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Biomolecular condensation allows for the dynamic organization of molecules in
time and space. Condensate formation is regulated through many mechanisms
including the action of molecular chaperones. While molecular chaperones have
long been viewed through the lens of their roles in protein folding,misfolding, and
quality control, their ability to manipulate protein-protein interactions is
increasingly recognized to play a major role in the precise control of
condensate biology. In this review we highlight recent studies investigating
the roles of canonical and non-canonical chaperones in regulating
condensate formation, material state, and dispersal. We discuss the
broadening of longstanding conceptions of chaperone functions to include
condensate regulation, and the discovery of previously unappreciated
chaperone activities in well-known proteins. We close by considering the
biological activities being uncovered during the ongoing upheaval at the
boundary between chaperone biology and biomolecular condensation.
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Introduction

The regulation of reactions in cells requires the dynamic organization of
macromolecules. In addition to being segregated by membrane-bound compartments,
numerous processes in cells are organized into biomolecular condensates—membraneless,
non-stoichiometric ensembles of macromolecules (Banani et al., 2017; Sabari et al., 2020;
Lyon et al., 2021; Glauninger et al., 2022). Some of these condensates, such as the nucleolus,
are constitutive features of cells which help organize basic housekeeping functions of the cell
(Lafontaine et al., 2021). Others, such as stress granules, form transiently in response to an
external signal (Glauninger et al., 2022).

Remarkable progress has been made in understanding the biophysical forces underlying
condensation in cells and even reconstituting in vitro many condensates, both simple and
complex. These studies have shown that the condensation behavior of many proteins is encoded
directly in their amino acid sequences, even including the ability to modulate condensation
based on environmental signals—often conceived of as stresses—such as heat, pH, and
desiccation (Riback et al., 2017; Yoo et al., 2019; Iserman et al., 2020; Dorone et al., 2021).
Early studies which helped jumpstart the ongoing revolution in condensate biology routinely
showed not just that proteins, along with other biological molecules, formed condensates upon a
change in conditions—concentration, ionic strength, pH, temperature, and so on—but also that
condensation was spontaneously reversible when conditions returned to the prior state (Molliex
et al., 2015; Nott et al., 2015). The loss of spontaneously reversible interactions was highlighted as
a key step in the transition to pathological states, such as amyloid (Molliex et al., 2015).
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Over time, the accumulation of results in multiple systems has
modulated this picture considerably. Spontaneous reversal of
nonpathological condensates gave way to regulated dispersal by
posttranslational modification or the action of molecular
chaperones (Yoo et al., 2022). The latter, one aspect of the
chaperone-mediated regulation of biomolecular condensates
which is the subject of this review, remains relatively new, and
may be surprising, given entrenched models describing the nature of
chaperone action and of chaperone substrates. Chaperones have
long been conceived of as protein quality control systems, acting to
combat toxic protein misfolding (proteotoxic stress) and restore
protein homeostasis (proteostasis) when it is disrupted (Morimoto,
2008; Vabulas et al., 2010; Zhou et al., 2014; Ungelenk et al., 2016;
Hua et al., 2022). It is abundantly clear that chaperones possess these
activities, and express them when confronted with foreign misfolded
aggregation-prone substrates. However, the endogenous substrates
of chaperones remain remarkably ill-defined.

Chaperones and condensates: beyond
protein quality control

The present review is intended to promote reconsideration of
some of these ideas in light of biomolecular condensation. In the
simplest terms, themodel in which proteins form toxic aggregates that
can be cleaned up by chaperones must be expanded—and in some
circumstances replaced—by a model in which proteins form adaptive
condensates which are regulated at every step by chaperones.

A recent study serves to illustrate how the proteotoxicity and
protein quality control perspective has become paradigmatic, in the
sense of being an implicit frame which profoundly shapes
interpretations, and yet is potentially misleading. In work
focusing on the sequestrase activity of Btn2 (reviewed extensively
here), ethanol-treated cells show similar insoluble protein levels to
cells heat-shocked at 42°C, leading to the conclusion that “severe
ethanol stress . . . causes the denaturation and aggregation of
proteins in yeast cells” (Kato et al., 2019). One can see the
paradigm at the edges of this framing. Yet it is increasingly clear
that many stress-triggered condensates are adaptive, evolved, and
unlike denatured aggregates. Specifically, 42°C heat shock has not
been shown to cause either denaturation or proteotoxic aggregation
of mature proteins; instead, dozens of proteins form reversible
condensates which variously retain enzymatic activity, promote
growth and translation during stress, form by phase separation
driven by limited conformational changes which are conserved
across species rather than denaturation and aggregation, and so
on (Wallace et al., 2015; Riback et al., 2017; Iserman et al., 2020;
Keyport Kik et al., 2024; Chen et al., 2024). To the subject of this
review, chaperones interactions with thermally induced misfolded
aggregates turn out to differ markedly from their interactions with
thermally triggered condensates (Yoo et al., 2022).

In light of these developments, we suggest the reader keep an
openmind.Where prior work has implied aggregation is toxic under
conditions in which endogenous substrates are largely or completely
unknown, and where key results have relied on the use of foreign
aggregating reporters, small-molecule inhibitors, overexpression, or
deletions, the door to an alternative adaptive condensation
interpretation should remain open.

We also extend this open mind to the term biomolecular
condensate itself, which we here use in the most broad sense,
referring to any membrane-less cluster which concentrates specific
macromolecules. This includes structures such as amyloids, in which
high-affinity specific interactions link molecules together into a chain,
or effectively a one-dimensional condensate. While amyloids are
traditionally associated with toxic aggregation, there are now a
plethora of examples of functional, adaptive, and reversible
amyloids (Boke et al., 2016; Chuang et al., 2018; Woodruff et al.,
2018; Cereghetti et al., 2021). That said, we will still attempt to
distinguish between aggregates (inert, non-adaptive and misfolded
assemblies of proteins) and condensates whose clustering we generally
assume to be an evolved or at least adaptive trait.

With that in mind, here we will focus on regulation of
condensation, broadly conceived, by molecular chaperones. The
concept of a molecular chaperone has evolved and expanded over
time, and we adopt an inclusive view. Chaperones were originally
described as “proteins whose function is to ensure that the folding of
certain other polypeptide chains and their assembly into oligomeric
structures occur correctly” (Ellis, 1987). Although this initial
definition also included a provision that chaperones not form
part of the final assembly, subsequent work has relaxed this
requirement to include chaperones, including small heat-shock
proteins, which remain associated with larger-scale structures,
potentially to alter their physical characteristics, and perhaps as a
consequence of directing their formation. Indeed, the recognition
that heat-shock proteins—literally, at the outset, proteins produced
in response to heat shock—were rife with what soon came to be
called molecular chaperones has led to use of these terms somewhat
interchangeably and imprecisely.

The recent recognition that some intracellular aggregates are in
fact biomolecular condensates, even in the case of heat shock itself,
further justifies the stance we adopt here: chaperone activities include
not just the prevention of oligomeric assemblies—even today
synonymous with “chaperone activity”—but also promotion,
modulation, and dispersal of oligomeric assemblies, of which
condensates are an increasingly important example. This stance
leaves out related activities, such as the posttranslational
modification of molecules to regulate their condensation, while
preserving the spirit of the chaperone concept. We will also leave
out nucleic acid chaperones, such as RNA helicases, which play an
important role in regulating biomolecular condensates containing
both nucleic acids and proteins by regulating RNA-RNA (or DNA-
DNA) and nucleic acid-protein interactions (Ripin and Parker, 2022).
In Table 1, we have included a list of chaperones discussed in this
review and the condensates that they regulate.

We begin with a brief overview of the biophysics of condensate
formation, highlighting the thermodynamic and kinetic forces
which enable the complex dynamics and structures of
condensates. Chaperones are able to finely tune these forces to
regulate all stages of the condensate lifecycle, and we organize our
review accordingly, highlighting the ways in which chaperones
promote and direct the formation of condensates; regulate
condensate size, dynamics, and internal structure; and promote
condensate dispersal. We close with discussion and review of the
functional consequences of condensate regulation by chaperones,
highlighting open challenges in understanding the biology of these
still-enigmatic processes.
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Integrating chaperones into a
conceptual framework of
condensation

While biomolecular condensate formation is often compared to
simple systems such as the phase separation of oil and water, the
underlying molecular forces governing complex biological polymers
are much more complex. We will not attempt a comprehensive

review of the biophysics underlying condensates, instead referring
readers to many excellent and detailed reviews on the subject
(Brangwynne et al., 2015; Banani et al., 2017; Choi et al., 2020;
Mittag and Pappu, 2022). As a very brief intro, biomolecular
condensates generally require multivalent interactions in order to
form a three dimensional network (Li et al., 2012; Brangwynne et al.,
2015; Choi et al., 2020). One useful model for these multivalent
interactions is that interacting “stickers” are connected by a flexible

TABLE 1 Chaperones discussed in the review along with the condensates that they regulate.

Chaperone
class

Chaperone
Name(s)

Promotes
condensation of. . .

Modulates condensate
structure of. . .

Prevents/disperses
condensates of. . .

Hsp40 Sis1 Std1 (Simpson-Lavy et al., 2017) orphan ribosomal proteins (Ali et al.,
2023)

stress granules (Cherkasov et al.,
2013; Kroschwald et al., 2015; 2018;
Walters et al., 2015; Yoo et al., 2022;
To et al., 2023)

Hsp40 DNAJB1 FUS (Gu et al., 2020) RIα (Zhang et al., 2020)

Hsp70 Ssa1/2/3/4 Std1 (Simpson-Lavy et al., 2017) purinosome (French et al., 2013;
Pedley et al., 2018; 2022)

stress granules (Cherkasov et al.,
2013; Kroschwald et al., 2015; 2018;
Walters et al., 2015; Yoo et al., 2022;
To et al., 2023)

Hsp70 HSPA1A/HSPA1/HSPA5/
HSPA6/HSPA8

TDP-43 (Udan-Johns et al., 2014; Gu
et al., 2021; Yu et al., 2021;
François-Moutal et al., 2022); REV-
ERBα(Zhu et al., 2023)

RIα (Zhang et al., 2020, 2023);
EML4-Alk (Zhang et al., 2023)

Hsp90 Hsp90α/Hsp90β purinosome (French et al., 2013;
Pedley et al., 2018; 2022)

AAA+ Hsp104 Std1 (Simpson-Lavy et al., 2017) stress granules (Cherkasov et al.,
2013; Kroschwald et al., 2015; 2018;
Walters et al., 2015; Yoo et al., 2022;
To et al., 2023)

AAA+ VCP stress granules (Erives and Fassler,
2015; Mateju et al., 2017; Wang et al.,
2019; Gwon et al., 2021)

sHSP Btn2 Ure2 (Kryndushkin et al., 2008; Son
andWickner, 2022); INQ (Malinovska
et al., 2012); CtyoQ (Malinovska et al.,
2012; Simpson-Lavy et al., 2017)

sHSP Hsp42 CytoQ (Specht et al., 2011; Grousl
et al., 2018)

sporulation-induced condensates
(Plante et al., 2023)

sHSP Cur1 Std1 (Simpson-Lavy et al., 2017)

sHSP Hsp27 p62/SQSTM1 (Gallagher and
Holzbaur, 2023); FUS (Liu et al., 2020)

sHSP HspB1 TDP-43 (Lu et al., 2022)

sHSP HspB8 FUS (Boczek et al., 2021)

nuclear transport
receptors

Kapβ2/KPNB1 FUS (Guo et al., 2018; Hofweber
et al., 2018; Qamar et al., 2018;
Yoshizawa et al., 2018; Bourgeois
et al., 2020; Niaki et al., 2020; Baade
et al., 2021; Rhine et al., 2022); TDP-
43 (Guo et al., 2018; Hutten et al.,
2020; Khalil et al., 2022); TAF15
(Guo et al., 2018); EWSR1 (Guo et al.,
2018); hnRNPA1 (Guo et al., 2018);
hnRNPA2 (Guo et al., 2018)

nuclear transport
receptors

CRM1 nucleoporins (Thomas et al., 2023)

Other PABPC ataxin-2 (Boeynaems et al., 2023) ataxin-2 (Boeynaems et al., 2023)
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“spacer” (Choi et al., 2019). This model can be adapted to interaction
surfaces as small as individual amino acids and as big as entire
proteins. The propensity of a system to phase separate is determined
by the relative strength of the interactions between the stickers,
spacers and solvent. Stronger sticker-sticker interactions and weaker
sticker-solvent interactions will promote condensation. The strength
of these interactions is not just an intrinsic property of the molecule,
but is dependent on a variety of environmental factors, including salt
concentrations, temperature and pH.

Importantly these interactions also set a critical concentration of
the condensing molecules themselves. Condensation is only
energetically favorable above this concentration. Because the
critical concentrations reflect the current cellular environment,
any changes to that environment can change the transition
threshold, causing condensates to form or dissolve without
changes in the concentration of the molecules. These cellular
changes could include direct environmental signals such as heat
or osmolarity changes, the appearance of a new species such as
dsRNA from a virus or changes in the concentration of a secondary
messenger such as cAMP(Riback et al., 2017; Jalihal et al., 2019;
Iserman et al., 2020; Zhang et al., 2020; Dorone et al., 2021; Wen and
Ma, 2022; Watson et al., 2023). Chaperones can also change this
critical concentration by competing for those same intramolecular
interactions that drive condensation. This is then thermodynamic
control of condensates, in which chaperones change the underlying
energy landscape to favor or disfavor condensation (Figure 1).

While phase transitions can happen quickly, they are not
instantaneous. Even in an energetic landscape where
condensation is favorable, there is a kinetic barrier to converting
soluble molecules to condensates and vice versa. Here too
chaperones play a key role. In fact, modulating barriers between
intermediate states is the principle mechanism by which chaperones
accomplish their canonical task of encouraging proteins to reach
their most energetically favorable form (Hartl et al., 2011). By
modulating the kinetic barrier between soluble and condensed
states, chaperones can accelerate or inhibit condensate formation
and dispersal, which in turn can have important functional
implications for cellular growth and adaptation (Figure 1).

Chaperones promote and direct
biomolecular condensation

Alongside the well-known roles of chaperones in preventing
aggregation, dispersing aggregates, and assisting with folding, a wide
range of studies have uncovered roles for chaperones—primarily
small heat-shock proteins and functional homologs—in promoting
and directing localization of condensation. The overwhelming
majority of work on such activities of chaperones, which are
termed sequestrases, aggregases, or condensases in this context
(Kedersha et al., 2016; Ho et al., 2019; Mogk et al., 2019; Weis,
2021; Shrivastava et al., 2022; Carter et al., 2023), has focused on

FIGURE 1
(A) Changes in the cellular environment can trigger biomolecular condensation. Chaperones can reshape both the (B) kinetics (rates) and (C)
thermodynamics (levels) of condensation by interactions at multiple stages.
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formation of aggregates or deposits of misfolded, denatured proteins
en route to degradation, with sequestration thought to serve a
cytoprotective function (Shrivastava et al., 2022). As described in
the Introduction, we adopt the perspective that adaptive
condensation coexists with such quality control activities.

Our knowledge of sequestrase activity has come overwhelmingly
from studies in budding yeast, where, after considerable efforts,
multiple groups have converged on a common high-level
understanding of the structures and players involved (Kaganovich
et al., 2008; Malinovska et al., 2012; Miller et al., 2015). Yeast forms
three major quality control structures apparent as foci by
microscopy: a cytosolic quality control compartment called
CytoQ, an intranuclear quality control compartment called INQ,
and a perivacuolar insoluble protein deposit called IPOD
(Kaganovich et al., 2008; Miller et al., 2015; Miller et al., 2015).
Although these structures are commonly referred to as
“compartments,” the nature of their boundaries remains unclear,
apart from their lack of a membrane.

How precisely these proteostatic compartments form, and how
the activity of sequestrase molecules promotes the appearance of
microscopically visible structures, is not yet fully known. However,
their appearance is regulated by two key chaperone proteins, the
major sequestrases in budding yeast: CytoQ by the small heat-shock
protein Hsp42, and INQ by the small heat-shock protein Btn2.

The small heat shock protein (sHsp) class of chaperones
(Figure 2) consist of a structured α-crystallin domain (ACD)
flanked by unstructured regions on the 5’ (NTD) and 3’ (CTD)
ends (Haslbeck and Vierling, 2015). Interactions between these
disordered regions and the ACD enable sHSP oligomerization,
forming a range of species from dimers to 40-mers (Clouser
et al., 2019; Mühlhofer et al., 2021). The exact mechanism of
substrate binding varies between clients, but can involve binding
sites in either the unstructured termini or the structured domain
(Reinle et al., 2022). Unlike many other molecular chaperones,
sHSPs do not hydrolyze ATP. Instead it is thought that they
form a shell around misfolded proteins, thus preventing the
substrate from forming aggregates (Friedrich et al., 2004; Shi
et al., 2013; Żwirowski et al., 2017; Johnston et al., 2021;
Mühlhofer et al., 2021). While sHSPs can form large oligomers,
it is actually thought that oligomerization can inhibit sHSP activity
by sequestering substrate-binding sites (Franzmann et al., 2008;
Peschek et al., 2013; Jovcevski et al., 2015; Freilich et al., 2018).

Like many small heat-shock proteins, Btn2 forms large
oligomers in the absence of stress (Ho et al., 2019). Although the
precise structure of these oligomers remains unclear, Btn2 may
behave similarly to other sHsps, with partial oligomer breakdown
creating interaction sites for substrates (Haslbeck et al., 2019). In
certain models of complete oligomers, such as polyhedral structures,
the intrinsic multivalence of such incomplete oligomers could
provide a scaffold for recruiting multiple substrates, driving
sequestration, perhaps through nucleation. In addition to its role
in INQ formation, Btn2 sequesters prion-associated Ure2p amyloid
filaments in mother cells, such that after cell division, some daughter
cells are cured of the prion (Kryndushkin et al., 2008; Son and
Wickner, 2022).

An important clue to Btn2’s structure and function comes from
its paralog in Saccharomyces cerevisiae, Cur1, which shares the
Btn2 ACD but lacks Btn2’s long, disordered C-terminal domain

(CTD) (Miller et al., 2015). Deletion of Btn2 disrupts INQ and
CytoQ formation, and overexpression of Btn2 promotes formation
of both structures, whereas deletion of Cur1 has a minimal effect
whether deleted or overexpressed (Malinovska et al., 2012).
Together, these results suggest that it is Btn2’s disordered CTD
that is crucial for its sequestrase activity. A similar result holds for
Hsp42, whose N-terminal prion-like disordered domain is required
for CytoQ formation and aggregase activity in vitro (Grousl
et al., 2018).

Hsp42 is the primary sequestrase active in the yeast cytoplasm,
driving CytoQ formation—earlier called peripheral aggregates or
Q-bodies—in response to proteotoxic conditions (Specht et al., 2011;
Malinovska et al., 2012; Grousl et al., 2018). Like other sHSPs, it
forms oligomers, with the most-populated wild-type state consistent
with a 10-mer (Grousl et al., 2018). Unlike other sHSPs, these
oligomers remain intact even upon heat stress (Haslbeck et al.,
2004). Hsp42 and Btn2 both help to suppress the aggregation and
toxicity of stress-induced aggregating proteins (Carter et al., 2023),
although their endogenous targets outside of prion proteins remain
obscure. We now turn our attention toward the roles of both
proteins in regulating condensation and the focus-forming
compartments CytoQ and INQ.

What is the relationship between condensation promoted by
sequestrase action and the appearance of cellular foci? The naive
expectation—that they are two expressions of the same underlying
phenomenon—may not hold, as it does not hold in other related
systems. Cycloheximide (CHX) inhibits CytoQ formation (Grousl
et al., 2018), interpreted to mean that newly synthesized
polypeptides make up the bulk of CytoQ substrates (Boczek and
Alberti, 2018). However, disruption by CHX is a hallmark of other
structures, notably P bodies (Sheth and Parker, 2003; Cougot et al.,
2004; Kshirsagar and Parker, 2004) and stress granules (Mazroui
et al., 2002; Mollet et al., 2008; Zhou et al., 2014;Wallace et al., 2015),
with a different interpretation: that these structures depend on
ribosome-free RNA for their formation. A key result is that
translation inhibition with cycloheximide or emetine, which lock
ribosomes on mRNAs, prevents granule formation, whereas
inhibition with puromycin, which releases ribosomes from
mRNAs, promotes granule formation (Glauninger et al., 2022).
To our knowledge, a comparable experiment for either CytoQ or
INQ has not been performed. It may be useful to consider the
possibility that these compartments are the result of elaborate cell-
biological processes, and that the in vitro aggregation experiments
probe only early stages of subassembly formation, as has been found
for stress granules (Wallace et al., 2015; Glauninger et al., 2022).

Questions regarding the seeding of condensed structures
naturally lead to the core concept of nucleation. In the above
examples, mRNA may serve as a nucleus (formally) or a scaffold
(less formally) on which other biomolecules condense. sHsps, in
their role as sequestrases, may use nucleation to spatially direct
condensation; a simple cellular strategy would be to direct
sequestrases to the compartments in which they should promote
condensation. Indeed, deletion of Btn2, compromising INQ, can be
rescued by expressing Hsp42-NLS, a construct which drives
cytosolic Hsp42 into the nucleus using a nuclear localization
sequence (NLS) (Ho et al., 2019).

Nucleation is likely to be the principal kinetic barrier to
formation of many intracellular condensates (Martin et al.,
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2021; Shimobayashi et al., 2021). Condensation without a
nucleation barrier can occur under conditions where nuclei
form spontaneously and, as a result, condensation proceeds
immediately everywhere in the solution—spatial control of
where condensates form is lost. Thus, biological systems in
which spatial control is beneficial will tend to have nucleation
barriers. And similar to many familiar examples, from snowflakes
nucleated by dust grains to steam bubbles nucleated by boiling
chips, nucleation sites can be provided by auxiliary and often
lower-abundance components present with the condensing
species. This separation of roles creates a key niche for
chaperones to act as sequestrases.

Condensates can be directed to specific locations not just by
nucleation (directing formation), but also by tethering. Here, the
subcellular tethering of age-associated aggregates by the
Hsp40 chaperone Ydj1 provides an illuminating example. Aging
yeast cells gradually accumulate protein aggregates consistent with
CytoQ bodies (e.g., marked by Hsp104) (Saarikangas and Barral,
2015). Rejuvenation of new daughter cells depends on asymmetric
retention of these aggregates in the aging mother cell. Retention
depends on diffusion barriers (Clay et al., 2014) and also on Ydj1,
with a twist: although abundant in the cytosol, Ydj1 has a
subpopulation which is farnesylated and tethered to the
cytoplasmic side of the ER membrane. Disruption of this
tethered Ydj1 population compromises asymmetric large-
aggregate retention, perhaps by client-mode binding of smaller
aggregate precursors (Saarikangas et al., 2017).

Less well-studied relative to quality-control structures are
foci—putative condensates—formed by the protein Std1 which
form under glucose-replete conditions and disassemble when
cells switch to respiration (Simpson-Lavy et al., 2017). Here,
remarkably, the disaggregase Hsp104 acts as a sequestrase:

Δhsp104 cells cannot form Std1 foci, inhibiting Hsp104 with low
levels of guanadinium hydrochloride reduces focus formation, and
Hsp104 is recruited to, perhaps integral to, these foci (Simpson-Lavy
et al., 2017). Hsp40 (Sis1) and Hsp70 (Ssa1) chaperones also
contribute to focus formation and associated phenotypes, as do
Btn2 and Cur1, suggesting the involvement of multiple aspects of the
sequestrase and disaggregase systems in regulating these structures.
That Std1 foci are present under what in most other studies is a non-
stress, wild type condition, and that Std1 appears to be an
endogenous substrate rather than a primary regulatory factor for
these foci, makes this system particularly tantalizing. Further work,
particularly at the biochemical level, is needed to clarify how
apparently opposing functions from proteins best known for
dispersal activities contribute to condensate assembly in this case.

Chaperones regulate the material state
of condensates

In addition to their role in promoting the formation of
condensates, chaperones also regulate the internal structure,
dynamics, and other in situ features of condensates, which we
broadly refer to as the material state. Most commonly, a single
feature of condensate material state, dynamics, is measured using
techniques such as fluorescence recovery after photobleaching
(FRAP) and single particle tracking (Alshareedah et al., 2021;
Wang et al., 2022). While such measurements do report on the
dynamics of molecules in the condensates, they provide only limited
insight into the underlying molecular structure of the condensate.
For instance, solid-like materials can either be gels, which are
characterized by cross-linked networks of polymers swollen with
solvent, or as glasses, which are disordered materials with a high

FIGURE 2
Structure and activities of a canonical small heat-shock protein (sHSP). (A) Structures of the small heat shock protein Hsp26 as a monomer
(AlphaFold prediction (Jumper et al., 2021; Varadi et al., 2022)), dimer (only structured α-crystallin domain shown, ColabFold prediction (Mirdita et al.,
2022) and oligomer (cryo-EM structure with modeled monomers of Hsp26 (Mühlhofer et al., 2021)). (B) Examples of the ways small heat shock proteins
can modulate condensation.

Frontiers in Biophysics frontiersin.org06

Bard and Drummond 10.3389/frbis.2024.1342506

https://www.frontiersin.org/journals/biophysics
https://www.frontiersin.org
https://doi.org/10.3389/frbis.2024.1342506


barrier to reorganization (Jawerth et al., 2020; Mittag and Pappu,
2022). Furthermore, even simple two-component systems can form
complex structures with multiple distinct phases coexisting
(Garaizar et al., 2022). Cellular biological condensate structures
can contain hundreds of different components, and can have
correspondingly complex internal structures and organizations.
Furthermore, they may be composites of multiple types of
condensates. Much research remains to be done linking these
material states with the adaptive role of condensates in cells, but
we will highlight some examples below in which chaperones have
been shown to play an important role in modulating condensate
structure and we will discuss the possible functional implications of
this regulation.

A number of recent results have shown that chaperones can alter
the material state of condensates by ‘fluidizing’ the structure. That is,
chaperones increase the rate at which the condensate can internally
reorganize. In multiple instances this fluidization appears to be
important for keeping condensates in a material state that is easily
dispersible. This is analogous to the long known function of small
heat shock proteins in maintaining protein aggregates in a more
easily re-solubilized state (Kampinga et al., 1994; Ehrnsperger et al.,
1997; Lee et al., 1997; Cashikar et al., 2005; Ungelenk et al., 2016; Yoo
et al., 2022).

For instance, molecular chaperones help maintain a liquid-like
state for peri-nucleolar condensate-containing orphan ribosomal
protein subunits (Ali et al., 2023). These condensates form in
response to heat shock in both yeast and humans and they recruit
molecular chaperones including the Hsp40 Sis1/DNAJB6. Hsp40s
are an ATP-independent class of molecular chaperones that are
thought to be primarily substrate recognizing adapters for the
ATP-dependent Hsp70 chaperone (Kampinga et al., 2019). Ali
et al. were able to study the condensates in a lysate system, where
either adding a chemical inhibitor of Hsp70 or depleting ATP
slows down the dynamics of the condensate. Depleting Sis1/
DNAJB6 from the nucleus delays the dispersal of the ribosomal
protein condensates during recovery from stress, matching a
report that inhibition of Hsp70 delays resolubilization of
ribosome biogenesis proteins after heat shock in human cells
(Sui et al., 2022). Importantly this delayed dispersal affects the
fitness of yeast, delaying the resumption of cell growth after stress
(Ali et al., 2023).

A similar interplay between chaperones and condensates
contributes to the resumption of growth for yeast spores after
exiting dormancy (Plante et al., 2023). More than 100 proteins
condense during spore dormancy and are then resolubilized upon
the resumption of growth. Deletion of the small heat shock protein
Hsp42 delays the dispersal of these condensates. While its
mechanism of action is still unknown, Hsp42 may be acting to
maintain proteins in a state that is more easily solubilized
during recovery.

Condensates again regulate the material state of the selective
autophagy receptor p62/SQSTM1, which forms condensates around
damaged lysosomes in order to initiate their degradation via
lysophagy (Gallagher and Holzbaur, 2023). Hsp27 is recruited
into these condensates and when Hsp27 is depleted the
condensates are less liquid-like (as measured by FRAP) and
initiate lysophagy more slowly. This fits with results from a
slightly different system showing that maintaining liquidity of

condensates formed by autophagy cargo is important for efficient
selective autophagy (Yamasaki et al., 2020).

Another chaperone-regulated condensate is the purinosome, a
multienzyme condensate which forms upon changes in growth
conditions which upregulate purine biosynthesis (An et al., 2008;
French et al., 2013; Kyoung et al., 2015; Pedley et al., 2018; 2022).
Two components of purinosomes, PPAT and FGAMS, directly
interact with Hsp90 (Pedley et al., 2018). Furthermore, inhibiting
Hsp70 or Hsp90, another ATP-dependent molecular chaperone,
prevents the formation of intact purinosomes and instead triggers
the formation of condensates containing FGAMS alone (French
et al., 2013). These FGAMS condensates are more solid-like than
normal purinosomes, as assayed by their reduced sphericity (Pedley
et al., 2022). Because the FGAMS condensates do not contain the
entire suite of enzymes necessary for purine biosynthesis, Hsp90 is
likely playing an important role in maintaining functional
purinosome condensates. However, as is the case with the
ribosomal protein condensates above, the mechanism by which
chaperones tune the condensate properties of the purinosome
remains to be uncovered.

Chaperones have also been shown to play a key role in
modulating the material state of multiple condensing proteins
involved in neurodegenerative disease, including FUS and TDP-
43. FUS and TDP-43 are normally nuclear proteins involved in RNA
metabolism, but are found in cytoplasmic inclusions in degenerating
neurons that are key hallmarks of the neurodegenerative diseases
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD) (Harrison and Shorter, 2017). Mutations in FUS which alter
its phase-separating properties are linked to ALS and FTD,
suggesting that the regulation of FUS condensate structure is
important for maintaining healthy neurons (Murakami et al.,
2015; Patel et al., 2015; Harrison and Shorter, 2017; Murray
et al., 2017; Portz et al., 2021). While reconstituted FUS and
TDP-43 form condensates that are initially liquid-like, they
harden and develop into amyloid-like fibrils over time (Kato
et al., 2012; Molliex et al., 2015; Patel et al., 2015; Gasset-Rosa
et al., 2019). This tendency could be due to the high protein
concentrations experienced in liquid condensates which promote
oligomer formation. Due to their importance for neurodegenerative
diseases, a number of studies have looked at chaperone involvement
in preventing and dispersing aggregates and condensates of
amyloid-prone RNA-binding proteins including FUS, TDP-43
and Ataxin-2 (Ciechanover and Kwon, 2017). We will not cover
the large body of literature examining the role of chaperones in
preventing and dispersing misfolded aggregates and amyloid fibers
of these and other proteins (Wentink et al., 2019), but will rather
focus on the interaction between chaperones and the more liquid-
like condensates of these proteins.

A number of chaperones have been shown to help maintain this
liquid-like state of FUS and TDP-43 and prevent amyloid fiber
formation. For FUS, this includes ATP-independent chaperones like
the Hsp40 chaperone DNAJB1 and the small heat shock proteins
Hsp27 and HspB8 (Gu et al., 2020; Liu et al., 2020; Boczek et al.,
2021; Li et al., 2022). The ATP-dependent Hsp70 chaperones
HSPA1A and HSPA8 are also reported to prevent amyloid
formation of FUS condensates (Li et al., 2022). Similarly, HspB1,
another small heat shock protein, helps maintain TDP-43
condensates in a liquid-like state (Lu et al., 2022). In cells,
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depleting HspB1 delayed the dispersal of TDP-43 condensates, again
emphasizing the potential role of material state in regulating the
dispersal kinetics of condensates (Lu et al., 2022).

In general, the ATP-independent chaperones help to maintain
liquid-like states by first partitioning into condensates and then
interfering with the protein-protein interactions that drive oligomer
formation and the transition to a more solid-like state. For instance,
both Hsp27 and HspB8 use their unstructured N-terminal domains
(NTDs) to interact with FUS condensates (Liu et al., 2020; Boczek
et al., 2021). For Hsp27 this interaction is tuned by stress-induced
phosphorylation in the NTD of Hsp27(Liu et al., 2020). While
unphosphorylated Hsp27 completely prevents FUS condensation
in vitro, a phosphomimetic variant of Hsp27 rather co-partitions
with the FUS condensate. Meanwhile, HspB8 does not prevent FUS
condensation, but does partition into them (Boczek et al., 2021).
Removing the CTD largely prevented multimerization of Hsp27, but
did not abolish chaperone activity, consistent with previous studies
showing that oligomerization of Hsp27 actually inhibits chaperone
activity (Franzmann et al., 2008; Peschek et al., 2013; Jovcevski et al.,
2015; Freilich et al., 2018; Mühlhofer et al., 2021). Intriguingly, it was
recently reported that purified Hsp40 proteins can form condensates
themselves (Gu et al., 2020). In addition, the same disordered region
of the protein that enables homotypic condensates also promotes co-
condensation of Hsp40 with FUS, while a different domain is
required to prevent FUS fibrilization. Similarly, while the NTDs
of Hsp27 and HspB8 are crucial for controlling the interaction of the
chaperone with the FUS condensate, it is actually the α-crystallin-
like domain (ACD) which is required to modulate the material state
of the condensate (Liu et al., 2020; Boczek et al., 2021). The ACD
interacts with the RNA recognition motif (RRM) domain of FUS,
which is not normally involved in FUS condensation and may
prevent the local RRM unfolding which has been hypothesized to
drive fibril formation (Boczek et al., 2021).

As regards TDP-43, HspB1 binds to a region which is thought to
form a transient helix involved in phase separation, suggesting that it
may be acting to regulate the material state by directly weakening the
interactions involved in promoting condensation. This same region
of TDP-43 is bound by a variety of chaperones in vitro including
Hsp40, Hsp70 and Hsp90 type chaperones (Carrasco et al., 2023).
HspB1 also binds to the RRM domain of TDP-43, which, as it is for
FUS, appears to be important for amyloid fibril formation (Chen
et al., 2019; French et al., 2019). This is also reminiscent of the
condensation mechanism of poly(A)-binding protein (Pab1), in
which interactions between locally unfolded RRM domains drives
assembly (Chen et al., 2024). These results highlight that it is not just
interactions between chaperones and disordered regions that
regulate condensation, but that interactions with seemingly
folded domains can also be critical for modulating condensation
formation and structure.

While cytoplasmic TDP-43 condensates are enriched for HspB1,
TDP-43 also forms nuclear condensates which are associated with
Hsp70s rather than small HSPs(Udan-Johns et al., 2014; Gu et al.,
2021; Yu et al., 2021; François-Moutal et al., 2022). Yu et al. found
that RNA-binding deficient TDP-43 forms condensates with a
remarkable internal structure, which they termed an “anisosome”
(Yu et al., 2021). The TDP-43 anisosome contains a liquid-like core
of Hsp70 and is surrounded by a shell of ordered (and hence
anisotropic), but liquid-like TDP-43. This structure is dependent

on the ATPase activity of the Hsp70 chaperone, as inhibiting the
chaperone in vivo causes the structure to become a well-mixed liquid
that ages over time to a more solid-like state (Gu et al., 2021). The
anisome structure is not unique to TDP-43, as Zhu et al. recently
identified a similar structure with a core of Hsp70 and a shell of the
nuclear protein REV-ERBα (Zhu et al., 2023). REV-ERBα is involved
in the repression of the circadian clock in mouse livers, and the
anisosome condensates appear to be important for this repressive
function. Further research is needed to identify other proteins which
may form chaperone-associated anisomes, and to determine both
the molecular mechanisms of how they form and what the
functional consequences of this intricate structure is.

Chaperones inhibit and dissolve
condensates

The best-studied function of molecular chaperones is to prevent
and disperse aggregates of misfolded proteins. Chaperones
accomplish this task by disrupting unwanted protein-protein
interactions and untangling networks of protein polymers (Hartl
et al., 2011). These same functions make chaperones ideal regulators
of biomolecular condensation, which similarly involve a multitude
of protein-protein interactions and potentially interwoven networks
of biological polymers. In fact, as discussed below, chaperones
appear to be much more efficient at clearing biomolecular
condensates than at dispersing aggregates of misfolded proteins
(Yoo et al., 2022). While there are some constitutive condensates in
cells, such as the nucleolus, many condensates form in response to
an environmental signal. Once the signal has dissipated or the cell
has regained homeostasis, the induced condensate will then
be dissolved.

Stress granules are a key example of a signal-induced condensate
which is known to be dispersed by molecular chaperones. Stress
granules are assemblies of proteins and RNA that form in the cytosol
in response to cellular stresses such as hypoxia, starvation, heat
shock, oxidative stress and viral infection (Glauninger et al., 2022).
They are often defined by the visible appearance of foci containing
mRNA and key marker proteins such as G3BP1/2, poly(A)-binding
protein (Pab1) and other translation initiation factors such as the
eIF3 complex. However, their composition is complex and stress-
dependent, making a precise definition of stress granules difficult.
Reflecting this ambiguity, the function of stress granules is an active
area of research with proposed functions ranging from regulating
translation and RNA metabolism to serving as a platform for innate
immune signaling (White and Lloyd, 2012; Reineke et al., 2015;
Deater et al., 2022; Mateju and Chao, 2022). Recently they have even
been shown to play a key role in maintaining the integrity of
endolysosomal membranes (Bussi et al., 2023).

Stress granules are thought to assemble in stages, driven by the
condensation of multiple different proteins with RNA. Many of
these proteins, including G3BP1, PABP, and Ded1/DDX3, condense
in a test tube in response to physiological triggers (e.g., heat shock or
long ribosome-free RNA) (Riback et al., 2017; Kroschwald et al.,
2018; Guillén-Boixet et al., 2020; Iserman et al., 2020; Yang et al.,
2020). For instance, purified Pab1 forms condensates when exposed
to heat shock in a test tube (Riback et al., 2017). The condensation of
Pab1 is not driven by its intrinsically disordered regions, though they
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do play an important role in modulating the condensation behavior.
Rather the assembly process involves interactions between locally
unfolded regions of Pab1’s RRM domains (Chen et al., 2024). These
condensates are initially liquid-like, but quickly mature into a more
solid-like state which does not dissolve after the protein has been
returned to room temperature. This is similar to the in vitro behavior
of Ded1, another stress granule component which condenses in
response to elevated temperature (Iserman et al., 2020).

Stress granules also do not immediately resolve upon the
cessation of the stress. Thus both stress granules in cells and
stress granule proteins in vitro demonstrate hysteresis, where the
state of the system is influenced not only by its current conditions
but also by past conditions. As we will discuss below, this property
provides a useful regulatory handle by which chaperones can control
the adaptation process of cells (Figure 3). Mechanistically, it could
reflect a strong kinetic barrier to dissolution (Figure 1).

Stress granules are dissolved through a combination of at least two
pathways: clearance and degradation by autophagy and resolubilization
of the components by molecular chaperones (Buchan et al., 2013;
Ganassi et al., 2016; Gwon et al., 2021). In yeast, condensation of
proteins into stress-induced assemblies after a brief 42°C heat shock is
completely reversible, suggesting that, at least for such short-term
stresses, autophagy is not required for dissolution. Instead,
dissolution is driven by the Hsp40/Hsp70/Hsp104/Hsp110 molecular
chaperone pathway (Cherkasov et al., 2013; Kroschwald et al., 2015;
Walters et al., 2015; Kroschwald et al., 2018; Yoo et al., 2022; To et al.,
2023). In this pathway, the chaperones Hsp70, together with its co-
chaperones Hsp40 and Hsp110, deliver substrates to the ring-shaped
AAA+ unfoldase Hsp104, which uses energy from ATP hydrolysis to
thread proteins through its central pore and resolubilize its substrates
(Hartl et al., 2011).

Yoo et al. recently reconstituted this process in vitro using
Pab1 condensates as a model substrate (Yoo et al., 2022). The
full complement of chaperones from the pathway are required
for maximal efficiency, but a combination of Hsp40, Hsp70 and
either Hsp104 or Hsp110 is sufficient to reconstitute dispersal
activity, with Hsp104-driven dispersal being significantly faster
than that driven by Hsp110. While type I (Ydj1 in yeast) and
type II (Sis1) Hsp40 proteins act synergistically in the
disassembly of luciferase aggregates, only the type II Hsp40 is
able to disperse Pab1 condensates (Nillegoda et al., 2015;
Nillegoda et al., 2017). Another key point is that Hsp70, despite
being able to catalytically hydrolyze ATP, needs to be present in
super-stoichiometric abundance in order to disperse the
condensates. This fits with other studies showing that multiple
Hsp70s need to bind to a substrate in order to activate Hsp104
(Seyffer et al., 2012; Carroni et al., 2014). Similarly, even in the
absence of Hsp104, multiple Hsp70s cluster together in order to
disperse amyloid substrates (Wentink et al., 2020). In order to
understand the regulation of stress granules and other
condensates, more research is needed to identify the mechanisms
enabling particular chaperones to disperse particular substrates.

A surprising finding was that dispersal of Pab1 condensates is
orders of magnitude faster than dispersal of aggregates of luciferase,
a commonly used model substrate, formed under similar conditions
(Yoo et al., 2022). Computational modeling suggests that the
difference in efficiency might be attributable to a higher dispersal
rate of the substrate, and/or to the fact that, in contrast to luciferase,

Pab1 remains monomeric after solubilization and does not
reaggregate or reenter the condensate. Supporting contributions
of the second mechanism, intrinsically disordered regions aid in
refoldability of proteins, and condensing proteins in budding yeast
are particularly adept at reforming their native structure after being
unfolded (To et al., 2023). This suggests that proteins in condensates
may have evolved properties such as fast refolding which allow them
to be easily dispersed by molecular unfoldases like Hsp104.

While stress granule dispersal in budding yeast requires Hsp104,
metazoa have lost this chaperone and yet are still able to disperse
stress granules independently of autophagy (Erives and Fassler,
2015; Mateju et al., 2017; Wang et al., 2019; Gwon et al., 2021).
In humans, this dispersal is enabled by VCP, a AAA+ ring-shaped
unfoldase that is structurally quite similar to Hsp104 (Gwon et al.,
2021). VCP is recruited to stress granules through its adaptor FAF2,
which binds to ubiquitinated G3BP1. This is analogous to the
recruitment of Hsp104 to stress granules by Hsp40/Hsp70 and
suggests that VCP may have adopted some of the functions in
regulating condensates performed by Hsp104 in fungi and other
eukaryotes.

The Hsp70 system still plays an important role in regulating
stress granules in humans, however, as it helps to maintain stress
granules in a dispersible state (Ganassi et al., 2016; Mateju et al.,
2017). Depletion of the Hsp70 HSPA1A, its co-chaperone BAG3,
and the small heat shock protein HspB8 all lead to the accumulation
of defective ribosomal products (prematurely terminated
polypeptides) in stress granules, which in turn changes their
material state and delays their dispersal (Ganassi et al., 2016).
Similarly, overexpression of misfolded proteins, such as ALS-
associated variants of the protein SOD1 leads to aberrant stress
granules which are particularly dependent on chaperones for their
dispersal (Mateju et al., 2017). Thus chaperones act across the life-
cycle of stress granules to maintain their proper structural state,
enabling them to be efficiently dispersed once the stress is relieved.

In addition to direct dispersal, chaperones can also control stress
granules via indirectly modulating stress granule regulators. In
particular, the active state of DYRK3, a kinase which regulates
stress granule dissolution, is maintained by the ATP-dependent
chaperone Hsp90 (Wippich et al., 2013; Mediani et al., 2021). Upon
stress, DYRK3 is inactivated, disassociates from Hsp90 and is
targeted to stress granules. During recovery, Hsp90 re-engages
with DRYK3, reactivating it and further promoting stress granule
dissolution. This system thus acts as a feed-forward system,
sharpening the transitions between stress granule formation and
dissolution. It also further ties chaperone activity to stress granules.

Stress granules are not the only condensate dispersed by the
Hsp40/Hsp70 system. Another example of such condensates are
those formed by RIα, a cAMP-dependent protein kinase (PKA)
which aids in the regulation of cAMP signaling (Zhang et al., 2020).
In turn, cAMP signaling regulates numerous pathways in cells. In
liver cancer fibrolamellar carcinoma RIα is fused to the
Hsp40 DNAJB1, which recruits Hsp70 and leads to the dispersal
of RIα condensates. Similarly, direct targeting of Hsp70 to model
condensates of RIα or EML4-Alk via de novo designed
Hsp40 mimics also led to condensate dispersal (Zhang et al.,
2023). This result opens up the exciting possibility of using
chaperones as designer tools for modulating specific condensates
in cells. Such tools would be similar to a number of variants of
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Hsp104 which have been specifically designed to disperse toxic
aggregate associated with neurodegenerative diseases (Jackrel et al.,
2014; Mack et al., 2023).

While the chaperones discussed above are general protein
chaperones or unfoldases, a number of studies have highlighted
the unexpected chaperone activities of other condensate binding
proteins such as nuclear/cytoplasmic transport machinery (Guo
et al., 2018; Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa
et al., 2018; Guo et al., 2019; Bourgeois et al., 2020; Hutten et al.,
2020; Niaki et al., 2020; Baade et al., 2021; Khalil et al., 2022; Odeh
et al., 2022; Rhine et al., 2022; Boeynaems et al., 2023; Thomas et al.,
2023). Many of the RNA-binding proteins whose aberrant
condensation is associated with neurodegenerative diseases,
including FUS, TDP-43 and hnRNPA1, are trafficked into the
nucleus via importins like Karyopherin-β2 (Kapβ2 or transportin
1) and KPNB1. Importins bind to proteins containing a nuclear
localization sequence, and then use the energy from a concentration
gradient of their regulator RAN to facilitate directional travel across
the nuclear pore. Surprisingly, importin binding to FUS, TDP-43,
hnRNPA1 and cold-inducible RNA-binding protein (CIRBP)
inhibits their condensation and fibrilization both in vivo and
in vitro (Guo et al., 2018; Hofweber et al., 2018; Qamar et al.,

2018; Yoshizawa et al., 2018; Bourgeois et al., 2020; Hutten et al.,
2020; Niaki et al., 2020; Baade et al., 2021; Khalil et al., 2022; Rhine
et al., 2022). Even more impressive, despite having no ATP
hydrolysis activity, Kapβ2 can dissolve preformed fibrils of FUS
and hnRNPA1 in vitro (Guo et al., 2018; Fare et al., 2023). It
accomplishes this dispersal by interacting with the substrate not
just at the NLS but at multiple sites within the protein and thereby
competing with the interactions that drive condensation and
fibrilization (Guo et al., 2018; Yoshizawa et al., 2018; Fare et al.,
2023). Similarly, the exportin CRM1 inhibits the formation of
condensates of FG repeat-containing nucleoporins that appear
when the nucleoporins are expressed at high levels (Milles et al.,
2013; Thomas et al., 2023).

In a different example of unexpected chaperoning activity, the
stress granule marker Pab1 (or PABPC in humans) also serves as a
chaperone to prevent spontaneous condensation of ataxin-2 and to
direct its localization to stress granules during cellular stress
(Boeynaems et al., 2023). PABPC binds to a conserved short
linear motif (SLiM) in ataxin-2, and is proposed to function by
bringing ataxin-2 to RNA, which then competes with the
multivalent interactions that otherwise lead to spontaneous
condensation. In the context of stress, PABPC then acts as an

FIGURE 3
A proposed chaperone-enabled adaptive cycle of condensation. Stressful changes in cellular environments arrest cellular growth and trigger the
formation of condensates, nucleated by small heat shock proteins. Stress-induced condensates then help to upregulate chaperone production, which
begin to antagonize condensate formation. When stress ends, condensates do not spontaneously dissolve, but are dispersed by stress-induced
chaperones, restoring growth. This lag (hysteresis) is adaptive, enabling cells to prepare for successive stresses and ensuring a successful response to
stress before growth restarts.
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emulsifier to allow ataxin-2 mixing with other stress granule
components. In the absence of the SLiM, and thus PABPC
binding, ataxin-2 does not mix with stress granules but rather
forms condensates that dot the outside of stress granules.
Together with the nuclear transport results, these findings force
us to expand our definition of condensate chaperone beyond the
traditional heat shock proteins.

Biology enabled by chaperone-
regulated condensation

The functions of chaperones in regulating condensates are,
unsurprisingly, both as varied and as poorly understood as the
functions of condensates themselves—determination of which is
currently (and properly) considered a central aim of condensate biology.

We begin by noting and nodding to the standard protein quality
control literature, extensively cited above, which has illuminated the
many ways in which chaperones may act in the context of
condensates to reduce the cellular impact of misfolded proteins.
Prevention and dispersal of toxic condensates/aggregates, formation
of quality control compartments such as the INQ and CytoQ,
retention of similar bodies in aging cells, and alteration of the
dispersability of aggregates by sHSPs represent the major
activities attributable to chaperones and reviewed extensively
above and elsewhere (Miller et al., 2015; Sontag et al., 2017;
Haslbeck et al., 2019; Kumar et al., 2022). From the perspective
of condensate biology, the key principles underlying the chaperone-
regulated features of these systems are the sequestration of
potentially toxic species into defined structures where their
processing can be controlled and toxicity limited. A major open
question is the degree to which these same structures and strategies
apply to endogenous, adaptive condensing proteins—where, for
example, sequestration of an activity which is deleterious in
certain circumstances may follow the same logic as sequestration
of toxicity.

Another relatively well-understood functional role of
chaperones in regulating condensates is chaperone-mediated
propagation of prions (Chakrabortee et al., 2016; Chakravarty
et al., 2020; Itakura et al., 2020; Garcia et al., 2021; Saad and
Jarosz, 2021). Prions are proteins which are able to propagate a
particular conformational state, usually that of a multimeric
assembly, across generations. These inherited states can have
important functional consequences for cells, such as balancing a
trade-off between proliferation and lifespan (Garcia et al., 2021).
Many prions are deleterious, and chaperones form a key part of
antiprion systems, in part by sHSP-mediated sequestration of
potentially toxic prion assemblies to prevent their passage to
younger cells (Kryndushkin et al., 2008; Son and Wickner,
2022). In other cases, chaperones break up prion assemblies
which otherwise could not be transmitted, creating
transmissible seeds which template future assembly growth
(Shorter and Lindquist, 2004). The degree to which prions and
condensates can and should be considered related phenomena
remains somewhat hazy, but the understanding of condensation
has been profoundly shaped by studies of prions, prion-like
domains, sequestrases in a prion context, etc., enough to
warrant substantial further attention.

Moving beyond quality control and toxicity, yet still in the realm
of stress biology, two general functions of chaperones interacting
with condensates have become clear in recent studies: regulating the
timing of events following stress, and a crucial role in regulating
responses to stress.

First, a common theme among stress-induced condensates is
that their dissolution corresponds temporally to resumptions in the
cellular processes which were suppressed during the stress. By
regulating the timing of this dissolution, chaperones are playing a
vital role in gatekeeping the return to normal cellular homeostasis.
For instance, resumption of translation and the cell cycle after heat
shock corresponds well with the dissolution of stress granules in
yeast (Cherkasov et al., 2013; Kroschwald et al., 2018). It was also
recently shown that in budding yeast availability of the chaperone
Ydj1 regulates the cell-cycle (Moreno et al., 2019). Sequestration of
Ydj1 into stress granules may thus directly delay resumption of the
cell-cycle (Walters et al., 2015). Stress also triggers condensation of
the ATP-producing enzyme Cdc19 into reversible amyloids which
inhibit its function and must be disassembled before growth can
restart (Cereghetti et al., 2021). Delaying the resolution of stress
granules, on the other hand, delays the resumption of translation
(Wippich et al., 2013; Maxwell et al., 2021). Similarly, delaying the
resolution of orphan ribosomal protein condensates delays
resumption of growth after heat shock (Ali et al., 2023). Another
example comes from restarting growth in budding yeast spores,
which corresponds with a large-scale resolubilization of proteins
which had condensed during dormancy (Plante et al., 2023).

Second, chaperones appear to play a central role in transducing
stress sensed by condensing proteins. Condensation and the more
specific phenomenon of phase transitions represent an effective
strategy to convert small changes in a relevant parameter
(temperature, pH, etc.) into large-scale changes in intracellular
organization (Yoo et al., 2019). However, to trigger downstream
behavior, such sensory condensation must be read out, directly or
indirectly. In the case of activation of Hsf1, the primary eukaryotic
transcriptional regulator of the heat shock response, a mechanism
for direct readout has already been described (Pincus, 2020). Under
physiological growth conditions, Hsf1 is bound and repressed by the
chaperone Hsp70(Zheng et al., 2016; Krakowiak et al., 2018). As new
Hsp70 substrates emerge during stress, they titrate Hsp70 away from
Hsf1, thus removing the inhibitory block and inducing chaperone
induction. What are these substrates? One major source of new
substrates for Hsp70 are nascent polypeptides which may misfold
during cellular stress (Xu et al., 2016; Masser et al., 2019). However,
even when translation is inhibited, stress leads to robust induction of
the heat shock response (Triandafillou et al., 2020), suggesting that
there is another source of Hsp70 substrates induced by stress.
Indeed, poly(A)-binding protein (Pab1) both autonomously
condenses in vivo and in vitro in response to temperature and
pH changes (Riback et al., 2017), and when condensed is an
endogenous substrate of the classic disaggregase system,
including Hsp70 (Yoo et al., 2022). We hypothesize that many
such stress-induced condensates, which are both abundant and
interact strongly with chaperones during stress, also function as
strong activators of Hsf1. Further supporting this adaptive role in
regulating the stress response, we have recently shown that
proteome-wide condensation in fungi is well-tuned to their
evolutionary niches, with the temperature onset of condensation
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closely following the thermal niche of cryophilic, mesophilic and
thermotolerant budding yeast species (Keyport Kik et al., 2024).

Temperature and pH trigger Pab1 condensation and,
remarkably, similar structural rearrangements promoting
condensation (Chen et al., 2024). Intracellular pH drops
accompany multiple cellular stresses (Munder et al., 2016;
Triandafillou et al., 2020), and have been proposed to be a
second messenger for stress (Dechant et al., 2010). Generalized,
these results suggest a relatively simple mechanism by which
condensing proteins can respond to a diverse array of stresses,
yet, via recruitment of chaperones acting as inhibitory factors on
response proteins such as Hsf1, trigger convergent responses.

Given that chaperones appear to both be induced by stress-
induced condensates and aid in their dispersal, we propose that
chaperones and condensates have evolved as an adaptive
monitoring system similar to negative feedback loops that
govern many other signaling pathways (Figure 3) (Lake et al.,
2016). To articulate the full picture, in this model stress triggers an
arrest of growth and cellular processes such as translation, and also
the induction of condensates, a process which itself is regulated by
constitutive chaperones like small heat shock proteins (Rowley
et al., 1993; Grousl et al., 2009). The condensates then aid in
maintaining the repressed state by sequestering mRNA, translation
initiation factors, and other proteins required for normal cellular
growth (Riback et al., 2017; Bresson et al., 2020; Iserman et al.,
2020). Condensates begin to recruit molecular chaperones away
from Hsf1, relieving Hsf1 inhibition and triggering the induction
of more molecular chaperones (Keyport Kik et al., 2024). This
process continues until an equilibrium is established between
condensate formation, condensate induction, and condensate
dispersal. Autonomous stress-triggered condensation but
facilitated dispersal dependent on limited chaperones produces
hysteresis: condensates which form rapidly upon stress do not
dissolve rapidly upon cessation of the triggering stress. Rather,
condensates persist, generating a lag phase until sufficient
chaperone activity exists to fully dissolve condensates. During
this lag, the cell persists in a stress-specific state, with
alterations in activities due to condensation then able to
remodel the cell via selective transcription and translation to
contend with or react appropriately to stress. Eventual
condensate dissolution, in turn, corresponds with the
resumption of the cell cycle and high-level translational activity
(Cherkasov et al., 2013; Kroschwald et al., 2018; Moreno et al.,
2019). This hysteretic system, in short, provides a simple
mechanism by which the cell can generate specific responses

and automatically detect a successful response, rather than
merely the cessation of stress.

All of these functions, in their various states of illumination and
mechanistic detail, provide merely a glimpse into the potential
functions which may be executed by chaperones acting as
regulators of condensation. We anticipate that the frame will
continue to shift and expand to accommodate more adaptive
mechanisms, more surprising reconsiderations of well-established
chaperone activities, and a deeper understanding of condensate
biology in the context of conserved regulatory machinery.
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