficients (MFCC) features to represent the
characteristics of audio signals. However, MFCC features are
extracted only in a frequency domain, which lacks the contextual
relation mining of audio sequence data. Recently, the works in
Schneider et al. (2019), Amodei et al. (2016), Oord et al. (2016)
used DL based natural language processing (NLP) models to
extract audio semantic features. In particular, the authors in
(Schneider et al., 2019) proposed a wave to vector (wav2vec)
architecture to effectively extract semantic information. The
authors in Amodei et al. (2016) proposed an end-to-end
model that recognizes various language speeches. In Oord
et al. (2016), the authors proposed a speech generator which
can generate speech audio signals with different styles using wave
data. However, the works in Schneider et al. (2019), Amodei et al.
(2016), Oord et al. (2016) did not account for the impact of the
channel noise on the transmitted data. Meanwhile, the work in
Oord et al. (2016) did not proposed any method to generate the
audio signals from the transmitted semantic information.

The use of federated learning (FL) in edge networks was
studied in Bonawitz et al. (2019), Tran et al. (2019), Chen
et al. (2021a), Chen et al. (2020), Yang K. et al. (2020), Imteaj
et al. (2021), Li et al. (2020), Imteaj and Amini (2019), Chen et al.,
(2021b), Yang Z. et al. (2020), Kang et al. (2019). In Bonawitz
et al. (2019), Tran et al. (2019), the authors introduced FL method
to generate a global model through collaboratively learning from
multiple edge devices, thus learning a distributed algorithm

without sharing datasets. The work in Chen et al. (2021c)
proposed an FL framework in wireless networks and jointly
considered wireless resource allocation and user selection
while optimizing FL learning performance. To accelerate the
convergence of FL, the authors in Chen et al. (2020) proposed
a probabilistic user selection scheme to enhance the efficiency of
model aggregation, thus improving convergence speed and the FL
training loss. Besides, the authors in Yang K. et al. (2020)
introduced over-the-air computation for fast global model
aggregation which is realized using superposition property of a
wireless multiple-access channel. To explore the applications of
FL, the works in Imteaj et al. (2021), Li et al. (2020), Imteaj and
Amini (2019), Chen et al. (2021a) provided comprehensive
summaries on FL deployed on IoT devices. Besides, the work
in Yang Z. et al. (2020) proposed an energy-efficient scheme to
minimize the FL energy consumption and complete time, where
closed-form solutions of wireless resource allocation are derived.
In Kang et al. (2019), the authors proposed efficient incentive
mechanisms for FL to improve the learning security and accuracy,
which used blockchain based reputation with contract theory.
However, most of the above works (Bonawitz et al., 2019; Tran
et al., 2019; Chen et al., 2021b; Chen et al., 2020; Yang K. et al.,
2020; Imteaj et al., 2021; Li et al., 2020; Imteaj and Amini, 2019;
Chen et al., 2021c; Yang Z. et al., 2020; Kang et al., 2019) studied
the prediction models which ignored the impact of FL on the
performance of semantic communication.

The main contribution of this paper is a novel semantic
communication model for audio communication, which is
trained via federated learning (FL). Our key contributions
include:

• We develop a realistic implementation of an ASC system in
which wireless devices transmit large audio command data
to a server. For the considered system, the bandwidth for
audio data transmission is limited and, thus, semantic
information is extracted and transmitted to overcome
this limitation. To further improve the accuracy of
semantic information extraction, the semantic extraction
model must learn from multiple devices. Hence, FL is
introduced to train the model with reducing the
communication overhead of sharing training data. We
formulate this audio communication problem as a signal
recovery problem whose goal is to minimize the mean
squared error (MSE) between the recovered audio signals
and the source audio signals.

• To solve this problem, we propose a wav2vec based
autoencoder that uses flexible convolutional neural
networks (CNNs) to extract semantic information from
source audio signals. The autoencoder consists of an
encoder and a decoder. The encoder perceives and
encodes temporal features of audio signals into semantic
information, which is transmitted over an imperfect wireless
channel with noise. Then, the decoder decodes the received
semantic information and recovers the audio signals while
alleviating channel noise. In this way, the proposed
autoencoder transmits less data while jointly designing
the source coding and channel coding in the autoencoder.
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• To improve the accuracy of semantic information
extraction, FL is implemented to collaboratively train the
autoencoder over multiple devices and the server. In each FL
training period, each local model is first trained with the
audio data from the local device. Then, the parameters of the
local models are transmitted to the server. Finally, the server
aggregates the collected local models into a global model
and broadcasts the global model to all the devices
participated in the FL. Thus, the proposed autoencoder
can integrate more audio features from multiple users
and, hence, improve the accuracy of semantic
information extraction.

• We perform fundamental analysis on the noise immunity
and convergence of the proposed autoencoder. We
theoretically show that the number of semantic features,
time domain downsampling rate, and FL training
method can significantly influence performance of the
autoencoder.

Simulation results show that the proposed algorithm can
effectively converge and reduce the MSE between the
recovered and the source audio signals by nearly 100 times,
compared to a traditional coding scheme. To our best
knowledge, this is the first work that studies the ASC model
and uses FL to improve model performance, while avoiding the
need for sharing training data.

The rest of this paper is organized as follows. The system
model and problem formulation are discussed in System
Model and Problem Formulation. In Audio Semantic
Encoder and Decoder, we provide a detailed description of
the proposed audio semantic encoder and decoder. The
simulation results are presented and analyzed in
Simulation and Performance Analysis. Finally, conclusions
are drawn in Conclusion.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a spectrum resource-limited uplink wireless
network to deploy an ASC system, which consists of U
edge devices, B base stations (BSs), and one server. Each
edge device will transmit large audio packets to the server via
the closest BS, as shown in Figure 1. Due to the limited
spectrum, audio semantic information must be extracted for
data transmission, thus reducing communication overhead
and improving the spectrum efficiency. In particular, edge
devices must send audio semantic information via wireless
channels to the BSs, and, then, the semantic information is
delivered via optical links to the server for decoding. To
extract the audio semantic information with high efficiency
and accuracy, we assume that the edge devices and the server
cooperatively train an ASC model using FL. The ASC model
consists of an ASC encoder and an ASC decoder, as shown in
Figure 2. In particular, the ASC encoder is deployed on each
edge device to extract audio semantic information while the
ASC decoder is deployed on the server to recover audio
signals. The objective of the ASC model is to recover the
audio signals as accurate as possible. We assume that the
connections between BSs and the server use optical links and
have sufficient spectrum resource to support accurate
transmission. We mainly consider the transmission
impairments from the wireless channel between the edge
devices and BSs.

To enhance noise immunity, the ASC model must be
trained using the received semantic information while
taking into account the wireless channel impairments.
Hence, the BSs are set to reliably send back the received
semantic information to each device, which only occurs
during the short-term training stage. Since the extraction
of semantic information determines the accuracy of ASC, we
consider the architecture design of the ASC model for audio
communications.

2.1 ASC Encoder
The ASC encoder is used to encode the input audio data and to
extract the semantic information from the raw audio data.
We define a � [a1, a2, . . . , aT ] as the raw audio data vector
where each element at is the audio data in sample t with T
being the number of samples. Let x � [x1, x2, . . . , xN ] be the
semantic information vector to be transmitted where xn is
element n in the vector. The ASC encoder extracts x from a by

FIGURE 1 | The architecture of an FL based ASC system over wireless
networks.

FIGURE 2 | The architecture of audio semantic communication (ASC).

Frontiers in Communications and Networks | www.frontiersin.org September 2021 | Volume 2 | Article 7344023

Tong et al. Federated Learning for Audio Semantic Communication

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


using a neural network (NN) model parameterized by θ, thus,
the relationship between a and x can be given by:

x � Tθ(a), (1)

where Tθ(·) indicates the function of the ASC encoder.

2.2 Wireless Channel
When transmitted over a wireless channel, semantic information
will experience channel fading and noise. We assume that the
audio transmission uses a single wireless link and, hence, the
transmitted signal will be given by:

y � h · x + σ, (2)

where y is the received semantic information at the decoder with
transmission impairments, h is the channel coefficient, and
σ ∼ N (0, σ2I) is a Gaussian channel noise at the receiver with
variance σ2. I is the identity matrix.

2.3 ASC Decoder
The ASC decoder is used to recover the audio data a from the
received semantic information y and to alleviate transmission
impairments. The functions of the decoder and the encoder are
generally reciprocal. Let â be the decoded audio data and φ be the
parameters of the NN model in the ASC decoder. Then the
relationship between â and y can be given by:

â � Rφ(y), (3)

where Rφ(·) indicates the function of the ASC decoder.

2.4 ASC Objective
The objective of the ASC system is to recover the audio signals as
accurate as possible. Since ASC system transmits semantic
information, the use of bit error rate (BER) as a metric is not
suitable to assess ASC. Hence, we use the mean squared error
(MSE) to evaluate the quality of ASC at the semantic level. The
ASC system objective function can be formulated to minimize the
MSE between a and â, as follows:

min
θ,φ

LMSE θ,φ, a, â( ) � min
θ,φ

1
T
∑T
t�1

at − ât)2,( (4)

where θ and φ are the parameters of the ASC encoder and ASC
decoder, respectively. Here, we assume that the architectures of
Tθ and Rφ are stay fixed and we only update the weights of NNs
when solving problem Equation 4. Hence, it is necessary to
properly design the architecture of the ASC encoder and the ASC
decoder. To this end, we introduce an autoencoder to extract
audio semantic information.

3 AUDIO SEMANTIC ENCODER AND
DECODER

To solve problem (Eq. 4), we first propose a wav2vec architecture
based autoencoder to efficiently extract audio information. Then,
to further improve the accuracy of semantic information
extraction, the autoencoder is trained with FL over multiple

devices and the server. Thus, the proposed autoencoder can
learn semantic information extraction from the audio
information of diverse users.

3.1Wav2vecArchitectureBasedAutoencoder
In the proposed architecture, as shown in Figure 2, the ASC
system can be interpreted as an autoencoder (O’Shea and
Hoydis, 2017; Goodfellow et al., 2016; Lu et al., 2020; Dörner
et al., 2018), This autoencoder is trained to recover the input
signals at the output end using compressed data features.
Since the data must pass through each layer of the
autoencoder, the autoencoder must find a robust
representation of the input data at each layer (Lu et al.,
2020). In particular, NN models are used to build each
layer in the autoencoder. Since CNNs are particularly good
at extracting features and can be parallel deployed over time
on multiple devices, we prefer to use CNNs instead of other
NNs such as recurrent neural networks (Shewalkar et al.,
2019; Hori et al., 2018; Graves et al., 2013). Next, we
introduce our CNN-based wav2vec architecture for
semantic information extraction.

To extract the semantic information, we use a wav2vec
model as the audio semantic encoder. A simplification of our
wav2vec architecture is shown in Figure 3. From Figure 3,
we see that, the wav2vec architecture uses two cascaded
CNNs, called feature extractor and feature aggregator
(Schneider et al., 2019), to extract audio semantic
information. Given the raw audio vector, the extractor
refines rough audio features and the aggregator combines
the rough audio features into a higher-level latent variable
that contains semantic relations among contextual audio
features (Schneider et al., 2019).

According to the wav2vec architecture, we design an audio
semantic decoder, whose network architecture is symmetrical
to the original wav2vec model (Schneider et al., 2019).
Combining together an audio semantic encoder and the
corresponding semantic decoder, we propose a wav2vec
based autoencoder as shown in Figure 4. In the

FIGURE 3 | The wav2vec architecture.
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autoencoder, the audio semantic encoder and the decoder
extracts the semantic information and recovers audio
signals from the semantic information, respectively. Each
single encoder or decoder implements the function of joint
source coding and channel coding. Considering the
transmission impairments, the semantic information is
designed to accurately capture the time domain contextual
relations of the audio signals, so as to resist channel fading and
noise interference.

Figure 5 shows the NN layers of the proposed autoencoder.
According to Figure 5, we observe that, given the raw audio
signals a, the audio semantic encoder is used to extract the
semantic vector x. In the proposed audio semantic encoder, the
data first passes through a feature extractor then a feature
aggregator. The feature extractor and the aggregator consist
of Lext and Lagg convolution blocks, respectively. In particular,
each convolution block consists of 1) a convolution layer, 2) a
dropout layer, and 3) a batch normalization layer, defined as
follows:

• Convolutional Layer: In CNNs, a convolutional layer is used
to extract the spatial correlation of the input data with 1-D
convolution between the input data Zl−1 and the kernel
matrix. Mathematically, given the input Zl−1 ∈ Rλl−1×Ml−1

,
the output of the convolutional layer l is
Zl � [z l,1, . . . , z l,m, . . . , z l,M

l
],m � 1, . . . ,Ml , where

z l,m ∈ Rλl×1 is the feature map m of convolutional layer l
with Ml being the number of output features. Hence, the
input Z0 of convolutional layer 1 is the raw audio data or the
output of the last NN module. The output of feature map
zl,m in each convolutional layer l is given by:

z l,m � f ∑Ml−1

k�1
z l−1,k⊗W l,m

c + bl,mc⎛⎝ ⎞⎠, (5)

where f(x) � x is the linear activation function,Ml−1 is the number
of feature maps in the last convolutional layer l—1, ⊗ denotes 1-D
convolution operation, andW l,m

c ∈ Rsk×1 and bl,mc are convolution
kernels and bias vector of feature map m in convolutional layer l,
respectively, with sk being the kernel size. Let the convolution stride
be sc, the padding size be p, and the size of feature

map λl satisfies λl � ⌊λl−1+2p−sksc
⌋ + 1.

• Dropout Layer: The inputZl of a dropout layer l is the output of
convolutional layer l. In the training stage, the dropout layer
randomly abandons the effect of each neuron with a probability
called dropout rate, and, in the inference stage, the dropout layer
counts on the effects of all neurons. The dropout layer is used as
a regularization approach to avoid overfitting problem.

• Batch Normalization Layer: A batch normalization layer
normalizes the values of activated neurons to avoid
gradient vanishing. We define αi as the value of the
activated neuron i in convolution block l. The
normalized value α̂ of the neuron is given by α̂i � αi−μB���

σ2B+ϵ
√ ,

where μB � 1
λl
∑λl

i�1αi, σ2B � 1
λl
∑λl

i�1(αi − μB)2, and ϵ is a

positive constant.

Since the amplitude of an audio signal is limited, tanh(·) is
introduced as the activation function of the output layer in the feature
extractor (Oord et al., 2016), where tanh(x) � ex−e−x

ex+e−x . To shape the
transmitted semantic informationwith an adequate amplitude, the last

FIGURE 4 | Data shape in the proposed autoencoder over ASC system.

FIGURE 5 | The architecture of the proposed autoencoder.
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layer of the feature aggregator is set as batch normalization layer
without activation function (Dörner et al., 2018).

In the proposed audio semantic decoder, as shown in Figure 5, the
received semantic information first passes through a feature
decomposer then an audio generator. Different from the encoder, a
deconvolution operation is introduced to build the feature decomposer
and audio generator which consist of Lde and Lgen deconvolution
blocks, respectively. Correspondingly, each deconvolution block
consists of 1) one deconvolution layer, 2) one dropout layer, and 3)
one batch normalization layer. Mathematically, the processes of the
dropout layer and the batch normalization layer are similar to those in
the convolution blocks, except for the deconvolution layer.

In the deconvolution layer, the feature matrix is first uniformly
filled with zeros in each column. Given the filled input matrix
~Z
l−1 � [~z l−1,1, . . . , ~z l−1,m, . . . , ~z l−1,M

l−1
] ∈ R

~λl−1×Ml−1
, the output of a

deconvolution layer l is Zl � [z l,1, . . . , z l,m, . . . , z l,M
l
]

∈ Rλl×Ml
,m � 1, . . . ,Ml , where ~z l,m is the filled feature map m

and ~λl−1 is the filled feature map size. The output of feature map
zl,m in each convolutional layer l is given by:

z l,m � f ∑Ml−1

k�1
~z l−1,k⊗W l,m

d + bl,md⎛⎝ ⎞⎠, (6)

whereMl−1 is the number of features of layer l−1, andW l,m
d and bl,md

are deconvolution kernels and bias vector in deconvolutional layer l,
respectively. In deconvolution layer, the filled feature map size ~λl−1
satisfies ~λl � sc(λl−1 − 1) − 2p + 2sk − 1 and the size of feature map λl
satisfies λl � ~λl−1 − sk + 1 � sc(λl−1 − 1) − 2p + sk, where p is the
padding size of layer l. Note that, to appropriately recover the audio
signals, the output layer of the audio generator is set as tanh(·) function.

To amplify the inference error and avoid gradient vanishing,
we introduces the normalized root mean squared error (NRMSE)
for the autoencoder. Then the objective of the autoencoder is
given by:

min
θ,φ

LNRMSE θ,φ, a, â( ) � min
θ,φ

∑T
t�1 at − ât( )2∑T

t�1a2t
. (7)

Algorithm 1 Local model training algorithm of the autoencoder.

3.2 FL Training Method
Next, our goal is to minimize the errors between the recovered
audio signals and the source audio signals using FL training
method. In FL, the server and the devices collaboratively learn the
proposed autoencoder by sharing the model parameters (Liu
et al., 2020; Chen et al., 2021a; Chen et al., 2021b; Yang et al.,
2021). We definew � (θ, φ) as the total parameter of the proposed
autoencoder, which includes both the encoder and decoder. The
server generates a global model wg and each device i locally trains
a local autoencoder model wi which shares the same architecture
as wg, as shown in Figure 1. The global model periodically
aggregates local models from U devices that participate in FL
and broadcasts the aggregated global model back to the devices.
Then the aggregated global model can be given by w g � 1

U∑U
i�1wi.

We useAi to capture the audio dataset of local model i. According
to problem Eq. 7, the objective of FL training method is given by:

min
wg

∑U
i�1

LNRMSE wi,Ai, Âi( ). (9)

Algorithm 2 FL training algorithm of the global model (Imteaj
et al., 2021).

During the local model training stage, the server first defines
the architecture of the autoencoder and broadcasts it to all edge
devices to randomly initialize the local models. To keep the
coordination between the encoder and the decoder of the
proposed autoencoder, we jointly set that the encoder and the
decoder update the parameters simultaneously to minimize the
loss function Eq. 9. Hence, both the encoder and decoder update
the parameters with stochastic gradient descent (SGD) once after
a batch of data passes through the autoencoder.The training
process of each local model can be shown in Algorithm 1, where
η in (8) is the learning rate. During the training process of the
global model, each edge device is set to transmit the parameters of
the local models wi to the server every a fixed number of epochs.
Thus, the server periodically collects the transmitted models,
aggregates the parameters of the local models, and then
broadcasts the updated global model to each device. In the
next period, the local models update their parameters through
training from local datasets Ai, before transmitting wi to the
server, as shown in Algorithm 1. The FL algorithm for the global
model is summarized in Algorithm 2.
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3.3 Complexity Analysis
The proposed FL algorithm used to solve problem Eq. 9 is
summarized in Algorithm 2. The complexity of the proposed
algorithm lies in training the proposed autoencoder. The
complexity for training the autoencoder is
O(∑L

l�1λ
2
l sk

2MlMl−1) (Wang et al., 2020), where L � Lext +
Lagg + Lde + Lgen, with Lext, Lagg, Lde, Lgen, and L being the
number of convolution or deconvolution layers in the feature
extractor, the feature aggregator, the feature decomposer, the
audio generator, and the proposed autoencoder, respectively. Let
Lo be the number of model aggregations until the FL global model
converges. The complexity of the FL training method is
O(LoU∑L

l�1λ
2
l sk

2MlMl−1) (Chen et al., 2020). In consequence,
the major complexity of training the autoencoder, which depends
on the number of NN layers, the kernel sizes and the numbers of
features in each layer, is linear. Meanwhile, since the layers in the
autoencoder are finite, the local training is achievable and, hence
the edge devices can support the FL training in the considered
wireless network. Once the training process is completed, the
trained autoencoder can be used for ASC in a long term period.

4 SIMULATION AND PERFORMANCE
ANALYSIS

To evaluate the proposed autoencoder, we train the model using a
training set from the speech dataset Librispeech (Panayotov et al.,
2015), which contains 1,000 h of 16 kHz read English speech. The
learning rate η is 10–5. The proposed autoencoder is trained under
additive white Gaussian noise (AWGN) channels with a fixed
channel coefficient h and a 6dB signal-to-noise-ratio (SNR), and
it is tested on 200,000 samples of speech data. The simulation
parameters are listed in Table 1 (Kang et al., 2020). We train the
model using FLmethod with 1 global model and 2 local models of
user 1 and user 2, each local model is trained using read speech
from a single person, and the FL models are tested with read

speech of another user 3. The global model aggregates local
models every 10 local training epochs.

For comparison purposes, we simulate a baseline scheme
for high-quality audio transmission, which uses 128 kbps
pulse code modulation (PCM) with 8 bits quantization levels
(Nakano et al., 1982) for source coding, low-density parity-
check codes (LDPC) (Gallager, 1962) for channel coding, and
64-QAM (Pfau et al., 2009) for modulation. In this section,
for notational convenience, we call the proposed autoencoder
for ASC a “semantic method,” and we call the baseline
scheme a “traditional method”. Note that, the autoencoder
is trained via NRMSE, and tested via MSE. This is because
that NRMSE induces larger gradient for training the
autoencoder and MSE provides more obvious fluctuations
for result comparison. To verify the performance of the
proposed FL algorithm, we compare two baselines: transfer
learning method and local gradient descent FL (Imteaj et al.,
2021). In the transfer learning method, the feature aggregator

TABLE 1 | Simulation parameters.

Module Setting Parameter Value

feature extractor Lext � 3 feature Ml 8,8,8
kernel size sk 1,2,4
stride sc 1,1,1
dropout rate 0.5

feature aggregator Lagg � 4 feature Ml 8,8,8,8
kernel size sk 2,4,8,16
stride sc 1,1,1,1
dropout rate 0.5

feature decomposer Lde � 4 feature Ml 8,8,8,8
kernel size sk 2,4,8,16
stride sc 1,1,1,1
dropout rate 0.5

audio generator Lgen � 4 feature Ml 8,8,8,1
kernel size sk 1,2,4,1
stride sc 1,1,1,1
dropout rate 0.5

FIGURE 6 | Visualizations of a raw audio fragment, the corresponding
semantic information that is reshaped in the block form, the received semantic
information, and the recovered audio signals.
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and the decomposer in the autoencoder are first initialized
with a pre-trained model, then the autoencoder is trained
using local audio data. In the local gradient descent FL, at the
start of each iteration, all devices first share an aggregated
model, then each device simultaneously computes a fixed
number of local gradient descent updates (1,000 steps) in
parallel.

Figure 6 shows examples of the raw audio data, the
extracted semantic information reshaped in block form,
the received semantic information, and the recovered
audio data in one local model. From Figures 6A–C, we see
that, the audio semantic information signals are amplified by
the proposed semantic encoder before being transmitted
through the channel. From Figure 6B, it is also observed
that, the extracted eight different blocks of semantic features

have correlations. From Figures 6C,D, we see that the
proposed semantic decoder eliminates the channel noise
from the received signals. The elimination of the noise is
due to the fact that the semantic decoder relieves the noise
using multiple semantic features. Figure 6 shows that the
proposed autoencoder can effectively guarantee the accuracy
of ASC.

Figure 7 shows how transmission MSE of a local model
using semantic method changes as the number of features
varies. From Figure 7, we see that, as the number of features
increases, the MSE of the proposed semantic method
decreases first and, then remains unchanged. This
phenomenon is due to the fact that higher dimension
features provide better semantic representations thus
improving the transmission performance of the semantic

FIGURE 7 | Transmission MSE of a local autoencoder model as the
number of features varies, in AWGN channels with a 6dB SNR.

FIGURE 8 | Transmission MSE of a local model using semantic method,
BER and transmission MSE of traditional method as SNR varies.

FIGURE 9 | Transmission MSE of the proposed semantic method with
different time domain downsampling rates. The number of semantic features
is 8.

FIGURE 10 | Convergence results of the proposed FL models.
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method. From Figure 7, we can also see that, when the
number of features is larger than 16, the MSE of the
semantic method tends to be leveling off. This result is
because of the existence of redundant semantic features
which provide limited noise immunity for ASC.

In Figure 8, we show how the transmission MSE of a
local model using the proposed semantic method, BER and
MSE of the traditional method change as the channel SNR
varies. In this simulation, the semantic method reduces
communication overhead by decreasing nearly 1/3 of the
transmission data amount compared to the traditional
method. From Figure 8, we observe that, as the channel SNR
increases, the error of communication decreases as expected.
From Figure 8, we can also see that our semantic method reduces
the transmission MSE by nearly 100 times, compared to the
traditional method, and the MSE of semantic method varies
flatter than that of traditional method. The improvement is
due to the fact that the semantic method has a better
transmission accuracy and noise immunity performance. From
Figure 8, we can also see that, the MSE of the traditional method
remains unchanged when the SNR is larger than 14 dB. The
phenomenon is because, for a lower BER, the accuracy of the
traditional coding scheme will reach the coding limit and, hence,
the MSE will stay at a quantization error level caused by PCM
quantization.

Figure 9 shows how the transmission MSE changes versus
various channel SNR, where the semantic method uses
different time domain downsampling rates. In this
simulation, lower time domain downsampling rates can
reduce transmission data amount exponentially and are
realized by changing the convolution strides in the feature
extractor and feature decomposer. From Figure 9, we can see
that, a lower time domain downsampling rate leads to more
transmission error, which is because of the more loss of
semantic information. From Figure 9, we can also observe

that as the SNR increases, the decreasing speed of the MSE
differs among different downsampling rates. The disparity is
due to the fact that, the semantic information extracted with
different downsampling rates has diverse sensitivities to the
SNR. Figure 9 shows that reducing the time domain sampling
rates decreases the communication accuracy. In consequence,
Figure 7 and Figure 9 demonstrate that, in terms of
improving the performance of semantic communication,
the complexity of semantic features trades off the data
compression rate.

In Figure 10, we show how the validation loss changes as
the training epoch increases. From Figure 10, we observe
that, the validation loss initially decreases with fluctuation
first and then remains unchanged. The fact that the validation
loss remains unchanged demonstrates that the FL algorithm
converges. From Figure 10, we can see that, when the FL
global model is aggregated, the loss of local models increases
for several epochs first and, then decreases in a long-term
view. The result is due to the difference of the multiple local
audio datasets from different users. At the beginning of
training, the aggregation of multiple local models will
critically change the parameter distribution of the global
model. Then, as the training process continues, the global
model parameters fit multiple local datasets. Hence the
fluctuation caused by FL model aggregation weakens, and
the local models of multiple users converge. From Figure 10,
we can also see that FL model aggregation further decreases
the lower bound of loss in each local model. This
phenomenon is because that FL training method
aggregates audio semantic features from multiple users,
thus enhancing model performance compared with local
training method.

Figure 11 shows how the transmission MSE of all
algorithms changes as the channel SNR varies. From
Figure 11, we observe that the performance of the
proposed model differs among the diverse users due to the
various audio characteristics. We can also see that transfer
learning can improve the model performance compared to
locally training. Besides, local gradient descent FL
outperforms part, but not all of the locally trained models.
The difference of the baselines is because that transfer
learning can further learn audio semantic extraction based
on pre-trained model parameters. Whilst local gradient
descent FL aggregates the global model with low
frequency, where the difference among local models leads
to the inefficiency on improving semantic extraction. From
Figure 11, we can also see that, the proposed FL algorithm
outperforms the locally trained models. The superiority is
because that the FL trained model aggregates audio
characteristics of all users and hence obtaining more
robust performance. We can also observe from the dotted
lines that the proposed FL training method is superior over
transfer learning and local gradient descent FL. The
superiority is due to the fact that the proposed FL
algorithm aggregates the model in a frequent and
synchronous way, which guarantees a more accurate
semantic extraction than that of the baselines.

FIGURE 11 | Transmission MSE of FL trained model, locally trained
models, transfer learning and local gradient descent FL.
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5 CONCLUSION

In this paper, we have developed an FL trained model over an
ASC architecture in the wireless network. We have
considered avoidance of training data sharing and heavy
communication overhead of the large-sized audio
transmission between edge devices and the server. To solve
this problem, we have proposed a wav2vec based autoencoder
to effectively encode, transmit, and decode audio semantic
information, rather than traditional bits or symbols, to
reduce communication overhead. Then, the autoencoder is
trained with FL to improve the accuracy of semantic
information extraction. Simulation results have shown that
the proposed algorithm can converge effectively and yields
significant reduction on transmission error compared to
existing coding scheme which uses PCM, LDPC and 64-
QAM algorithm.
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