
ORIGINAL RESEARCH
published: 29 April 2021

doi: 10.3389/frcmn.2021.657653

Frontiers in Communications and Networks | www.frontiersin.org 1 April 2021 | Volume 2 | Article 657653

Edited by:

Mehdi Bennis,

University of Oulu, Finland

Reviewed by:

Zhaohui Yang,

King’s College London, United

Kingdom

Yang Yang,

Beijing University of Posts and

Telecommunications (BUPT), China

*Correspondence:

M. Hadi Amini

moamini@fiu.edu

Specialty section:

This article was submitted to

Data Science for Communications,

a section of the journal

Frontiers in Communications and

Networks

Received: 23 January 2021

Accepted: 15 March 2021

Published: 29 April 2021

Citation:

Imteaj A and Amini MH (2021)

FedPARL: Client Activity and

Resource-Oriented Lightweight

Federated Learning Model for

Resource-Constrained

Heterogeneous IoT Environment.

Front. Comms. Net. 2:657653.

doi: 10.3389/frcmn.2021.657653

FedPARL: Client Activity and
Resource-Oriented Lightweight
Federated Learning Model for
Resource-Constrained
Heterogeneous IoT Environment

Ahmed Imteaj 1,2 and M. Hadi Amini 1,2*

1 Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL,

United States, 2 Sustainability, Optimization, and Learning for InterDependent Networks Laboratory (Solid Lab), Florida

International University, Miami, FL, United States

Federated Learning (FL) is a recently invented distributedmachine learning technique that

allows available network clients to performmodel training at the edge, rather than sharing

it with a centralized server. Unlike conventional distributed machine learning approaches,

the hallmark feature of FL is to allow performing local computation and model generation

on the client side, ultimately protecting sensitive information. Most of the existing FL

approaches assume that each FL client has sufficient computational resources and can

accomplish a given task without facing any resource-related issues. However, if we

consider FL for a heterogeneous Internet of Things (IoT) environment, a major portion of

the FL clients may face low resource availability (e.g., lower computational power, limited

bandwidth, and battery life). Consequently, the resource-constrained FL clients may give

a very slow response, or may be unable to execute expected number of local iterations.

Further, any FL client can inject inappropriate model during a training phase that can

prolong convergence time andwaste resources of all the network clients. In this paper, we

propose a novel tri-layer FL scheme, Federated Proximal, Activity and Resource-Aware

31 Lightweight model (FedPARL), that reduces model size by performing sample-based

pruning, avoids misbehaved clients by examining their trust score, and allows partial

amount of work by considering their resource-availability. The pruning mechanism is

particularly useful while dealing with resource-constrained FL-based IoT (FL-IoT) clients.

In this scenario, the lightweight training model will consume less amount of resources

to accomplish a target convergence. We evaluate each interested client’s resource-

availability before assigning a task, monitor their activities, and update their trust scores

based on their previous performance. To tackle system and statistical heterogeneities, we

adapt a re-parameterization and generalization of the current state-of-the-art Federated

Averaging (FedAvg) algorithm. The modification of FedAvg algorithm allows clients to

perform variable or partial amounts of work considering their resource-constraints.

We demonstrate that simultaneously adapting the coupling of pruning, resource and

activity awareness, and re-parameterization of FedAvg algorithm leads to more robust

convergence of FL in IoT environment.

Keywords: federated learning, distributed machine learning, resource limitation, internet of things, model pruning,

client activity, system heterogeneity

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://doi.org/10.3389/frcmn.2021.657653
http://crossmark.crossref.org/dialog/?doi=10.3389/frcmn.2021.657653&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles
https://creativecommons.org/licenses/by/4.0/
mailto:moamini@fiu.edu
https://doi.org/10.3389/frcmn.2021.657653
https://www.frontiersin.org/articles/10.3389/frcmn.2021.657653/full

Imteaj and Amini Federated Learning for Resource-Constrained IoT

1. INTRODUCTION

We first discuss the motivations of introducing Federated
Proximal, Activity, and Resource-Aware Lightweight model
(FedPARL) that can handle system and statistical heterogeneity of
the clients and is particularly effective for a resource-constrained
Federated Learning (FL)-Internet of Things (IoT) environment.
We analyze the existing works in the FL domain and clearly
mention how FedPARL can be effective in filling up the gap of
prior research considering FL-IoT setting. Further, we describe
our research contribution and justify the necessity of conducting
this research work. Finally, we briefly highlight the organization
of this paper.

1.1. Motivation
Federated Learning has come to the light because of its promising
paradigm as a distributed machine learning training over a
network of available devices. Prior works focused on distributed
optimizations and learning (Chen and Sayed, 2012; Tsianos
et al., 2012; Shamir et al., 2014). However, FL has an unique
way of generating a cumulative global model by learning
from the client’s model parameters, and it has two distinctive
challenges from conventional distributed optimization: system
heterogeneity and statistical heterogeneity (McMahan et al., 2017;
Zhao et al., 2018; Yang et al., 2019; Li et al., 2020). The detailed
description of the FL challenges (e.g., handling heterogeneity
by performing on-device training, considering low participation
of network clients, and tackling high communication costs)
are discussed in McMahan et al. (2017), Smith et al. (2017),
Imteaj et al. (2020), and Li et al. (2020). The earlier invented
FL algorithm, Federated Averaging (FedAvg) (McMahan et al.,
2017) is an iterative process and optimization approach that
generates a global model by learning from the local update of the
client. Though the FedAvg algorithm has significant contribution
in FL settings, it has missed some underlying challenges that
can be observed in a heterogeneous FL-IoT setting. First, the
FedAvg assumes all the available clients as uniform capabilities
and randomly selects a fraction of local clients for the training
phase. However, in a real-world FL setting, we may observe a
marginal difference in various clients in terms of their system
configurations. Second, FedAvg does not entitle to perform
variable or partial amounts of work by the participated clients;
rather, it simply drops the participants that fail to perform a
given task within a specified time window (Bonawitz et al.,
2019). Third, the performance of FedAvg diverges significantly
when the client has non-identically distributed data across their
devices, i.e., there remains statistical heterogeneity within the
FL network (McMahan et al., 2017; Li et al., 2018). Fourth, the
FedAvg algorithm does not guarantee convergence in case most
of the clients are dropped, or if majority of the clients sends back
divergent model update compared to the actual target.

In this paper, we propose a novel FL model, referred to as
FedPARL, that can be effective for resource-constrained and
highly heterogeneous FL settings. Our developed FL model,
FedPARL, is a tri-layer FL model that reduces model size by
applying sample-based pruning, supports the effective clients
through a trust and resource checking scheme, and allows partial

amounts of computational tasks by examining their resource-
availabilities. We bridge the gap between systems and statistical
heterogeneity by reparameterization of the FedAvg algorithm
(McMahan et al., 2017). Instead of dropping the underperformed
clients and naively considering the partial amounts of work
from the participated clients (that may prolong convergence),
we added a proximal term by considering resource-availability
of the selected clients. By checking the trust score and resource-
availability of the clients, our proposed approach shows more
stability than the existing FedProx framework (Li et al., 2018) in
a highly resource-constrained FL-IoT environment.

1.2. Background and Related Works
The invention of new distributed optimization and learning
techniques has recently been popular due to the extensive growth
of data that opens the door to rethink the design of Machine
Learning (ML) and data center settings (Boyd et al., 2011; Dekel
et al., 2012; Zhang et al., 2013; Shamir et al., 2014; Arjevani
and Shamir, 2015; Richtárik and Takáč, 2016a,b; Wang et al.,
2018). On one side, the improvements of internet availability,
speed, and architecture bring more convenience for IoT services.
On the other hand, the ever-growing development of modern
edge devices (e.g., smartphones, wearable devices, drones, and
sensors) enables performing computation at the edge without
passing local sensitive data to the server. The FL technique was
invented after being motivated by the same theme (McMahan
et al., 2017). Though FL facesmany challenges in terms of systems
and statistical heterogeneity, privacy, communication overhead,
and massively distributed federated network (Yang et al., 2019;
Imteaj et al., 2020), the wide popularity of FL approach motivates
researchers to develop new optimization techniques suitable for
a federated setting. Such novel federated optimization technique
outperforms the conventional distributed methods, e.g., mini-
batch gradient descent (Dekel et al., 2012), or alternating
direction method of multipliers (ADMM) (Boyd et al., 2011).
The distributed optimization technique (e.g., Konečnỳ et al.,
2016; McMahan et al., 2017; Smith et al., 2017; Zhao et al.,
2018; Mohri et al., 2019; Sattler et al., 2019) allows for inexact
local model updating that would help to balance between
computation and communication in large-scale networks, and
permit to active a small subset of devices at any iteration
period (McMahan et al., 2017; Smith et al., 2017; Imteaj and
Amini, 2019; Li et al., 2020). For instance, a multi-task learning
framework is proposed in Smith et al. (2017) to assist FL
clients in learning separate but close models through a primal-
dual optimization strategy. Although their proposed method
guarantees convergence, the approach is not generalizable for
non-convex problem. For the non-convex settings, the FedAvg
algorithm (McMahan et al., 2017) considers averaging client local
SGD update and outperforms existing models. Besides, to avoid
the issues regarding active clients and statistical heterogeneity
of FedAvg algorithm, couple of works (Stich, 2018; Basu et al.,
2019; Haddadpour et al., 2019; Khaled et al., 2019; Malinovsky
et al., 2020; Woodworth et al., 2020) have shown efforts to
analyze FedAvg algorithm considering non-federated setting, i.e.,
they assume the data to be identical and uniformly distributed.
However, in a heterogeneous setting, it is not proper to assume

Frontiers in Communications and Networks | www.frontiersin.org 2 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

that each local solver can perform same stochastic process using
their local data. Further, the authors in Chen et al. (2020b)
proposed a joint learning framework by considering the effect
of wireless quality during model training, such as packet errors
and limited bandwidth. By considering joint learning, resource
factors, and client selection, they formulate objective functions
of the optimization problem. Besides, the authors in Yang
et al. (2020) investigated the issues regarding effective energy
utilization during model computation and transmission for FL
over wireless networks. Though wireless quality and optimal
energy utilization are two important factors for a resource-
constrained IoT environment, these two factors are out-of-scope
of this research.

One of the main challenges in federated networks is systems
heterogeneity, i.e., the clients within the network may possess
variant memory, processing capability, battery life, or bandwidth.
Such heterogeneity exacerbates straggler issues and degrades
system performance. If the number of stragglers becomes high,
then it may take a long time or even fail to reach the target
convergence. One solution could be to avoid the resource-
constrained clients or not selecting them during the training
phase (Bonawitz et al., 2019; Imteaj, 2020; Imteaj et al., 2020).
However, dropping the stragglers could limit the number of
active clients, and it could bring bias during training or even some
dropping clients may have important data with higher volume
(Li et al., 2018). Beyond systems heterogeneity of the FL clients,
statistical heterogeneity or divergence of client model update is
also a concern in federated networks. Some recent FL works
(Dinh et al., 2019; Haddadpour and Mahdavi, 2019; Wang et al.,
2019; Chen et al., 2020a; Guo et al., 2020; Nguyen et al., 2020)
analyze how to guarantee convergence both in theoretically and
empirically for an FL setting. The major problem is that they
assume all FL clients are resource capable to perform a predefined
uniform number of iterations while considering all the devices
to participate in the training round. However, such assumptions
are not feasible if we consider a realistic FL networks (McMahan
et al., 2017; Li et al., 2020). To handle statistical heterogeneity,
some works proposed the idea of sharing either the client’s local
data or the server’s proxy data (Huang et al., 2018; Jeong et al.,
2018; Zhao et al., 2018). However, the assumption of passing
client data to the server or disseminating proxy data to all the
clients could violate privacy (Huang et al., 2018; Jeong et al.,
2018). The authors in Li et al. (2018) proposed a framework that
can handle both systems and statistical heterogeneity. Through
generalization of FedAvg algorithm and adding a proximal term,
they handle statistical diversity and allow partial amounts of
work. However, they randomly select a subset of clients like the
FedAvg algorithm (McMahan et al., 2017), which would not be
effective in an FL-IoT environment as most of the participants
would be inactive or out-of-resources. In the worst case, the
random selection of the participants may lead them to choose
all the straggler devices that could hardly perform an iteration.
Besides, in their simulation, they consider that the straggler or
inactive client would take a random local iteration between 1
to E, where E is the local epoch defined by the task publisher
for the overall task. In the worst case, it is possible that most
of the stragglers need to perform local epochs close to the E.

That means, instead of considering the resource-availability or
previous history, they randomly assign a local epoch for the
straggler or inactive clients. Particularly, in a real-life FL setting,
such random assigning of local epoch to the stragglers would
result ineffective model update.

In this work, inspired by FedAvg (McMahan et al., 2017)
and FedProx (Li et al., 2018), we design a tri-layer FL model,
FedPARL that can be effective, specially in an FL-IoT settings.
In the initial layer, we perform a sample-based model pruning
on the server, so that the server and the client can deal
with a smaller model size. In the second layer, we examine
the resource-availability (CPU, memory, battery life, and data
volume) as well as previous activities and select the proficient
and trustworthy clients for the training phase. In the third
layer, we perform a generalization of FedAvg algorithm to allow
partial works by assigning local epochs according to the client’s
resource-availability. Our tri-layer FL framework accelerates
convergence and improves robustness in a resource-constrained
FL-IoT environment.

1.3. Contribution
The main contributions of this paper can be listed as follows:

• We propose a tri-layer FL scheme that helps resource-
constrained FL clients consume less resources during training,
avoid untrustworthy and out-of-resource clients (e.g., low
battery life) during client selection for training and perform
variable local epochs based on the client’s resource availability.
• We perform model pruning to reduce the size of client model

that will be more efficient in an FL-IoT setting.
• We integrate a reward-punishment scheme to incentivize

effective clients to participate in future training rounds and to
punish the malicious and underperformed clients.
• We allow partial amounts of computational task to

be performed by the participating FL clients, and our
proposed approach is robust even in an resource-constrained
FL-IoT environments.

1.4. Organization
The rest of this paper is organized as follows: section 2
introduces the federated optimization techniques, exposes the
existing findings of the existing approaches, and explains the
strategy of our proposed FedPARL framework. In section 3,
we present the experimental details with simulation results
considering model pruning, systems heterogeneity, and
statistical heterogeneity, followed by section 4, that concludes
the paper.

2. FEDERATED OPTIMIZATION
TECHNIQUES

In this section, we highlight the widely popular FedAvg and
FedProx algorithm and present the outline of our proposed
FedPARL framework. In the FedAvg (McMahan et al., 2017)
method, the central server initializes a global model which is
updated based on the client local model parameters. The main

Frontiers in Communications and Networks | www.frontiersin.org 3 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

aim of FedAvg algorithm is to minimize an objective function
(loss) which can be expressed as follows:

min
w

F(w) : =
N
∑

i=1
PiFi(w), (1)

where N is the number of devices, Pi ≥ 0 %
∑

i Pi = 1 (Pi ≥ 0)
which refers to the impact of each device on the overall FL model,
satisfying

∑

i Pi = 1, and Fi denotes the objective function of
local device i. Here, we assume that ni samples are available at
each device and n =

∑

i ni is the total data points, hence, Pi =
ni
n .

In FedAvg procedure, the central server selects a fraction of
clients for the training round, and a local objective function is
used as a replacement of the global objective function considering
the device’s local data. At first, the server initializes a global
model that is disseminated to a fraction of local clients which
are randomly selected. The clients that are selected for the
training phase are called participants. After that, each client
trains themselves locally with E number of local epochs by
applying stochastic gradient descent (SGD) using their local data
as well as the global model information and sends back the
model information to the server. Further, the server performs
aggregation based on all the received model parameters and
update the global model. The iteration process is continued until
a specific iteration round or until the global model reaches a
convergence. Each iteration process is called a federation (Jiang
et al., 2019). However, instead of enforcing all the clients to
perform an exact local epoch, we can allow a flexible or inexact
local objective function to be solved by each client. The authors
in McMahan et al. (2017) discussed that tuning up the number
of local epochs plays an important role in reaching convergence.
On one side, a higher number of local epochs leads to a more
local computation to be performed by the FL clients and reduces
the communication overhead with the server that results in faster
convergence. On the other side, if the heterogeneous FL clients
possess dissimilar local objectives and perform a higher number
of local epochs, then model convergence could be negatively
affected which may even cause model divergence. Besides, in
a heterogeneous FL-IoT environment, setting up higher local
epochs may increase the possibility that the FL clients fail to
perform assigned computational tasks. Further, if the FL clients
perform a lower number of local epochs, it may reduce local
computations, but may prolong the communication overhead
and convergence time. Therefore, it is vital to set local epochs
as sufficiently high while also ensuring robust convergence. As
the suitable number of local epochs may change at each training
round and depend on device resources, determining the number
of local epochs can be considered as a function of on-device data
and available system resources. For tuning the local computation
and client-server interaction, we adapt an inexact solution that
allows flexible local epochs to be performed by each client which
is stated below (Li et al., 2018):

Definition 1 (ϕ-inexact solution). Let us consider a function
G (w;w0) = F(w) + β

2 ‖w− w0‖2 , and ϕ ∈ [0, 1], we can say
w∗ is a ϕ-inexact solution of minθ G (w;w0) if ‖∇G (w∗;w0)‖ ≤
ϕ ‖∇G (w0;w0)‖ , where ∇G (w;w0) = ∇F(w)+ β (w− w0) .

Here, a smaller ϕ resembles a higher accuracy. The
advantage of ϕ-inexactness is that it measures the variable local
computation to be performed by the selected local client at
each training round. As we mentioned earlier, the system’s
heterogeneity of the clients leads to heterogeneous progress
toward solving local problems, and therefore, it is necessary to
allow variant of ϕ considering clients resource-availability and
training round.

Another federated optimization technique is FedProx (Li
et al., 2018), that tolerates partial works of the FL participants.
By enabling fractional works of the clients and considering
a regularization term, they handle systems and statistical
heterogeneity. However, the FedProx framework does not
consider any pruning mechanism to reduce model size that could
be effective for resource-constrained FL devices and generates
higher loss while most of the selected participants have very low
resources, i.e., the majority of the selected devices can hardly
perform local iterations (see Figure 1). Few other prior works on
federated optimization (Konečnỳ et al., 2016; Sahu et al., 2018;
Xie et al., 2019; Li and Richtárik, 2020; Pathak and Wainwright,
2020; Reddi et al., 2020) try to leverage federated optimization for
heterogeneous network, but none of these works are designed by
considering all the features of our proposed FedPARL framework,
i.e., pruning, checking model quality and client activity, and
accepting partial works from the stragglers.

2.1. Proposed Framework: FedPARL
In this segment, we discuss our FedPARL framework that consists
of three layers: (1) sample-based pruning for lightweight model
training, (2) activity and resource aware FL client selection
strategy, and (3) generalization of the client’s local objective
function to perform local training epochs according to their
available resources.

2.1.1. Sample-Based Pruning
In an FL-IoT environment, as the clients may have constrained
resources and limited communication bandwidth, therefore, the
typical FL process may face significant challenges to perform
training on large-size model. To handle such challenges, we
deploy model pruning mechanism for reducing model size that
would eventually reduce computation overhead on the client
side. The authors in Han et al. (2015) proposed the pruning
approach for centralized ML settings, where they initially train
a ML model using SGD for a particular number of iterations.
After that, a model pruning is performed considering a certain
level, i.e., a percentage of model weights are removed that have
comparatively the smallest absolute layer-wise values. The model
training with the pruning process is repeated until the model
reaches the desired model size. As the training and pruning
occurred at the same time, we obtain a reduced model size at
the end of the training process. However, the centralized pruning
techniques (Sen et al., 2009; Han et al., 2015; Zhu and Gupta,
2017; Lee et al., 2018) require all the data samples for training
at a central location, which is not applicable for an FL process as
the main theme of FL is that the clients would not share their all
data samples with an external entity.

Frontiers in Communications and Networks | www.frontiersin.org 4 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 1 | Majority of the clients performing low-partial works that leads to slower convergence.

To apply the model pruning mechanism on the FL process,
we aim to perform model pruning on the server with the concept
of sample-based pruning and further carry out local training
on the edge clients by sharing that pruned global model. The
authors in Jiang et al. (2019) discussed applying FL considering
sample-based and sample-less pruning strategy. In this paper, we
apply sample-based model pruning due to its high probability
of reaching the convergence (Jiang et al., 2019). In sample-based
pruning, we consider a small-subset of data samples on the server
that are requested from the available clients. The samples may
be collected by requesting the clients to share a small portion
of their available data that they wish to share, or the server can
collect a small sample on its own. Besides, as a device within
an FL-IoT environment can act as both server and a client,
therefore, that device can use its own data to perform sample-
based model pruning. One would expect that the quality of the
pruned model would be poor compared to the existing ML-based
pruned mechanism (Han et al., 2015). However, while applying
pruning mechanism on the FL-IoT environment, we observe that
the model quality is marginally reduced with the high deduction
of the model size.

After the sample-based initial pruning, the further training
and pruning actions can be performed on both server and client
side. The process can be done in one or more federations.
Particularly, we carry out initial pruning so that only a small size
of initial global model is shared with the FL clients, and it does not
consume excessive time for the edge device to perform on-device
training. When a pruning is performed only on the initial global
model to a certain pruning level, we call it a one-shot pruning.We
can reduce the model size by performing repeatedmodel pruning
in every iterations of the FL process, and we call it a sample-
based federated pruning. The benefit of federated pruning over

the one-shot pruning is that it reflects the removal of insignificant
parameters from the local model, i.e., it incorporates the local
data impact available on the client side. The overall pruning
process is discussed below:

1. The server collects a small portion of data samples from the
environment, or requests the available clients within the FL
network to send a small subset of data that they wish to share.

2. If data are requested from the clients, then the available devices
share that with the FL server.

3. For the first iteration, a global model is initialized by the server,
and in case of further iteration, the global model is updated
based on the feedback of the local model of the clients.

4. The server performs a sample-based model pruning until a
target pruning level.

5. The pruned model is shared with the FL clients that
participated in the training process. Each client updates their
model utilizing their updated local data and by learning from
the pruned global model.

6. Each participated client is able to share a partial amounts of
work in case they have resource-scarcity, and the shared local
model is aggregated by the server.

If we apply federated pruning, then the server again performs
pruning on the updated global model by removing the
parameters having small magnitudes and the iterative process is
continued until we obtain a desire pruning level. After reaching
the desired pruning level, the usual FL process is executed.

2.1.2. Activity and Resource-Aware Model
In an FL environment, we may observe clients that have
heterogeneous resources and therefore, it is challenging to assign
a task that could be performed by all the selected participants. If

Frontiers in Communications and Networks | www.frontiersin.org 5 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

the majority of selected participants become stragglers, then the
target convergence can never be obtained. A client can become
a straggler due to underpower in terms of systems requirements
for the assigned task completion, or due to network connectivity.
The typical FLmodels assume all the available clients as resource-
sufficient and randomly selects clients for the training phase.
Besides, in an FL-IoT environment, there is a huge risk of
receiving vulnerable local model update by the clients as the
IoT devices are comparatively more prone to attack (Imteaj
and Amini, 2020). Therefore, it is required to monitor client
activities, available resources, and their contributions toward
the FL process. By understanding the necessity of examining
client activities and observing their resources, we integrate
trust and resource-awareness into our proposed FL model.
Initially, the FL server publishes a task with minimum system
requirements. All the interested clients acknowledge server by
sending their resource-availability information, e.g., memory,
battery life, bandwidth, and data volume. The server applies the
client’s information into a function and filters out the ineligible
candidates. To handle inappropriate model information, we
leverage a trust score mechanism to understand the records
of the client activities. In order to assign trust score to the
clients, we consider several events, e.g., infusion of improper
model, task completion or contributions toward model training,
response delay, interested in joining training phase, and inability
to participate in the training round due to lack of resources.

Initially, we assign a trust score Tm = 50 to all the network
clients. Any client who is interested to be a part of the training
phase, met the resource requirement for the model training but
is not selected for the training round, we assign a trust score
TInterested = 1 for that client. We assign this score to motivate
interested and resource-proficient clients to participate in future
tasks. Besides, we provide a reward score TReward = 8 to a client
if they accomplish the given task within a predefined time period.
In case, an FL client becomes a straggler in < 20% of its overall
participation, we set a penalty to that client’s trust score TPenalty

= −2. If the client becomes a straggler in equal or > 20% but
not more than 50% of its participation, then we assign a blame
score to that client’s trust score, i.e., TBlame = −8. Further, if any
client becomes a straggler in equal or more than 50% of its overall
participation, or sends back improper model, we assign a ban
score (TBlame = −16) to that client’s trust score. Finally, the trust
score is scaled up by dividing by 100 and stored as a trust value
(with a range of 0–1). In Figure 2, we illustrated a high-level
overview of the client selection process by checking resource-
availability and trust score, and in Table 1, we presented the
chart of different factors with their associated trust score that
we considered for our simulations. The trust score is assigned
according to the significance of the events, and we got inspired to
design such scoring of event reputation factors for our simulation
fromMoinet et al. (2017).

We present the details of the integration of trust and resource-
awareness strategy in the FL model in Algorithm 1. In line 1,
function receives parameters of training round i, client id k,
global model parameter wi, maximum time t to finish task, and
model diversity threshold γ . The threshold time can be set by
the task publisher based on the task difficulty. We also do not fix

Algorithm 1: Activity and Resource Checking. Training
round ith, global model Gi, local model Li

k
, trust score Ck for

kth client, γ indicates deviation, task requirement LReq, and
t represents timeout.

1 UpdateTrustScore (i, k,wi, t, γ):

2 if k sends model to FL server within t then

3 set U i
k
= 0

4 set Tk = Tk + TReward

5 else

6 set U i
k
= 1

7 if 1
i

∑i
p=1U

p
k

< 0.2 then

8 set Tk = Tk + TPenalty

9 if 1
i

∑i
p=1U

p
k

< 0.5 and 1
i

∑i
p=1U

p
k
≥ 0.2 then

10 set Tk = Tk + TBlame

11 else if 1
i

∑i
p=1 U

p
k
≥ 0.5 or Gi-Li

k
> γ then

12 set Tk = Tk + TBan

13 Append Tk to trustlist T
14 CheckResource (Bk,Mk, Ek,Vk):

15 Store (Bk,Mk, Ek,Vk) into a listRk

16 CompareRk with LReq

17 ifRk satisfies LReq then

18 AddRk to RA list

19 Return T and RA

the model diversity threshold as in the initial training round, the
model diversity could be higher compared to the further training
rounds. If an FL participant sends back its local model within
time t, then we set the unsuccessful record of that client, U i

k
as 0

and add a reward score to that client’s existing trust score (lines 2–
4). On the other hand, if a client cannot send back its local model
within time t, we set the unsuccessful record of that client, U i

k
as

1 (lines 5–6). We examine the previous task record of that client
and check whether theU i

k
= 1 event occurs< 20% of that client’s

overall participation. If so, we add a penalty score to that client’s
existing trust score (lines 7–8). Particularly, for our simulation
setting, we consider that each FL client which shows interest to
be a part of FL training may unfortunately fail to accomplish a
task at any time and to track their activity, we set this condition
of penalty as < 20%. Likewise, if the event U i

k
= 1 event occurs

greater or equal to 2% but < 50%, then we add a blame score
to that client’s existing trust score (lines 9-10). Finally, if the
client’s unsuccessful event occurs greater or equal to 50%, then
we add a ban score to that client’s existing trust score (lines 11–
12). After assigning the trust value, the updated trust score of
the client is appended into a list (line 13). In CheckResource

function, we take resources of the clients, e.g., bandwidth (B),
memory (M), battery life (E), and data volume (V) and store
the resource availability status within a list, Rk (lines 14–15).
After that, we compare the client’s resource-availability with the
task system requirements, and if it satisfies, then, we add that
client’s resource availability information into another list, RA

Frontiers in Communications and Networks | www.frontiersin.org 6 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 2 | Client selection based on resource-availability and trust score.

TABLE 1 | List of trust score corresponding to different factors for an FL-IoT

environment.

Factor Trust score

Tinitial 50

TInterested 1

TReward 8

TPenalty −2

TBlame −8

TBan −16

(lines 16–18). Finally, the algorithm returns the trust score and
resource availability list of the clients (line 19).

2.1.3. Allowing Partial Works From FL Participants
In this segment, we explain how the generalization of FedAvg
algorithm allows us to accept partial amounts of work from the
FL participants. In FedPARL, unlike FedAvg algorithm, we select
a subset of clients (called participants) that are comparatively
resource-proficient and trustworthy using the concept discussed
in section 2.1.2. The server collects some sample data to
perform sample-based model pruning to reduce the global
model size. After that, the pruned global model is disseminated
to all the participants. As we discussed before, the federated
clients may have heterogeneous resource limitations in terms
of memory, bandwidth, battery levels, processing ability, or
network connectivity. It may occur that we select a proficient
client that have available system configurations but somehow
the device lost the network connection. Besides, it is possible
that almost all the interested and available clients have limited
resources, and wemay have no other choices without considering
those devices for the training phase. It is to be noted that each

device needs to use its resources to perform each local epoch.
Therefore, it is not feasible to force all selected participants (i.e.,
IoT devices) to perform uniform local iterations. Rather, we
consider allowing partial amounts of work from the devices to
tackle such challenges (see Figure 3). Based on the resource-
availability including the available data volume, we assign local
epoch to each participants and perform aggregation on the server
on receiving model update from any of the participants. That
means, unlike the FedAvg model, we do not drop any stragglers,
instead, we let the stragglers to compute a fewer number of
iterations according to their available resources. In FedProx, Li
et al. (2018) consider a random network clients for the training
phase and allow partial work. However, in the worst case, they
may end up selecting all the devices with very low resource-
availability which may lead their algorithm to perform a very low
number of local epochs. Therefore, the global model accuracy
would be lower because of the deviate local model updates and
it may greatly be impacted when the number of local samples
are few. Our resource and trust aware feature of our FedPARL
framework tackle the consideration of all straggler client issues
by avoiding random selection of participants and further allows
partial amounts of work of the clients. Using the idea of Li et al.
(2018), we can, allow partial work for our federated clients that
are selected through trust and resource-aware strategy and we
can define the φc

k
-inexactness for federated client k at training

round c:

Definition 2
(

ϕc

k
-inexact solution). Let us consider a function

Gk (w;wc) = Fk(w) + β
2 ‖w− wc‖2 , and ϕ ∈ [0, 1], we call w∗

is a ϕc
k
-inexact solution of minw Gk (w;wc) if ‖∇Gk (w∗;wc)‖ ≤

ϕc
k
‖∇Gk (wc;wc)‖ , where∇Gk (w;wc) =∇Fk(w)+β (w− wc) .
Here, ϕc

k
determines how much local computation is needed

by the device k to perform in communication round c to solve
local problems. That means, ϕc

k
is the representation of the

Frontiers in Communications and Networks | www.frontiersin.org 7 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

variable local iterations of the clients. The systems heterogeneity
can be handled by relaxing the ϕc

k
-inexactness. In Figure 3, we

present a conceptual visualization of allowing partial amounts of
work to be performed by 10 heterogeneous clients in their third
training round. From the figure, we can see that, client 1 and 4
are performing 70 and 30% of the overall tasks due to resource-
limitations while the second client is performing the whole task
because of their available resources. If we explain it in a more
simplified way, then let consider that the task publisher expects
200 local epochs to be performed by all the selected FL clients.
However, due to resource-constraint issues, some of the clients
may not be able to perform 200 local epochs for generating their
local models. For such a case, considering the resource status,
the weak clients are allowed to perform a lower number of local
epochs, e.g., the first and fourth clients need to perform only 140
and 60 local epochs if the overall computational task is 200 local
epochs for the third training round. For the convenience of our
simulations, we assign an approximate number of local epochs to
different clients considering their heterogeneous resources.

From the above discussion, we understand that variant local
works can help us to deal with systems heterogeneity, however,
too many local epochs, or local updates through false model
injection could generate a diverge local model. The divergence
local model update could be handled by adding a proximal term.
In FedAvg, each device solves their corresponding local function,
while the authors in Li et al. (2018) consider an extra proximal
term for each participant while solving local problem which is
given below:

min
w

Gk
(

w;wc
)

= Fk(w)+
β

2

∥

∥w− wc
∥

∥

2
(2)

The modified local function helps to restrict the local update
closer to the global model which is particularly beneficial while
dealing with statistical heterogeneity and also allows partial
amounts of work to be performed by heterogeneous clients.
The overall process of sample-based pruning mechanism and
performing partial amounts of work by the FL participants is
presented in Figure 4.

2.2. Proposed FedPARL Framework
We presented our proposed FedPARL in Algorithm 2. Initially,
FL server collects a small samples by sensing environment,
or request fractions of samples from the available clients and
performs model pruning (line 1). After performing the model
pruning, a compressed size of model w0 is obtained, which
is disseminated to all the available clients along with the task
requirements (lines 2–3). Each client that is interested to perform
the task shares their available resource information with the FL
server (line 4). For each training round, the FL server checks
available resources of each client by calling CheckResource()

function of Algorithm 1 and extracts the trust score and available
resource information of each interested clients (lines 5–6). The
interested clients are sorted based on their trust T and available
resources R, which are stored within a list r (line 7). A fraction
of clients from the eligible candidates are chosen, and further,
only a few of them are randomly selected for the training phase

(lines 8–9). The FL server calls each chosen client to perform
local training through ClientLocalUpdate() function and passes
the latest global model (lines 10–11). We assume the cumulative
number of data samples within the FL network is n, which are
partitioned among the available clients having a set of indices
Pk on client k, where nk = |Pk|. Besides, each client’s available
local data during a communication round c is indicated by
nc. During training, each chosen client utilizes its local solver
to figure out inexact minimizer ϕc

k
to solve its local objective

function (lines 16–17). After that, each client splits their data
into batches, obtains optimal local solution by performing SGD,
and sends back model parameters to the FL server (lines 18–22).
The FL server performs aggregation upon receiving models from
the chosen clients and updates their trust score based on their
performance (lines 12–15).

Algorithm 2: FedPARL Framework. The S eligible clients
are indexed by u;B = local minibatch size, F = client
fraction, E = number of local epochs, η = learning rate, and
t = timeout.

1 Model pruning: FL server collects a fraction of samples and
applies sample-based model pruning

2 Server executes: Initialize pruned global model w0

3 Disseminate task requirements to all clients
4 Collect resource information of interested clients
5 for each round c = 1, 2, . . . do
6 Tc ,Rc = CheckResource (Bc,Mc, Ec,Vc) for all

interested clients
7 Sort available clients based on T andR, and store in a list

r
8 S← Top r · F clients
9 Pc ← (random set of S clients)

10 for each client k ∈ Pc in parallel do

11 wk
c+1 ← ClientLocalUpdate

(

k,wc

)

12 for each client k ∈ Pc do
13 ifmodel is received from client k within time t then

14 wc+1 ← wc+1 + nc
n w

k
c+1

15 UpdateTrustScore (c, k,wc, t,ϕ)

16 ClientLocalUpdate(k,w) : // Run on client k

17 Each client k finds a wc+1
k

which is a ϕc
k
-inexact

minimizer of: wc+1
k
= Fk(w)+ β

2 ‖w− wc‖2 and determines

maximum feasible number of local epochs E

18 B←
(

split Pk into batches of size B
)

19 for each local epoch e from 1 to E do

20 for batch b ∈ B do

21 w← w− η∇ℓ(w; b)
22 return w to server

3. CONVERGENCE ANALYSIS

For the convergence analysis of our FedPARL framework, we first
discussed a measure of dissimilarity called B-local dissimilarity

Frontiers in Communications and Networks | www.frontiersin.org 8 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 3 | Partial amounts of work to be performed by the selected clients.

FIGURE 4 | Performing sample-based model pruning on the server and allowing partial amounts of work considering client resource-availability and previous activities.

that can lead us to prove convergence of our proposed
framework. According to Li et al. (2018), the local functions of

FL clients are B-locally dissimilar at w if Ek

[

∥

∥∇Fk(w)
∥

∥

2
]

≤
‖∇f (w)‖2B2. From here, we can define the value of B(w), i.e.,

B(w) = 1 when Ek

[

∥

∥∇Fk(w)
∥

∥

2
]

= ‖∇f (w)‖2, (w is fixed

solution that all the local functions of the clients agree on or
all the clients holds the same local functions), and B(w) =
√

Ek

[

‖∇Fk(w)‖2
]

‖∇f (w)‖2 when ‖∇f (w)‖ 6= 0. The Ek[·] expresses the

expectation over FL clients with masses pk = nk/n and
∑N

k=1 pk = 1, where nk indicates the number of local data
samples on each client k and n denotes the total number of data
samples over the whole network. In particular, B-dissimilarity
definition represents a bounded dissimilarity with a privilege of
allowing statistical heterogeneity in an IID scenario. According
to bounded dissimilarity, if we have ǫ > 0, there exists a Bǫ , i.e.,
for all the data points w ∈ Scǫ =

{

w | ‖∇f (w)‖2 > ǫ
}

,B(w) ≤
Bǫ . However, in FL setting, there is a high chance of observing
B(w) > 1 due to the heterogeneous data distributions within

Frontiers in Communications and Networks | www.frontiersin.org 9 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

the network and larger value ofB(w) indicates larger dissimilarity
among the client’s local functions.

3.1. Convergence Analysis: Non-convex
Case and Variable φ’s
Let us assume that the local functions Fk are non-convex, and L-
Lipschitz smooth. Besides, we assume that there exists L− > 0,
i.e., ∇2Fk � −L−I, β̄ : = β − L− > 0 and B (wc) ≤ B. Now, in
Algorithm 2, if we choose β ,K, and φ following the analysis from
Li et al. (2018), then we obtain

λ =

(

1

β
−

φB

β
−

B(1+ φ)
√
2

β̄
√
K

−
LB(1+ φ)

β̄β
−

L(1+ φ)2B2

2β̄2

−
LB2(1+ φ)2

β̄2K
(2
√
2K + 2)

)

> 0 (3)

For iteration c of our algorithm, we can observe an expected
decrease of the global objective function that can be expressed as:

ESc

[

f
(

wc+1)] ≤ f
(

wc
)

− λ
∥

∥∇f
(

wc
)∥

∥

2
, (4)

where Sc is the set of K devices chosen at iteration c.
In a similar fashion, for variable φ’s, we have exact similar

assumptions, and if we choose β ,K, and φ of Algorithm 2

following the analysis from Li et al. (2018), then we obtain

λc =

(

1

β
−

φcB

β
−

B (1+ φc)
√
2

β̄
√
K

−
LB (1+ φc)

β̄β

−
L (1+ φc)2 B2

2β̄2
−

LB2 (1+ φc)2

β̄2K
(2
√
2K + 2)

)

> 0 (5)

Here, also for iteration c, we can observe an expected decrease of
the global objective function that can be expressed as:

ESc

[

f
(

wc+1)] ≤ f
(

wc
)

− λc
∥

∥∇f
(

wc
)∥

∥

2
, (6)

where Sc represents the set of K clients chosen at iteration c and
φc = maxk∈Sc φc

k

3.2. Convergence Analysis: Convex Case
Let us assume that Fk(·) ’s be convex and φc

k
= 0 for any k, c,

such that all the clients solve the local problems exactly. Besides,
we consider that the assertions that we mentioned in non-convex
case (see section 3.1) are satisfied. If 1≪ B ≤ 0.5

√
K, then it is

viable to choose β ≈ 6LB2 which derives that λ ≈ 1

24LB
2 .

4. EXPERIMENTS

In this section, we present empirical results of our proposed
FedPARL framework. In section 4.1, we provide the experimental
details, i.e., our simulation settings with detail description
about the dataset we considered. Section 4.2 demonstrates the
outperformance of our proposed FedPARL framework compare
to the conventional FedAvg (McMahan et al., 2017) and FedProx
(Li et al., 2018) algorithms considering system heterogeneity.

Further, we present the effectiveness of our FedPARL framework
in the presence of statistical heterogeneity within the FL-IoT
setting in section 4.3.

4.1. Experimental Details
We perform experimental simulation of our proposed FedPARL
framework on different datasets, tasks, and models. We
implement sample-based model pruning to generate a
lightweight FL model that would be effective for FL-IoT settings.
To create an FL-IoT setting, we consider 12 distributed mobile
robots that are capable to follow a given set of instructions. Each
robot is integrated with variant sizes of memory, battery life, and
processor that brings systems heterogeneity. We carry out similar
transmission rates to all considered robots for maintaining the
simplicity of the FL training process. Among the twelve robots,
we assume that eight are unreliable, two have resource-shortage
issues, and two generate low-quality models that can be regarded
as poisoning attack. We consider the weak clients having low
amounts of resources to simulate systems heterogeneity. Besides,
we deliberately changed some of the robot client on-device
samples to mislead the FL process. The strength of the poisoning
attack is dependent on the degree of sample modification. For a
better understanding of the effects of statistical heterogeneity, we
also evaluate our FedPARL framework by considering synthetic
and federated datasets.

To simulate FedPARL framework on synthetic dataset, we
follow the synthetic data generation process provided in Shamir
et al. (2014) and Li et al. (2018). As discussed in Li et al. (2018),
we generated samples (Xk,Yk) for each device k, considering
model y = argmax(softmax(Wx + b)), where, model weights
W ∈ R

10×60, samples x ∈ R
60, and bias b ∈ R

10. At first,
we generate an IID dataset by keeping the similar value of W
and b on all the available devices and set Xk to ensure the
same distribution. After that, we define (α,β) = (0, 0), (0.5, 0.5),
and (1, 1) to prepare three non-IID datasets (Figures 14–16).
Particularly, α helps us to control variance among the local
models while β controls bringing variation among the local data
located at a device that differs from the other available devices. By
controlling α and β , we prepare three other heterogeneous and
distributed synthetic datasets. For all the four synthetic datasets,
we considered 30 different devices in order to generate a global
model with optimized model weights W and bias b. For the
simulation of FedPARL on federated dataset, we consider two
different datasets MNIST (LeCun, 1998) and Sent140 (Go et al.,
2009). For MNIST, which is a popular dataset of handwriting
digits, we split the overall MNIST dataset among 1,000 clients
such that each client has only a sample of two digits. We consider
the Sent140 dataset for non-convex setting, which is basically
a sentiment analysis of tweets, and we consider 772 clients to
distribute the overall datasets.

To better understand the performance and simulate the
comparison of FedPARL with existing similar approaches (i.e.,
FedAvg and FedProx), we implement all the three approaches
with the same simulation settings. As FedAvg and FedProx
algorithm use SGD as a local solver, hence, to bring fairness,
we also apply SGD as a local solver of FedPARL. We maintain
the same hyperparameters for all the experiments of a particular

Frontiers in Communications and Networks | www.frontiersin.org 10 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 5 | Activity dependent trust score update of four distributed mobile

robots.

dataset that is obtained after proper tuning (e.g., learning rate).
For each training phase, we select 10 clients as participants,
and we define the number of stragglers, batch size, number of
iteration rounds, and learning rate. Our proposed framework
is applicable to any sort of heterogeneous FL-IoT environment,
and the convergence time of the model training depends on the
available FL client’s local data and resources.

4.2. Simulation of Trust Score Update
As we discussed in section 2.1.2, the trust score is updated
based on the client activities. We consider various events, i.e.,
interested to perform a task, interested to perform a task,
response delay in sending model, incorrect model infusion, or
unable to accomplish a task. In Figure 5, we present the trust
score update of four distributed mobile robots with respect to
time in various training rounds.

4.3. Simulation of Sample-Based Model
Pruning
In this paper, we particularly interested to apply our proposed
framework on a resource-constraint FL-IoT environment,
therefore, producing a lightweight FL model by eliminating the
less important features could be effective in accelerating
the training period. To perform pruning, we import
tensor_model_optimization class from TensorFlow and extract
prune_low_magnitude class from Keras. We define a model for
pruning by setting up the epoch, batch size,and validation split.
We also set up initial and final sparsity, with begin and end step
for pruning. After that, we feed the model in PolynomialDecay
class, store the parameters, and feed into prune_low_magnitude
class. Finally, we compile, fit, and evaluate the pruned model. In
Figure 6, we show the steps of our applied pruning process, and
in Figure 7, we present the effect of performing model pruning
on different sizes of samples considering MNIST (LeCun, 1998)
dataset. We can observe that, we obtained significantly lower
pruned model size compared to the unpruned model. Besides,
in Figure 8, we show how the accuracy varies while performing
initial sample-based pruning on different sample sizes. We can
see from Figure 8, in some cases, e.g., sample 25 has less accuracy
than sample 10. It is because we randomly select small samples
for training, therefore, there is a possibility of choosing same
type of sample class while missing other ones. When we consider

comparatively large samples for training, we do not observe
any such cases because there is a high probability of holding all
the available classes. Further, we compare our pruned model
accuracy with baseline model accuracy for different sample
sizes that demonstrates that we lost very small accuracy while
performing the model pruning (see Figure 9).

4.4. Simulation of Handling Systems
Heterogeneity
To measure the impact of allowing partial works from the
clients, we simulate our federated settings by considering system
heterogeneity. We assume that, for each task, there is a global
clock cycle and each participated client k measures the amounts
of work it needs to perform on iteration c (ϕc

k
) as a function of its

available resource constraints and clock cycle. We define a global
epochs E to be performed by all the clients and if any client has
resource limitations issues to perform E epochs, then that client
performs fewer updates considering their resource constraints.
For each task, we set the number of clients that could be
stragglers, e.g., 0, 10, 25, 50, and 95%, where 0% straggler means
all the participated clients can perform the defined number
of global epoch E (i.e., there is no system heterogeneity), and
95% straggler means only 5% of the clients could perform the
defined number of global epoch E. The conventional FedAvg
algorithm simply drops the clients that could not perform
the local epoch E, i.e., did not allow any partial solutions. In
Figure 10, we simulate the training loss by testing with various
number of stragglers (0, 50, and 90%), and we can see that the
FedPARL achieves higher training loss compared to the FedAvg
and FedProx approaches. We also present the testing accuracy
of our proposed FedPARL framework after accepting partial
works from the stragglers and can observe that the FedPARL
outperforms the FedAvg and FedProx models, particularly when
the majority of the clients are stragglers (see Figure 11). From
Figures 10, 11, it is evident that system heterogeneity has a
negative effect on the convergence of all the datasets, and a
higher heterogeneity leads to worse convergence. It is also clear
that simply dropping the stragglers from the training rounds
degrades the overall performance and allowing partial solutions
helps to ensure robustness and improve convergence. We also
see that while β > 0, we achieve faster convergence and also
in this case, the FedPARL obtains higher accuracy and lower
loss than the FedProx. We also investigate two other FL settings
with less system heterogeneity. In our first investigation, we
limit the local epoch of each device to be exactly 1, i.e., each
client can perform only a single local epoch. In such a case, the
FedPARL still performs better than the FedAvg model by loosing
higher training loss (see Figure 13) and by attaining higher
testing accuracy (see Figure 13). In our second investigation,
we consider a synthetic IID dataset that does not have any
statistical heterogeneity, and for such a setting, FedAvg is more
robust than our proposed FedPARL framework. That means,
allowing partial works from the clients does not have much
effect on the overall performance while considering a synthetic
dataset. The simulation results show that though we lose some
accuracy while performing pruning, we can still achieve faster

Frontiers in Communications and Networks | www.frontiersin.org 11 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 6 | Steps of performing model pruning.

FIGURE 7 | Performing model pruning and achieving compressed model sizes.

convergence with higher accuracy and lower loss if we select the
FL client effectively.

4.5. Simulation of Controlling Statistical
Heterogeneity
To understand how our proposed FedPARL framework can
handle statistical heterogeneity, we simulate the convergence
behavior by eliminating proximal term from the client’s local
objective function.We observe that, when we bring heterogeneity
within the dataset, the training performance of the clients
starts to degrade. In Figures 14, 15, we show how statistical
heterogeneity affects the convergence behavior of four different
datasets. For this simulation, we do not consider any system
heterogeneity, i.e., we assume each client is resource-proficient
and can perform E local epochs. The authors in McMahan

et al. (2017) discussed that tuning up the number of local
epochs plays an important role in reaching convergence. On
one side, a higher number of local epochs leads to more local
computation to be performed by the FL clients and reduces
the communication overhead with the server that results in
faster convergence. On the other side, if the heterogeneous FL
clients possess dissimilar local objectives and perform higher
number of local epochs, then model convergence could be
negatively affected that may even cause model divergence.
Besides, in a heterogeneous FL-IoT environment, setting up
higher local epochs may increase the possibility that the FL
clients fail to perform assigned computational tasks. Further,
if the FL clients perform lower number of local epochs,
it may reduce local computations, but may prolong the
communication overhead and convergence time. Therefore,

Frontiers in Communications and Networks | www.frontiersin.org 12 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 8 | Accuracy after performing initial sample-based pruning for different sample sizes.

FIGURE 9 | Comparison between baseline accuracy and pruned model accuracy considering different sample sizes.

it is vital to set local epochs sufficiently high while also
ensuring robust convergence. As the suitable number of local
epochs may change in each training round and depends on
device resources, the “best” number of local epochs can be
considered as a function of on-device data and available
system resources.

We also demonstrate how statistical heterogeneity degrades
the performance of FedAvg (β = 0) and how proximal term
(β > 0) helps to improve convergence. In synthetic dataset,

where statistical heterogeneity does not have nay influence,
we can see that FedAvg performs better than FedPARL in
terms of training loss (see Figure 14) and testing accuracy
(see Figure 15). As statistical heterogeneity increases, we can
see that the training loss of FedAvg decreases, and testing
accuracy becomes inconsistent or unstable. On the other hand,
FedPARL handles the situations effectively and obtains higher
training loss with a consistent and higher training accuracy
compare to FedAvg and FedProx (see Figures 14, 15). We

Frontiers in Communications and Networks | www.frontiersin.org 13 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 10 | Comparison of training loss of our proposed FedPARL framework (considering no proximal term, i.e., β = 0) with FedAvg and FedProx in the presence

of different percentages of stragglers (i.e., 0, 50, and 90%).

FIGURE 11 | Comparison of testing accuracy of our proposed FedPARL framework (considering no proximal term, i.e., β = 0) with FedAvg and FedProx in the

presence of different percentages of stragglers (i.e., 0, 50, and 90%).

Frontiers in Communications and Networks | www.frontiersin.org 14 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 12 | Comparison of training loss of our proposed FedPARL framework (considering β > 1) with FedAvg and FedProx in the presence of stragglers.

FIGURE 13 | Comparison of testing accuracy of our proposed FedPARL framework (considering β > 1) with FedAvg and FedProx in the presence of stragglers.

also simulate the variance of local gradients of FedPARL,
FedAvg, and FedProx frameworks (where, lower variance of
local gradients indicates better convergence), and FedPARL

performs better than FedAvg and FedProx (see Figure 16). We
also test our system with the federated dataset and obtained
similar results.

Frontiers in Communications and Networks | www.frontiersin.org 15 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

FIGURE 14 | Simulation of data heterogeneity effects on training loss by considering four synthetic datasets. From left to right, the statistical heterogeneity increases.

FIGURE 15 | Simulation of data heterogeneity effects on testing accuracy by considering four synthetic datasets. From left to right, the statistical heterogeneity

increases.

FIGURE 16 | Simulation of data heterogeneity effects on variance of local gradients by considering four synthetic datasets. From left to right, the statistical

heterogeneity increases.

In a heterogeneity FL setting, the activities of the local clients
(i.e., amounts of local work) and their model quality directly
influence the overall model convergence. Defining a suitable
number of local epochs for the clients is essential to utilize the
client’s resources effectively. Besides, a higher number of local
epochs can also cause model overfitting issues. To solve the
issue, we perform fine-tuning for local epoch E and after that,
allow each resource-constraint device to find out the appropriate
number of local epochs to perform locally. Further, if any of the
client still sends back a diverge model update to the server, the
overall model quality may degrade. To prevent that, applying a
proximal term β helps to limit the local model update (Li et al.,
2018). Therefore, we allow the clients to perform their device-
specific local epochs ϕ and handle the divergence ofmodel update
(if any) by adding a proximal term β . In this way, the model
would not be overfitted, and the divergence of model update
would not affect the convergence.

One of the challenges of evaluating the best model
performance is to properly choose the value of proximal term

β . While a large β can slow down the overall convergence
time, a small value of β may not have any impact on the
overall performance. The authors in Li et al. (2018) figure
out the best values of proximal term β for the considered
different datasets. For the Synthetic_0_0, Synthetic_1_1, MNIST,
Sent140, the best values of β are 1, 1, 1, and 0.01, respectively.
From Figures 10–16, we visualize the effects of considering
proximal term and show how our proposed FedPARL framework
consisting of pruning, activity and resource-awareness with re-
parameterization of FedAvg model performs better than the
FedAvg and FedProx models. We consider proximal term β = 0
and β > 1 and show how the value of β can increase the
stability of a heterogeneous FL-IoT setting. We simulate systems
heterogeneity of our FL-IoT environment by forcing 0, 50, and
90% of the participated clients to be stragglers without adding any
proximal term and observe the improved convergence in terms
of model training loss and testing accuracy while allowing partial
amounts of work with model pruning, activity and resource-
awareness of FedPARL framework in a heterogeneous network.

Frontiers in Communications and Networks | www.frontiersin.org 16 April 2021 | Volume 2 | Article 657653

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

We also simulate the convergence behavior of our FedPARL
framework by considering the proximal term and observe robust
and stable performance, particularly, in a heterogeneous setting
in the presence of 0, 50, and 90% of stragglers. To that end,
we simulate our proposed framework in the presence of data
heterogeneity. We obtain higher training loss during model
training and achieve improved stable accuracy compared to the
FedAvg and FedProx approaches.

5. CONCLUSION

In this paper, we propose an FL model that can be effectively
applied in a resource-constrained IoT environment. The
generalization FL objective functions coupling with pruning
mechanism and activity and resource-awareness help to generate
a lightweight FL model that can handle system and statistical
heterogeneity. By selecting trustworthy and proficient clients,
performing local training with lightweight model, and allowing
variable amounts of work from FL clients, we achieve a robust,
stable, and consistent FL model that has remarkable performance
within an unreliable heterogeneous network. We have tested
our FedPARL framework with various datasets and obtained an

improved convergence behavior compared to the existing FL
techniques that are implemented with the concept of realistic
heterogeneous settings.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

AI and MA: conceptualization, investigation, writing—original
draft, and writing–review and editing. MA: resources, funding
acquisition, supervision, and project administration.

ACKNOWLEDGMENTS

AI and MA acknowledge the resources and support of
Sustainability, Optimization, and Learning for InterDependent
networks laboratory (solid lab) members at the Florida
International University (www.solidlab.network).

REFERENCES

Arjevani, Y., and Shamir, O. (2015). “Communication complexity of distributed

convex learning and optimization,” in Advances in Neural Information

Processing Systems, eds C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.

Garnett (Cambridge, MA: Curran Associates, Inc.).

Basu, D., Data, D., Karakus, C., and Diggavi, S. (2019). “Qsparse-local-sgd:

distributed sgd with quantization, sparsification and local computations,” in

Advances in Neural Information Processing Systems, Vol. 32, eds H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Cambridge,

MA: Curran Associates, Inc.).

Bonawitz, K., Eichner, H., Grieskamp,W., Huba, D., Ingerman, A., Ivanov, V., et al.

(2019). Towards federated learning at scale: system design. arXiv 1902.01046.

Boyd, S., Parikh, N., and Chu, E. (2011). Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers. Norwell, MA:

Now Publishers Inc.

Chen, J., and Sayed, A. H. (2012). Diffusion adaptation strategies for distributed

optimization and learning over networks. IEEE Trans. Signal Process. 60,

4289–4305. doi: 10.1109/TSP.2012.2198470

Chen, M., Poor, H. V., Saad, W., and Cui, S. (2020a). Convergence time

optimization for federated learning over wireless networks. arXiv 2001.07845.

Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., and Cui, S. (2020b).

A joint learning and communications framework for federated learning

over wireless networks. IEEE Trans. Wireless Commun. 20, 269–283.

doi: 10.1109/TWC.2020.3024629

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. (2012). Optimal distributed

online prediction using mini-batches. J. Mach. Learn. Res. 13, 165–202.

Available online at: https://jmlr.org/papers/v13/dekel12a.html

Dinh, C., Tran, N. H., Nguyen, M. N., Hong, C. S., Bao, W., Zomaya, A., et al.

(2019). Federated learning over wireless networks: convergence analysis and

resource allocation. arXiv 1910.13067.

Go, A., Bhayani, R., and Huang, L. (2009). Twitter Sentiment Classification Using

Distant Supervision. CS224N project report, Stanford 1, 2009.

Guo, H., Liu, A., and Lau, V. K. (2020). Analog gradient aggregation for federated

learning over wireless networks: customized design and convergence analysis.

IEEE Internet Things J. 8, 197–210. doi: 10.1109/JIOT.2020.3002925

Haddadpour, F., Kamani, M. M., Mahdavi, M., and Cadambe, V. (2019). “Local

sgd with periodic averaging:Tighter analysis and adaptive synchronization,” in

Advances in Neural Information Processing Systems, Vol. 32, eds H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Cambridge,

MA: Curran Associates, Inc.).

Haddadpour, F., and Mahdavi, M. (2019). On the convergence of local descent

methods in federated learning. arXiv 1910.14425.

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems, eds C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.

Garnett (Cambridge, MA: Curran Associates, Inc.).

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., and Liu, D. (2018). Loadaboost: loss-

based adaboost federated machine learning on medical data. arXiv 1811.12629.

Imteaj, A. (2020). Distributed Machine Learning for Collaborative Mobile Robots:

PhD Forum Abstract. New York, NY: Association for Computing Machinery.

Imteaj, A., and Amini, M. H. (2019). “Distributed sensing using smart

end-user devices: pathway to federated learning for autonomous

IoT,” in 2019 International Conference on Computational Science and

Computational Intelligence (CSCI) (Las Vegas, NV: IEEE), 1156–1161.

doi: 10.1109/CSCI49370.2019.00218

Imteaj, A., and Amini, M. H. (2020). “Fedar: activity and resource-aware

federated learning model for distributed mobile robots,” in Proceedings

of the 19th IEEE International Conference on Machine Learning and

Applications (ICMLA) (Miami, FL). doi: 10.1109/ICMLA51294.2020.

00185

Imteaj, A., Thakker, U., Wang, S., Li, J., and Amini, M. H. (2020). Federated

learning for resource-constrained IoT devices: panoramas and state-of-the-art.

arXiv 2002.10610.

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-L. (2018).

Communication-efficient on-device machine learning: federated distillation

and augmentation under non-IID private data. arXiv 1811.11479.

Jiang, Y., Wang, S., Ko, B. J., Lee, W.-H., and Tassiulas, L. (2019). Model pruning

enables efficient federated learning on edge devices. arXiv 1909.12326.

Khaled, A., Mishchenko, K., and Richtárik, P. (2019). Better communication

complexity for local sgd. arXiv 1909.04746.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D.

(2016). Federated learning: strategies for improving communication efficiency.

arXiv 1610.05492.

LeCun, Y. (1998). The MNIST Database of Handwritten Digits. Available online at:

http://yann.lecun.com/exdb/mnist/

Frontiers in Communications and Networks | www.frontiersin.org 17 April 2021 | Volume 2 | Article 657653

www.solidlab.network
https://doi.org/10.1109/TSP.2012.2198470
https://doi.org/10.1109/TWC.2020.3024629
https://jmlr.org/papers/v13/dekel12a.html
https://doi.org/10.1109/JIOT.2020.3002925
https://doi.org/10.1109/CSCI49370.2019.00218
https://doi.org/10.1109/ICMLA51294.2020.00185
http://yann.lecun.com/exdb/mnist/
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

Imteaj and Amini Federated Learning for Resource-Constrained IoT

Lee, N., Ajanthan, T., and Torr, P. H. (2018). Snip: Single-shot network pruning

based on connection sensitivity. arXiv 1810.02340.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning:

challenges, methods, and future directions. IEEE Signal Process. Mag. 37, 50–60.

doi: 10.1109/MSP.2020.2975749

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2018).

Federated optimization in heterogeneous networks. arXiv 1812.06127.

Li, Z., and Richtárik, P. (2020). A unified analysis of stochastic gradient methods

for nonconvex federated optimization. arXiv 2006.07013.

Malinovsky, G., Kovalev, D., Gasanov, E., Condat, L., and Richtarik, P. (2020).

From local SGD to local fixed point methods for federated learning. arXiv

2004.01442.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. (2017).

“Communication efficient learning of deep networks from decentralized data,”

in Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics, Vol. 54 of Proceedings of Machine Learning Research, eds A. Singh

and J. Zhu (Fort Lauderdale, FL: PMLR), 1273–1282.

Mohri, M., Sivek, G., and Suresh, A. T. (2019). Agnostic federated learning. arXiv

1902.00146.

Moinet, A., Darties, B., and Baril, J. L. (2017). Blockchain based trust &

authentication for decentralized sensor networks. arXiv 1706.01730.

Nguyen, H. T., Sehwag, V., Hosseinalipour, S., Brinton, C. G., Chiang, M., and

Poor, H. V. (2020). Fast-convergent federated learning. arXiv 2007.13137.

doi: 10.1109/JSAC.2020.3036952

Pathak, R., and Wainwright, M. J. (2020). Fedsplit: an algorithmic framework for

fast federated optimization. arXiv 2005.05238.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečnỳ, J., et al. (2020).

Adaptive federated optimization. arXiv 2003.00295.

Richtárik, P., and Takáč, M. (2016a). Distributed coordinate descent method for

learning with big data. J. Mach. Learn. Res. 17, 2657–2681. Available online at:

https://jmlr.org/papers/v17/15-001.html

Richtárik, P., and Takáč, M. (2016b). Parallel coordinate descent

methods for big data optimization. Math. Program. 156, 433–484.

doi: 10.1007/s10107-015-0901-6

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., and Smith, V. (2018). On

the convergence of federated optimization in heterogeneous networks. arXiv

1812.06127.

Sattler, F., Wiedemann, S., Müller, K. R., and Samek, W. (2019). Robust and

communication-efficient federated learning from non-IID data. IEEE Trans.

Neural Netw. Learn. Syst. 31, 3400–3413. doi: 10.1109/TNNLS.2019.2944481

Sen, S., Moha, N., Baudry, B., and Jézéquel, J. M. (2009). “Meta-model pruning,” in

International Conference on Model Driven Engineering Languages and Systems

(Berlin: Springer), 32–46. doi: 10.1007/978-3-642-04425-0_4

Shamir, O., Srebro, N., and Zhang, T. (2014). “Communication-

efficient distributed optimization using an approximate Newton-type

method,” in International Conference on Machine Learning (Beijing),

1000–1008.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017). “Federated

multi-task learning,” in Advances in Neural Information Processing Systems,

Vol. 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.

Vishwanathan, and R. Garnett (Cambridge, MA: Curran Associates, Inc.).

Stich, S. U. (2018). Local SGD converges fast and communicates little. arXiv

1805.09767.

Tsianos, K. I., Lawlor, S., and Rabbat, M. G. (2012). “Consensus-based distributed

optimization: practical issues and applications in large-scale machine

learning,” in 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton) (Monticello, IL: IEEE), 1543–1550.

doi: 10.1109/Allerton.2012.6483403

Wang, S., Roosta, F., Xu, P., and Mahoney, M. W. (2018). “Giant: globally

improved approximate newton method for distributed optimization,” in

Advances in Neural Information Processing Systems, Vol. 30, eds S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett

(Cambridge, MA: Curran Associates, Inc.).

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., et al. (2019).

Adaptive federated learning in resource constrained edge computing systems.

IEEE J. Select. Areas Commun. 37, 1205–1221. doi: 10.1109/JSAC.2019.2904348

Woodworth, B., Patel, K. K., Stich, S. U., Dai, Z., Bullins, B., McMahan, H. B., et al.

(2020). Is local sgd better than minibatch SGD? arXiv 2002.07839.

Xie, C., Koyejo, S., and Gupta, I. (2019). Asynchronous federated optimization.

arXiv 1903.03934.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated machine learning:

concept and applications. ACM Trans. Intell. Syst. Technol. 10, 1–19.

doi: 10.1145/3298981

Yang, Z., Chen, M., Saad, W., Hong, C. S., and Shikh-Bahaei, M. (2020). Energy

efficient federated learning over wireless communication networks. IEEE Trans.

Wireless Commun. 20, 1935–1949. doi: 10.1109/TWC.2020.3037554

Zhang, Y., Duchi, J. C., and Wainwright, M. J. (2013). Communication-efficient

algorithms for statistical optimization. J. Mach. Learn. Res. 14, 3321–3363.

doi: 10.1109/CDC.2012.6426691

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated

learning with non-IID data. arXiv 1806.00582.

Zhu, M., and Gupta, S. (2017). To prune, or not to prune: exploring the efficacy of

pruning for model compression. arXiv 1710.01878.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Imteaj and Amini. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Communications and Networks | www.frontiersin.org 18 April 2021 | Volume 2 | Article 657653

https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/JSAC.2020.3036952
https://jmlr.org/papers/v17/15-001.html
https://doi.org/10.1007/s10107-015-0901-6
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1007/978-3-642-04425-0_4
https://doi.org/10.1109/Allerton.2012.6483403
https://doi.org/10.1109/JSAC.2019.2904348
https://doi.org/10.1145/3298981
https://doi.org/10.1109/TWC.2020.3037554
https://doi.org/10.1109/CDC.2012.6426691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

	FedPARL: Client Activity and Resource-Oriented Lightweight Federated Learning Model for Resource-Constrained Heterogeneous IoT Environment
	1. Introduction
	1.1. Motivation
	1.2. Background and Related Works
	1.3. Contribution
	1.4. Organization

	2. Federated Optimization Techniques
	2.1. Proposed Framework: FedPARL
	2.1.1. Sample-Based Pruning
	2.1.2. Activity and Resource-Aware Model
	2.1.3. Allowing Partial Works From FL Participants

	2.2. Proposed FedPARL Framework

	3. Convergence Analysis
	3.1. Convergence Analysis: Non-convex Case and Variable ϕ's
	3.2. Convergence Analysis: Convex Case

	4. Experiments
	4.1. Experimental Details
	4.2. Simulation of Trust Score Update
	4.3. Simulation of Sample-Based Model Pruning
	4.4. Simulation of Handling Systems Heterogeneity
	4.5. Simulation of Controlling Statistical Heterogeneity

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

