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The scanpath is an important concept in eye tracking. It refers to a person’s

eye movements over a period of time, commonly represented as a series

of alternating fixations and saccades. Machine learning has been increasingly

used for the automatic interpretation of scanpaths over the past few years,

particularly in research on passive gaze-based interaction, i.e., interfaces that

implicitly observe and interpret human eye movements, with the goal of

improving the interaction. This literature review investigates research onmachine

learning applications in scanpath analysis for passive gaze-based interaction

between 2012 and 2022, starting from 2,425 publications and focussing on

77 publications. We provide insights on research domains and common

learning tasks in passive gaze-based interaction and present common machine

learning practices from data collection and preparation to model selection and

evaluation. We discuss commonly followed practices and identify gaps and

challenges, especially concerning emerging machine learning topics, to guide

future research in the field.

KEYWORDS

machine learning, eye tracking, scanpath, passive gaze-based interaction, literature
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1 Introduction

Eye tracking is a technology that records eye movements and gaze locations over time

(Carter and Luke, 2020), and has seen increased usage in research over recent years. The

scanpath is an important concept in eye tracking, and it refers to the trace of a user’s

eye movements across space over a period of time (Holmqvist et al., 2011). Scanpaths are

closely associated with two eye tracking terms: fixations and saccades. Fixations describe

the state when the eyes remain relatively still for a time period lasting between a few

tens of milliseconds up to a few seconds, while saccades are the rapid eye movements

from one fixation to another (Holmqvist et al., 2011). The combination of both fixations

and saccades produces a scanpath. Figure 1 shows a visual encoding of a scanpath where

the numbered circles represent fixations, the lines connecting them represent saccades,

and both are superimposed on top of a text stimulus. Scanpaths are often regarded as

one of the most commonly used methods for analyzing and representing human eye

movements (Blascheck et al., 2017; Li et al., 2021).

The latest Artificial Intelligence (AI) Index Annual Report revealed that AI research

has more than doubled since 2010 (Maslej et al., 2023). This prompted us to investigate

whether this trend can also be found in eye tracking research. A query to the Dimensions
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FIGURE 1

An example of a real scanpath visualization during a reading task.

AI database1 for eye tracking publications2 from 2012 to 2022

showed an almost fourfold increase in the number of publications,

as shown in Figure 2A. This growth has occurred despite a

slowdown due to the COVID-19 pandemic. By further refining

our search query to include some common machine learning (ML)

keywords,3 we observed a rapid increase in publications, with

more than a tenfold increase from 2012 to 2022, as shown in

Figure 2B. This shows that the eye tracking community has been

rapidly adopting ML algorithms in their research, aligning with

the statement of Maslej et al. (2023). These findings encouraged

us to conduct a literature review where we focus on a specific

topic within eye tracking research to provide an overview of how

ML has been used. Because of the importance of scanpaths and

because automated scanpath analysis has been under investigation

since the late nineties (Brandt and Stark, 1997), we decided to

focus on scanpaths for passive gaze-based interaction, Passive gaze-

based applications use eye tracking as a supporting modality to

monitor and understand a user’s behavior without the user actively

interacting with the system using their gaze (Qvarfordt, 2017;

Duchowski, 2018).

This paper provides a practical overview of how ML has been

used for scanpath analysis in passive gaze-based applications. Our

contribution lies in reporting and summarizing findings from 77

publications between 2012 and 2022. We begin by examining the

different research domains and passive gaze-based learning tasks

to see the current trends in the field. Afterwards, we structure our

ML findings in the order of a general ML workflow based on those

fromAmershi et al. (2019) and Souza et al. (2022). AnMLworkflow

is a high-level overview of the different steps needed for an ML

project. It consists of three main steps: the data curation, where a

dataset is acquired; the learning data preparation, where the dataset

is transformed into a proper format ready to be processed by the

ML algorithm; and the learning process, where the ML algorithm

is trained on the dataset, and is evaluated afterwards. We provide

1 https://app.dimensions.ai/discover/publication

2 “Eye Tracking" OR “Eye-Tracking" OR “Eyetracking"

3 (“Eye Tracking"OR “Eye-Tracking"OR “Eyetracking") AND (“Deep Learning"

OR “Machine Learning" OR “Neural Network*" OR “Decision Tree*" OR “SVM"

OR “Support Vector" OR “LSTM" OR “CNN" OR “Random Forest*" OR “KNN"

OR “MLP" OR “LDA" OR “Cluster*" OR “Unsupervised Learning" OR “PCA").

a comprehensive overview of how ML has been used in scanpath

analysis for passive gaze-based interaction to highlight research

gaps that could benefit from further investigation; we do so by

providing answers to these questions:

Q1. What research domains have used machine learning to analyze

scanpaths, and what passive gaze-based learning tasks have they

focused on?

Q2. Which research domains and passive gaze-based learning tasks

have yet to use machine learning in scanpath processing?

Q3. What are the commonly followed machine learning practices, in

line with a general machine learning workflow, that have been

used for scanpath analysis in passive gaze-based applications?

Q4. Which machine learning topics have yet to be investigated for

scanpath analysis in passive gaze-based interaction, and what

benefits could they provide?

2 Review methodology

A literature review mainly consists of four main phases: the

identification phase, where we retrieve publications from databases

using keywords; the screening phase, where we classify the retrieved

publications as either relevant or irrelevant to our topic; the data

extraction phase, where we extract the information and insights

that we want to report from the relevant publications; and the

reporting phase where we report our findings. We followed the

PRISMA4 framework (Page et al., 2021) throughout the review to

make sure we did not overlook any step in our reporting. Figure 3

shows our PRISMA flow diagram to summarize and provide an

overview of the different phases in our review.

2.1 Identification

We searched for English research articles on eye tracking

and scanpaths published between 2012 and 2022 in three

databases: Scopus,5 The ACM Guide to Computing Literature,6

4 Abbreviation for Preferred Reporting Items for Systematic Reviews and

Meta-Analyses.

5 https://www.scopus.com/
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FIGURE 2

Number of publications from 2012 to 2022 retrieved from Dimension AI on 27 November 2023 for (A) eye tracking as whole and (B) eye tracking

alongside machine learning.

and PubMed.7 This is in line with the AMSTAR8 guidelines of

querying at least two databases for a literature review (Shea et al.,

2017). Our search query consisted of two terms connected via

an ANDoperator, and each term consisted of multiple keywords

connected via an OR operator as follows: (“Eye Tracking"

OR “Eye-Tracking" OR “Eyetracking" OR “Eye

Movement" ) AND (“Scan Path * " OR “Scanpath * " OR

“Visual Scanning" OR “Gaze Pattern" ). We defined

the query based on a preliminary search of related publications.

We included the word stem for the most common spellings of

Scanpath and Eye Tracking . Adding an asterisk * allows

search engines, with regular expression support, to return results

containing the singular or plural of a word and corresponding

compound words. In addition, to make sure we did not overlook

any publication, we included the keywords Gaze Pattern and

Eye Movement . We decided not to include any ML keywords

in the query because we did not want to overlook or miss relevant

publications; ML is very diverse, and we might have gotten

limited results if we had only focused on certain keywords. The

databases retrieved publications with at least one of the keywords

in their title or abstract. As shown in Figure 3, we retrieved

2,970 publications from all three databases. We used the Zotero9

reference management tool to automatically detect duplicates,

which we manually double-checked. We discarded 545 duplicates:

517 were identified by Zotero, and 28 by manual inspection.

2.2 Screening

We started the screening phase with 2,425 publications. We

conducted the initial screening step based on the abstracts. We

discarded any review papers, workshop papers, demo papers,

extended abstracts, book chapters, and any publication that

was clearly out of scope. We ended the initial screening by

6 http://portal.acm.org/guide.cfm

7 https://pubmed.ncbi.nlm.nih.gov/

8 Abbreviation for A MeaSurement Tool to Assess systematic Reviews.

9 https://www.zotero.org/

discarding 1,687 publications and retaining 738 publications for

further analysis.

Afterwards, we conducted an intermediate screening step based

on the venue quality.10 For journals, we only retained journals

with an impact factor of three or higher. For conferences, we

only retained A-ranked conferences. In addition, to ensure that

we did not discard any specialized venues regardless of their

rank or impact factor, we retained any venue, whether journal

or conference, with five or more publications. We conducted the

quality-based intermediate screening to ensure that we focused on

publications from top venues. This might have led to discarding

some relevant papers, but we believe this step was crucial for quality

assurance. We ended the intermediate screening by discarding 313

publications and retaining 425 publications.

For the final screening step, we screened the full papers

to make sure they were within our scope and that they

used ML to process scanpaths. We discarded 267 publications

that were not passive gaze-based applications or for scanpath

processing, and 81 publications that did not use ML for scanpath

processing. We ended the screening phase with 77 publications for

information extraction.

2.3 Information extraction

We started the information extraction phase with 77

publications, which included 48 journal publications and 29

conference publications. The top three venues with respect to the

number of remaining publications were The ACM Symposium

on Eye Tracking Research and Applications, (ETRA)11 The ACM

International Conference on Multimodal Interaction (ICMI),12

and Vision Research Journal.13 Moving forward, we present

the different insights we extracted from the publications in the

order of the ML workflow shown in Figure 6. However, we first

discuss the research domains and learning tasks across the 77

10 The quality metrics were acquired in April 2023.

11 https://etra.acm.org/

12 https://icmi.acm.org/

13 https://www.sciencedirect.com/journal/vision-research
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FIGURE 3

PRISMA flow diagram.

publications. This step precedes the ML workflow but should

help identify the current research state and possible challenges

and gaps. We attached an Excel sheet as Supplementary material

to this review, which includes all the information extraction

phase details. It includes the publications’ metadata, research

domain categorization, learning tasks, used ML algorithms, and

extracted scanpath features. In addition, it lists all experiments and

corresponding results per publication.

3 Domains and tasks

Across the 77 publications included in this review, we identified

four main research domains and ten main passive gaze-based

learning tasks, with an additional domain and task labeled asOther

for those with fewer than three publications each. We categorized

publications based on the ML task of interest for which the

scanpaths were processed, which led to some publications falling

into multiple domains and tasks. We begin this section with an

overview of the research domains, followed by the learning tasks.

3.1 Research domains

Research domains present a high-level perspective on the

focus of studies on ML for scanpath processing in passive gaze-

based applications. We found that the publications primarily fell

under five research domains: Education, Healthcare, Psychology,

Information Technology, and Other Domains, which includes

domains with fewer than three publications each. Each publication

was categorized based on what it wanted to infer from the ML

results. Some publications focused on multiple tasks, which led

them to be categorized under multiple domains. Figure 4 shows an

UpSet Plot (Lex et al., 2014) to visualize the different connections

between all five research domains. Of the 77 publications, 52 were

categorized under a single domain, and 25 were categorized under

multiple domains.

3.1.1 Education (n = 14 publications)
Education focuses on publications directed toward teaching

and learning processes. In addition to designing and evaluating

educational material, theories, and technologies. For example, how

dental students from different semesters differ in their visual

behavior while viewing medical scans (Castner et al., 2018) or

predicting learning behavior while doing complex tasks (Giannakos

et al., 2019).

3.1.2 Healthcare (n = 20 publications)
Healthcare focuses on diagnosing various health conditions,

such as vision loss (Crabb et al., 2014) and different psychiatric,

learning, neurodevelopmental, and mood disorders (Atyabi et al.,

2023). In addition to any task related to healthcare professionals,

such as comparing their visual behavior (Castner et al., 2018), or

monitoring their attention (Khosravan et al., 2019).

3.1.3 Psychology (n = 35 publications)
Psychology holds a wide range of publications aimed at

understanding and predicting human behavior and cognitive

processes. This includes exploring perceptual and behavioral

differences across different groups (Abdi Sargezeh et al., 2019),

monitoring stress levels (Kim et al., 2022) and cognitive load

(Ktistakis et al., 2022), assessing reading behaviors (Kelton et al.,

2019), understanding emotion perception and attention patterns

(Kanan et al., 2015), and predicting user tasks and decisions in

various contexts (Coutrot et al., 2018). The domains Psychology
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FIGURE 4

The UpSet plot between the five research domains.

FIGURE 5

The UpSet plot between the 11 learning tasks. Medical DSS, Medical Decision Support System; E.F., emotion or face; P.M.L.N., psychiatric, mood,

learning, or neurodevelopmental; E.G.A, Experience, Gender, or Age Categorization.

and Healthcare are closely related. We assigned a publication to

Healthcare if it focused on diagnosis only. If the underlying visual

behavior was investigated as well, such as in Hayes and Henderson

(2018), we assigned both domains.

3.1.4 Information Technology (n = 30
publications)

Information Technology has two main types of publications:

those that focus on the technical implementation and the

methodology more than the actual task, e.g., Li et al. (2021), and

those that focus on technology tasks such as assessing password

strength (Abdrabou et al., 2021), user experience (UX) evaluation

(Moon et al., 2021), adaptive visualizations (Fu and Steichen, 2022),

and contributing to fields like affective computing and cognitive

modeling (Alghofaili et al., 2019).

3.1.5 Other Domains (n = 7 publications)
Other Domains holds various publications which could not be

clearly assigned to only one of the other four domains. This includes

publications related to driving (Lethaus et al., 2013), aviation

(Peysakhovich et al., 2022), maritime (Li et al., 2022), marketing

and product design (Moacdieh and Sarter, 2017), and linguistics

(Reich et al., 2022).

3.2 Learning tasks

Learning tasks offer a more detailed perspective on

the research focus across the 77 publications. Similar to

the research domains, some publications were categorized

under multiple learning tasks. This was mainly because of

publications that developed novel processing methods and

tested them on different tasks. We had ten main task groups

alongside an extra group Other Tasks, which includes tasks

with fewer than three publications each. Figure 5 shows

an UpSet Plot to visualize the connections between all 11

learning tasks. Similar to the research domains, out of the

77 publications, 52 were categorized under only one learning

task.
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3.2.1 Activity, or Stimuli Inference (n = 19
publications)

Activity, or Stimuli Inference holds publications that focus

on predicting the activity or stimulus based on the assumption

that different stimuli and activities produce different scanpath data.

For activity prediction, the activities were often diverse, including

viewing natural images, web surfing, or watching a video (Greene

et al., 2012; Kanan et al., 2014; Haass et al., 2016; Martinez et al.,

2017; Coutrot et al., 2018; Hild et al., 2018; Srivastava et al.,

2018; Kucharský et al., 2020; Lan et al., 2020). However, some

publications focused on specific tasks such as driving cars (Lethaus

et al., 2013), piloting plans (Peysakhovich et al., 2022), or reading

text (Biedert et al., 2012; Kelton et al., 2019). For stimuli prediction,

publications used different videos, images, or text types to study the

visual behavior unique to each stimulus (Greene et al., 2012; Lanatà

et al., 2013; Kanan et al., 2014; Coutrot et al., 2016, 2018; Fuhl et al.,

2019; Necka et al., 2019; Lan et al., 2020; Wang et al., 2020; Li et al.,

2021).

3.2.2 Experience, Gender, or Age Categorization
(n = 18 publications)

Experience, Gender, or Age Categorization holds publications

that focus on the assumption that certain groups of people have

unique visual behavior characteristics. This was used to differentiate

between different genders (Coutrot et al., 2016; Galdi et al., 2016;

Abdi Sargezeh et al., 2019; Atyabi et al., 2023), and age groups

(Glady et al., 2013; Galdi et al., 2016; Chaby et al., 2017; French

et al., 2017; Atyabi et al., 2023). Other publications focused on

identifying characteristic visual behavior associated with different

levels of experience within certain professions such as dentists

(Castner et al., 2018, 2020, 2022), radiographers and radiologists

(Gandomkar et al., 2017, 2018; Li et al., 2019), pilots (Lounis et al.,

2021), and students (Pejić et al., 2021). While others focused on

different levels of experience, but within a certain task such as

history learning (Sáiz-Manzanares et al., 2021), crossword puzzles

(Sáiz Manzanares et al., 2020), and coding comprehension (Harada

and Nakayama, 2021).

3.2.3 Attention Monitoring (n = 11 publications)
Attention Monitoring holds publications that focus on

monitoring the visual attention behavior over the course of a

specific activity or a period of time (Jiang et al., 2016; Shi et al.,

2017; Xu et al., 2018; Abdelrahman et al., 2019; Khosravan et al.,

2019; Lounis et al., 2021; Xia et al., 2021; Peysakhovich et al.,

2022). This was sometimes related to other tasks, such as reaction

or response time prediction (Moacdieh and Sarter, 2017; Li et al.,

2022), or modeling a participant’s conversation engagement (Ishii

et al., 2013).

3.2.4 Emotion, or Face Perception/Recognition
(n = 8 publications)

Emotion, or Face Perception/Recognition holds publications

that focus on the visual behavior associated with viewing different

faces or emotion-inducing stimuli to predict the recognized face or

the perceived emotion. These publications explicitly used stimuli

depicting different emotions, such as anger and happiness (Lanatà

et al., 2013; Kanan et al., 2015; Chaby et al., 2017; Shi et al., 2017),

or different people’s faces (Coutrot et al., 2016; Chaby et al., 2017;

Chuk et al., 2017a; Król and Król, 2019; Necka et al., 2019). This

task group focused explicitly on those types of stimuli, whichmeant

that if a publication focused, for example, on different activities to

induce certain emotions, it was not included in this task group.

3.2.5 Reading (n = 10 publications)
Reading holds publications that focus on aspects related to

reading behavior. It is built on the assumption that reading could

be a unique indication toward understanding a participant’s or a

text’s characteristics. This includes predicting text difficulty (Wang

et al., 2020; Reich et al., 2022), text relevance to a trigger question

(Bhattacharya et al., 2020a), the type of text document (Lan et al.,

2020), reading comprehension (Reich et al., 2022; Southwell et al.,

2022), whether the reader is a native speaker of the text language

(Reich et al., 2022), and whether the participant is reading or

skimming the text (Biedert et al., 2012; Kelton et al., 2019). In

addition to specialized use cases such as understanding visual

behavior indicative of correct and incorrect responses to a reading

task (Nakayama and Hayashi, 2014), evaluating computer science

skills (Harada and Nakayama, 2021), and evaluating sarcasm

understandability (Mishra et al., 2016).

3.2.6 Other Cognitive Modeling (n = 13
publications)

Other Cognitive Modeling holds publications that focus on

cognitive modeling tasks. However, the previous learning tasks

could fully or partially be considered forms of cognitive modeling.

This task group does not include any of the learning tasks from any

of the previous groups. This group holds tasks such as predicting

confidence (Smith et al., 2018), confusion (Sims and Conati, 2020),

stress (Kim et al., 2022), cognitive workload (Ktistakis et al.,

2022), navigation aid requirement (Alghofaili et al., 2019), and

cognitive processing (Raptis et al., 2017; Roy et al., 2020). In

addition, it holds publications that focus on understanding the

visual behavior indicative of success or failure (Giannakos et al.,

2019; Appel et al., 2022; Fu and Steichen, 2022), modeling how

different disorders affect the viewing behavior of natural images

(Hayes and Henderson, 2018), evaluating gaze behavior associated

with weak and strong password creation (Abdrabou et al., 2021),

and perception of product design (Moon et al., 2021).

3.2.7 Psychiatric, Mood, Learning, or
Neurodevelopmental Disorders (n = 11)

Psychiatric, Mood, Learning, or Neurodevelopmental

Disorders holds publications that focus on different tasks related

to multiple disorders such as Autism Spectrum Disorder (ASD)

(Hayes and Henderson, 2018; Król and Król, 2019; Liaqat et al.,

2021; Li et al., 2021; Kanhirakadavath and Chandran, 2022; Varma

et al., 2022; Atyabi et al., 2023), schizophrenia (Benson et al., 2012;

Nikolaides et al., 2016), bipolar disorder (Chung et al., 2018),

depression (Chung et al., 2018; Zhang et al., 2022), Attention

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1391745
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mohamed Selim et al. 10.3389/frai.2024.1391745

Deficit Disorder (ADD) (Hayes and Henderson, 2018), and

dyslexia (Hayes and Henderson, 2018).

3.2.8 Medical Decision Support System (n = 4
publications)

Medical Decision Support System holds publications that

focus only on medical tasks, such as diagnosing vision loss

(Crabb et al., 2014; David et al., 2019; Krishnan et al., 2021)

and understanding visual attention on medical images (Khosravan

et al., 2019). There is an overlap between this task group and

the previous task group, i.e., Psychiatric, Mood, Learning, or

Neurodevelopmental Disorders. However, due to the nature of

the publications in the previous task group, we did not want to

add them underneath Medical Decision Support Systems. So, we

created a distinction between both groups.

3.2.9 User Identification (n = 3 publications)
User Identification holds publications that focus on collecting

data from multiple participants to try and identify each participant

based on their unique visual behavior (Kanan et al., 2015; George

and Routray, 2016; Pejić et al., 2021).

3.2.10 Gaze Prediction (n = 3 publications)
Gaze Prediction holds publications that focus on predicting

future gaze behavior based on previous gaze behavior depicted in

scanpath data (Jiang et al., 2016; Xu et al., 2018; Xia et al., 2021).

3.2.11 Other Tasks (n = 4 publications)
Other Tasks holds various publications that could not be clearly

assigned to only one of the other 11 learning tasks. This includes

security tasks for evaluating password strength (Abdrabou et al.,

2021), evaluating product design and user experience (Moacdieh

and Sarter, 2017; Moon et al., 2021), and visual search (Xu et al.,

2018).

4 Machine learning and scanpaths

Our goal in this review is to present how ML is used to

process scanpaths for passive gaze-based applications. The previous

section explored the different research domains and passive gaze-

based learning tasks. This section focuses on the ML process,

which is organized according to an ML workflow. Figure 6 shows

the workflow that we followed, which is based on the workflows

from Amershi et al. (2019) and Souza et al. (2022). This workflow

is divided into three main parts: Data Curation, Learning Data

Preparation, and Learning Process.

In the Data Curation, we outline the specifications for both

the apparatus and the participants involved in the data collection

studies. Additionally, we report on the use of external datasets by

some publications as an alternative to conducting user studies. In

the Learning Data Preparation, we discuss the various scanpath

representation formats and features, and the different strategies

for partitioning the data into training and testing subsets for ML

algorithms. In the Learning Process, we examine the different ML

algorithms, with a more detailed focus on neural networks, and

evaluation metrics reported across the various publications. We

present our findings throughout each step and draw connections,

when appropriate, to the different research domains and ML

algorithms. This should provide a more tailored experience across

the full topic of interest and highlight the standard practices

followed in the field.

4.1 Data Curation

This section focuses on the practical steps required to prepare

a properly labeled and ready-to-use dataset. We report the

specifications of the used eye trackers and information regarding

participant selection to help guide an informed decision. In

addition, we report the external datasets used by some publications.

4.1.1 Apparatus
An important step in eye tracking studies is to decide on the eye

tracker frequency. We could not find consistent reporting across

all 77 publications because some studies reported the frequency

of the eye tracker, others reported the downsampling frequency,

and a few reported the eye tracker model without detailing any

frequencies. For studies that reported a downsampling frequency, it

was used instead of the data collection frequency. For those that did

not report a frequency, the default frequency of the device found

online was documented. If a publication used multiple datasets or

conducted separate user studies, we treated each one separately.

However, if a publication conducted a single user study and later

examined different use cases using the same dataset, it was recorded

only once.

Figure 7 shows the distribution of the eye tracker frequencies.

We can see that 60 Hz is the most frequently used eye tracker

frequency, followed by 1,000 Hz. However, most studies that

reported a downsampling frequency used a 1,000 Hz eye tracker,

FIGURE 6

A general machine learning workflow.
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FIGURE 7

The eye tracker frequencies count based on the reported user studies.

FIGURE 8

The number of participants count based on the reported user studies.

which was then downsampled to either 500 Hz (Benson et al., 2012;

Mishra et al., 2016; Necka et al., 2019; Kucharský et al., 2020) or 250

Hz (Coutrot et al., 2016, 2018; George and Routray, 2016). Upon

further investigation, we found that 60 Hz was the most common

frequency across all five domains except for Psychology, which had

1,000 Hz as the most popular choice. When we considered the type

of ML algorithm used afterwards in the processing, we found that

60 Hz was still the most common frequency for traditional ML,

but 120 Hz was the most common choice for neural networks.

We can see that across almost all domains and ML algorithms,

60 Hz is the most common choice, followed by 1,000, 250, and

120 Hz, respectively.

4.1.2 Participant demographics and group
distribution

Another important aspect of user studies is to determine

the number of participants. We found a total of 94 reported

datasets across the different publications because a few publications

conducted multiple user studies or used more than one dataset.

Figure 8 shows the number of participants reported across the

different datasets, we had 57 unique dataset sizes, so we grouped

them to provide better insights. More than 50% of the reported

datasets used data from up to 40 participants. We found that

using 24 participants (n = 8), followed by eight participants (n =

7) were the most popular single values. Only three publications

(Benson et al., 2012; Coutrot et al., 2016; Appel et al., 2022) used

more than 200 participants; all three publications used existing

datasets and did not conduct their own user studies. Upon further

investigation, we found that Information Technology, Psychology,

and Education preferred using data with up to 40 participants,

but Healthcare preferred larger datasets with 61–80 participants.

The insights did not change drastically when looking at the data

with respect to the type of ML algorithm, with collecting data

from up to 40 participants being the most frequent strategy for

both traditional ML and neural network algorithms. We can see

that there is a tendency to collect data from up to 40 participants,

with a slight preference for around 20 participants throughout the

different domains and ML algorithms.

Out of the 94 reported datasets, only 44 reported the number

of females and males. Fifteen datasets were balanced, with female

participants making between 40 and 55% of the data. Only eight

datasets were skewed toward having more female participants,

with female participants making up between 60 and 80% of the

data. While 21 datasets had more male participants, with female

participants making up <40% of the data. We had 27 datasets
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with distinct control and target groups. For any diagnosis, the

healthy participants were the control group; for any experience

categorization, the experienced professionals were the control

group; and for age categorization, older participants were the

control group. Sixteen datasets had an almost balanced split, with

the target group making between 40 and 55% of the data, with

seven datasets having a perfect 50-50 split. The target group

across the remaining 11 datasets made between 56 and 78% of

the data.

Reporting the demographic information of the dataset is

important because it could lead to future contributions. For

example, if a study wants to focus on data from only one gender

or for participants belonging to a certain age group and so on.

In addition, diverse datasets concerning gender and age have

a better chance of providing insights that could lead to better

generalizability. We could not provide similar insights toward

the number of stimuli or participants’ ages, because they were

not consistently reported. Some publications reported the number

of trials, some reported the length of the recording, and others

reported the number of collected gaze points. There was an

inconsistency in the reporting for us to extract meaningful insights,

which could also come back to the range of learning tasks the

publications covered.

4.1.3 External datasets
Eighteen publications opted to use already available datasets

for a total of 23 different reported datasets. Only three datasets

were used by two different publications: the OSIE dataset (Xu

et al., 2014), the MIT dataset (Judd et al., 2009), and the dataset

from Coutrot and Guyader (2014). While the publications for

the SedentaryActivity dataset (Srivastava et al., 2018) and the

dataset from Greene et al. (2012) are both covered within this

review. Table 1 lists all 23 datasets alongside the learning tasks that

they were used for. We wanted to report these datasets because

they might be available online or via correspondence with their

respective authors. This could help researchers save the tedious

time, effort, and expenses required for collecting a dataset and

conducting a user study.

4.2 Learning data preparation

In the learning data preparation, we focus on preparing the

dataset as a suitable input to the ML algorithm. This section

focuses on the different scanpath representation formats and the

different methods for splitting a dataset into training and testing

subsets. This is part of formulating the standard ML practices for

scanpath processing.

4.2.1 Scanpath representation formats
We found that there were six main formats for representing

scanpaths as suitable inputs to an ML algorithm: Visual Encoding

(n = 10 Publications), String Representation (n = 12 Publications),

Time Series (n = 9 Publications), Graph Representation (n =

4 Publications), Feature Engineering (n = 64 Publications), and

Hidden Markov Modeling (n = 6 Publications). Visual Encoding

TABLE 1 Table listing the 23 reported external datasets, alongside the

learning tasks they were used for and by which publication.

Dataset Learning task

The OSIE dataset (Xu et al., 2014) Attention Modeling & Gaze

Prediction (Jiang et al., 2016; Xia et al.,

2021)

The MIT dataset (Judd et al., 2009) Attention Modeling & Gaze

Prediction (Jiang et al., 2016; Xia et al.,

2021)

Stimuli Inference (Li et al., 2021)

The ETRA 2019 challengea

(Otero-Millan et al., 2008; McCamy

et al., 2014)

Stimuli Inference (Fuhl et al., 2019)

The JapaneseDocument dataset

(Kunze et al., 2013)

Stimuli Inference (Lan et al., 2020)

Dataset from Coutrot and Guyader

(2014)

Stimuli Inference (Coutrot et al., 2018)

Training the OBF Framework (Li

et al., 2021)

Dataset from

Gitman et al. (2014)

Training the OBF Framework (Li

et al., 2021)

Dataset from Coutrot and Guyader

(2015)

Training the OBF Framework (Li

et al., 2021)

The SedentaryActivity dataset

(Srivastava et al., 2018)

Activity Inference (Lan et al., 2020)

Dataset from Koehler et al. (2014) Activity Inference (Coutrot et al.,

2018)

Dataset from Laurence et al. (2018) Activity Inference (Kucharský et al.,

2020)

Dataset from Trutescu and

Raijmakers (2019)

Activity Inference (Kucharský et al.,

2020)

Dataset from Greene et al. (2012) Activity and Stimuli Inference (Kanan

et al., 2014)

The TüEyeQ dataset (Kasneci et al.,

2021)

Cognitive Modeling (Appel et al.,

2022)

Dataset from Lallé et al. (2016) Cognitive Modeling (Sims and Conati,

2020)

Dataset from Chuk et al. (2014) Face Perception/Recognition (Chuk

et al., 2017a)

Dataset from Chuk et al. (2017b) Face Perception/Recognition (Chuk

et al., 2017a)

Dataset from Galdi et al. (2013) Gender and Age Categorization

(Galdi et al., 2016)

The EMIP dataset (Bednarik et al.,

2020)

Reading & Experience Categorization

(Harada and Nakayama, 2021)

The Stony Brook SAT reading fixation

dataset (Ahn et al., 2020)

Reading (Reich et al., 2022)

Dataset from Mills et al. (2021) Reading (Southwell et al., 2022)

Dataset from Carette et al. (2019) ASD Diagnosis (Kanhirakadavath and

Chandran, 2022)

Dataset from Duan et al. (2019) ASD Diagnosis (Liaqat et al., 2021)

The BioEye 2015 competitionb User Identification (George and

Routray, 2016)

a https://etra.acm.org/2019/challenge.html.
b https://bioeye.cs.txstate.edu/.
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is when a scanpath, i.e., the combination of fixations and saccades,

is projected on top of either a stimulus, as shown in Figure 1,

or an empty space; this is the format most commonly associated

with scanpaths. String Representation is the name we gave

to any sequence of symbols representing a scanpath, which

Holmqvist et al. (2011) referred to as symbol sequences; this

format includes Area Of Interest (AOI) strings where each symbol

represents a fixation or a dwell on an AOI, saccade amplitude and

direction-based strings, and fixation duration strings. Time Series

Representation is when a scanpath is formatted as an ordered

series of coordinates, sometimes accompanied by the duration.

Graph Representation is when the gaze data in a scanpath are

clustered or grouped to create nodes and edges representing a graph

structure. Feature Engineering is a very general term representing

when features, e.g., fixation duration, are computed to represent

certain aspects of a scanpath. Hidden Markov Modeling (HMM)

is a type of feature engineering, but because it has been mentioned

explicitly by six publications and not as part of feature engineering

(Kanan et al., 2014, 2015; Coutrot et al., 2016, 2018; Jiang et al.,

2016; Necka et al., 2019), we decided to treat it separately. A HMM

is a statistical method used to analyze data that changes over time;

the unique feature of HMMs is that they are based on Markov

processes, which are memoryless stochastic processes; this means

that the probability distribution of the next state depends solely

on the current state, not on the sequence of events that led to it

(Coutrot et al., 2018).

Feature engineering is the most used format, with 64

publications, but before focusing more on it, we wanted to

investigate the other five formats without feature engineering in

the picture. We found that the string representation format was

the most common representation format for Education and tied

with time series for Information Technology. Psychology had the

majority of HMM studies, which was tied as the most popular

choice, along with time series representation. Lastly,Healthcare had

visual encoding as the most popular format. When we considered

the learning tasks, we found that Experience, Gender, or Age

Categorization and Attention Monitoring were the two tasks

with high usage of string representation, while Activity, or Stimuli

Inference and Emotion, or Face Perception/Recognitionwere the

two tasks with high usage of HMM. The remaining tasks were not

as frequent in using formats other than feature engineering. Lastly,

when we considered the type of ML algorithm, we found that string

representation was the most common choice for traditional ML

algorithms, while visual encoding was the most common format

for neural networks, followed closely by time series data.

4.2.1.1 Feature engineering

We focused on features directly related to scanpaths, fixations,

saccades, or AOIs for feature engineering. We excluded any blink

features, pupil features, or features computed from additional

modalities, such as keyboard keystrokes (Giannakos et al., 2019;

Wang et al., 2020), thermal imaging (Abdelrahman et al., 2019),

Electroencephalogram (EEG) (Shi et al., 2017; Giannakos et al.,

2019; Moon et al., 2021), and physiological monitoring wristbands

(Giannakos et al., 2019). Moving forward, when we refer to feature

or relevant feature, this is what we mean.

Across the reviewed publications, we found 126 different

reported features. Most publications extracted up to 10 features (n

= 57 Publications) with an average of five features per publication.

However, we had two extreme outliers, i.e., Giannakos et al. (2019)

extracted 36 features, and Sáiz-Manzanares et al. (2021) extracted

26 features, but both of them used feature selection methods

afterwards, especially since Giannakos et al. (2019) had even more

features computed from other modalities.

We categorized each feature based on its type into fixation-

based, saccade-based, AOI-based, and scanpath. Saccade-based

features were the most diverse and numerous (n = 63 features).

Fixation-based features came in second (n = 40 Features), followed

by full scanpath features (n = 35 Features) and AOI-based features

(n = 28 Features), respectively. Fixation-based features, e.g., fixation

count, and saccade-based features, e.g., saccade duration, require

the computation of fixations or saccades, respectively, in order

to correctly extract the features. Scanpath features, e.g., scanpath

length, require the full scanpath to be constructed in order to

compute the feature, and AOI-based features, e.g., fixation count

per AOI, take the AOIs into consideration for feature extraction.

Some features belong to more than one group, e.g., fixation

count per AOI is considered both a fixation-based and an AOI-

based feature.

Despite having more saccade-based features, fixation-based

features were more commonly used per publication. Average

fixation duration was the most commonly used feature (n =

24 Publications), followed by total fixation duration (n = 16

Publications) and total fixation count (n = 16 Publications).

Scanpath length (n = 13 Publications) was the most common

full scanpath feature, followed by total scanpath duration (n = 6

Publications). Meanwhile, saccade amplitude (n = 7 Publications),

total saccade count (n = 7 Publications), and total saccade duration

(n = 7 Publications) were the most commonly used saccade-based

features. For AOI-based features, fixation duration per AOI (n = 9

Publications) and fixation count per AOI (n = 9 Publications) were

the most common.

The distribution of the most used features across the research

domains and learning tasks showed similar behavior to the overall

view, with average fixation duration, total fixation duration, total

fixation count, fixation count per AOI, scanpath length, total

saccade count, and total saccade duration being the main features

used across all five research domains and most of the learning

tasks. We found that Activity, or Stimuli Inference and Reading

publications showed very similar tendencies to use the same set of

features, which could be due to the fact that multiple publications

within the Activity, or Stimuli Inference task group used reading

as an activity within their user studies. Experience, Gender, or Age

Categorization publications tended to use a wide range of feature

types but were the most frequent users of scanpath and AOI-

based features, which are mostly due to using scanpath comparison

metrics, where they compare pairs of scanpaths and use the scores

as inputs to the ML algorithm. When considering traditional ML

and neural networks, we found that traditional ML publications

used all feature types. Almost all of the features, i.e., 118 out of

126 features, were for traditional ML algorithms. However, neural

networks focused on a less diverse set of features, i.e., 46 out of

126 features.

After the general insights toward the different features, we

wanted to highlight three feature groups. The first feature

group contains two unique features that were only used by
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one publication each. Scanpath Spatial Density was only used

by Moon et al. (2021), and Saccade Duration Per AOI was

only used by Wang et al. (2020). The second feature group

contains different algorithms for quantifying the difference between

pairs of scanpaths. They were used by 11 publications (Glady

et al., 2013; Jiang et al., 2016; French et al., 2017; Shi et al.,

2017; Castner et al., 2018; Król and Król, 2019; Li et al., 2019;

Necka et al., 2019; Sáiz Manzanares et al., 2020; Liaqat et al.,

2021; Appel et al., 2022). Across the publications, we found the

following algorithms: Levenshtein Distance (Levenshtein, 1966),

Mannan Distance (Mannan et al., 1997), Uniform Distance model,

City Block Distance, Euclidian Distance, Hausdorff Distance,

Frechett Distance, Vector-Based Comparison (Jarodzka et al.,

2010), Dynamic Time Warping (DTW) (Müller, 2007), FastDTW

(Salvador and Chan, 2007), Contrast mining (Dong and Bailey,

2012), Needleman-Wunsch Algorithm (Needleman and Wunsch,

1970), in addition to SubsMatch (Kübler et al., 2017) and

ScanMatch (Cristino et al., 2010) which both use the Needleman-

Wunsch Algorithm. These algorithms were interesting since they

were mostly used alone as inputs to the ML algorithms without

any additional features. For further reading, the separate sources

for each algorithm or systematic reviews focusing on scanpath

comparison algorithms, e.g., Anderson et al. (2015); Fahimi and

Bruce (2021), could be helpful. The third feature group contains

feature extraction methods that were used alone without extracting

additional features. Three publications, i.e., Castner et al. (2020);

Li et al. (2021); Kanhirakadavath and Chandran (2022), used

a Convolutional Neural Network (CNN)-based architecture to

extract the features from scanpaths, which were then fed into

another ML model for the learning process. Li et al. (2021)

presented the Oculomotor Behavior Framework (OBF), which is

a framework that makes use of a convolutional, recurrent, and

transformer-based architecture to prepare the data and extract

features which can then be used to teach other ML models. Hayes

and Henderson (2018) used Successor Representation Scanpath

Analysis (SRSA) (Hayes et al., 2011, 2015), which uses temporal

difference learning to capture statistical regularities in scanpaths,

to quantify the differences between scanpaths. Kucharský et al.

(2020) used the Scanpath Transition Probability Matrix, which is

a matrix that represents the probability of moving from one state,

or AOI, to another, as a feature extraction method to transform

their scanpaths. Finally, Pejić et al. (2021) used the Sequence Graph

Transform (SGT) algorithm (Ranjan et al., 2022), which is a feature

embedding function commonly used in data mining. The majority

of these methods are a bit complex, but they provide a single

algorithm to transform the scanpaths before the learning process.

The only outlier was Lethaus et al. (2013), who used a simple

feature, i.e., fixation duration within each AOI, as their single

feature of interest.

4.2.2 Data transformation
Data transformation is the final step in preparing scanpath data.

It focuses on splitting the data into different subsets for training and

testing. This is crucial to ensure that ML models perform well and

generalize to unseen data. One common method for data splitting

is the holdout method, where the dataset is divided into training,

testing, and, sometimes, validation subsets. The training subset is

used to train the model, the testing subset is used to evaluate its

performance, and the validation subset is used to fine-tune the

model parameters. There are various strategies for performing the

holdout split. We found that the most commonly used method

was to use separate datasets or sessions (n = 9 Experiments),

where complete sessions or datasets are used for training, and

the remaining sessions or different datasets are used for testing.

Without a validation subset, an 80-20 split (n = 7 Experiments) and

a 50-50 split (n = 5 Experiments) were the most common training-

testing splits. However, with the addition of a validation subset,

a 70-20-10 split was the most common training-testing-validation

split. User-dependent (n = 10 Experiments) is a special case where

each user’s data is split into training and testing subsets to create a

unique model for each user.

Resampling is another approach that encompasses cross-

validation and bootstrap resampling. Bootstrap resampling was

only used by Nikolaides et al. (2016) to generate multiple random

replicas of the original dataset for training and testing the model,

but it replaces the selected samples back into the original dataset

once again, allowing it to be picked multiple times. By generating

multiple smaller subsets, they are able to estimate the distribution

of the model performance afterwards. On the other hand, cross-

validation, which encompasses multiple strategies, was a lot more

common. K-fold Cross-validation (n = 25 Experiments) works by

splitting the data into K equal-sized groups where K−1 groups

are used for training the model, and one group is used for testing

the model; this is then repeated K times (K-fold) to ensure that

each group has been used in the training and testing. From the

publications that reported the value of K, we found multiple

options, with K = 10 being the most common, followed by K = 5.

Leave-one-out Cross-validation (n = 25 Experiments) is a special

type of cross-validation where instead of dividing the data into

K groups, one sample or stimulus is used for testing the model

and the remaining samples or stimuli are used for training the

model; this is then repeated over the full dataset to ensure that each

sample or stimulus has been used in testing the model. Another

type of cross-validation is Leave-user(s)-out Cross-validation (n =

24 Experiments), where the full data from a single user or a group

of users are used for testing the model, while the data from the

remaining users are used to train the model, which is then repeated

for all users; this ensures that the data belonging to a certain user

appears either in the training or the testing subsets and not in both.

We can see that Cross-validation accounts for the majority

of the reported ML experiments, making it the most preferable

method in the literature we reviewed. Cross-validation is more

computationally expensive than the holdout method. However,

training and testing the model on multiple different data splits

provides a better indication of the model’s performance.

4.3 Learning process

The learning process is the last step in the ML workflow.

At this point, the learning task should have been well-defined,

the data curation should have been finished, either by using an

already available dataset or conducting a user study to collect a new
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dataset, and the learning data preparation to decide on the scanpath

representation format, the scanpath features, and the data split

should have all been done. A lot of these decisions are closely related

to the learning step. This section discusses the commonly used

ML algorithms for scanpath processing, the commonly reported

best-performing models, and the most commonly used evaluation

metrics. In addition, we focus more on the neural networks due to

their complexity.

4.3.1 Model selection
ML algorithms are often split into three main categories:

supervised learning models, unsupervised learning models, and

reinforcement learning (RL) models. Supervised learning is when

we have a labeled dataset. It can be used for classification, where

we predict a discrete value, e.g., gender, or regression, where

we predict a continuous value, e.g., stock prices. Unsupervised

Learning is when we have an unlabeled dataset. It is often used for

dimensionality reduction or clustering problems. Reinforcement

Learning is a different type of problem where a model tries to learn

how to behave through trial and error (Kaelbling et al., 1996), e.g.,

autonomous driving.

In our reviewed papers, we had 67 publications that used

supervised learning models, 24 that used unsupervised learning

models, and only one publication by Jiang et al. (2016) that

used the Least-Squares Policy Iteration (LSPI) RL. We found

that publications tested more than one algorithm on average

before deciding on the best-performing one. Supervised learning

publications tested, on average, two models (2.075 ± 1.636). Some

publications evaluated only one model, while others evaluated up

to six (Roy et al., 2020; Krishnan et al., 2021) or seven (Lanatà

et al., 2013; Ktistakis et al., 2022) models. However, unsupervised

learning publications tended to focus, on average, on just one

model (1.304± 0.765).

4.3.1.1 Supervised learning

For supervised learning problems, we found a total of 43

different models, which we grouped into 12 categories: Bayesian

Algorithms, CNN-based Architectures, Decision Trees, Ensemble

Models (Random forest, Bagged Tree, Gradient Boosting, XGBoost,

Adaboost, Gradient Boosted Decision Trees, Decision jungle),

Linear Models (Linear Regression, Logistic Regression, Lasso,

Multiple Regression), Linear or Quadratic Discriminant Analysis

(LDA & QDA), Multilayer Perceptron (MLP), Nearest Neighbors,

Gaussian Processes, Recurrent Neural Networks (RNNs), Support

Vector Machines (SVMs), and Other Neural Networks which

includes networks that were not specified or that did not fall

into either CNN-based, RNNs, or MLP such as Feedforward–

backpropagation (FFBP) network, Probabilistic Neural Networks

(PNNs), Radial Basis Function Neural Networks, and Kohonen

Self-Organizing Map.

Figure 9A shows the distribution of the reported supervised

learning algorithms with respect to the five research domains.

SVM models were the overall most common across all five

research domains, except forHealthcare, which had RNNs tied with

SVMs as the most common models. Almost all research domains

were more inclined toward more traditional ML algorithms

as opposed to neural networks. When looking at traditional

ML algorithms aside from SVMs, Information Technology used

Ensemble and Decision Tree models, which are models that usually

require hyperparameter optimization, more often than other

domains. While both Psychology and Education used simple models

such as Linear, Nearest Neighbors, and LDA & QDA models.

When focusing on neural networks, Healthcare and Information

Technology were the two domains with increased neural network

usage, as opposed to Education, which was the domain with the

least usage of neural networks. Figure 9B shows the distribution

of the best-performing supervised learning algorithms with respect

to the five research domains. The distribution did not change

much; SVM still came on top as the most commonly reported

best-performing model, followed by Linear models and RNNs,

respectively. However, Decision Trees, Bayesian, and Gaussian

models were less likely to be chosen as the best-performing models.

4.3.1.2 Unsupervised learning

Twenty-four out of the 77 reviewed publications used

unsupervised ML algorithms. They were used for clustering,

dimensionality reduction, feature selection, feature generation

using Autoencoders, which were only used by Xia et al. (2021), and

data generation using Generative Adversarial Networks (GANs),

which were only used by Fuhl et al. (2019). We found four types

of clustering algorithms: Partitioning Clustering (K-Means, Fuzzy

K-Means), Density-Based Clustering (DBSCAN), Hierarchical

Clustering, and Grid-Based Clustering (BIRCH). In addition, we

found two types of dimensionality reduction and feature selection

algorithms: Principal Component Analysis (PCA), and Manifold

Learning which includes the IsomapAlgorithm used by Chaby et al.

(2017), and t-distributed Stochastic Neighbor Embedding (t-SNE)

used by Król and Król (2019).

Figure 10 shows the distribution of the unsupervised learning

algorithms with respect to the five research domains. Psychology

and Educationwere themain research domains to use unsupervised

learning. PCA was the most common unsupervised learning

algorithm and the only one used by all five research domains.

We can see that both Partitioning and Hierarchical Clustering

were more popular than Density-Based and Grid-Based Clustering.

Information Technology, represented by Fuhl et al. (2019); Xia et al.

(2021), was the only domain to use unsupervised neural networks.

4.3.2 Neural network insights
Artificial neural networks are a subset ofML that are inspired to

simulate neurons similar to a human brain (Krogh, 2008). Neural

networks are often more complex than traditional ML algorithms

and often require larger datasets and fine-tuning. In order to

provide a comprehensive overview of how ML is used in scanpath

analysis for passive gaze-based interaction, we focus in this section

on the different details related to neural networks reported across

the reviewed publications. We start with the preprocessing steps,

which are the same for traditional ML algorithms as well, then

the network hyperparameters, and finally, the commonly followed

network architectures.

4.3.2.1 Preprocessing

Across the publications that reported any preprocessing,

we found that there were seven main preprocessing groups:
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FIGURE 9

A bar chart showing the supervised machine learning algorithms across all five research domains where (A) contains all the reported algorithms and

(B) contains the reported best-performing algorithms.

Artifact Removal, Data Scaling, Data Augmentation,

Coordinate Transformation, Windowing, Image Processing,

and Fixation Filtering.

Artifact Removal involves removing any unwanted data

points, such as blinks, noise, or outliers. Most publications reported

using the eye tracking manufacturer’s software for blink detection

and removal. However, it was different for other artifacts. For

example, Alghofaili et al. (2019) used a Moving Average filter,

and George and Routray (2016) used a Savitzky-Golay filter to

remove noise, while Lan et al. (2020) used a Sliding Window

Median filter to remove outliers. Data Scaling consists of data

standardization, which re-scales the data to have a mean of zero

and a standard deviation of one, and data normalization, which

transforms the data to the same scale to ensure uniformity;

for example, the minimum value and the maximum value get

transformed into zero and one, respectively, and every intermediate

value gets transformed into a decimal value between zero and one.

Windowing refers to sliding windows that split continuous data

into smaller subsets, or expanding windows, which add or expand

a window with new values over time. Data Augmentation is a

technique to increase the data size artificially. This can be achieved

by rotating or flipping existing images, resampling existing data,

or interpolating new values between existing ones, e.g., SMOTE

(Chawla et al., 2002) is an interpolation-based technique to increase

the size of the minority class. We also considered Zero-Padding as

a form of data augmentation because it is used to create equal-

sized time series samples or windows by augmenting them with

zeros. Coordinate Transformation involves changing the data

coordinate system. Image Processing encompasses a group of four

different processes. Gray Scaling converts an image to different

gray tones ranging between black and white. Color Coding encodes

different temporal or spatial information, e.g., fixation duration or

saccade direction, as different colors or shades when constructing

scanpaths. Image Rescaling changes the size of an image while

preserving the content, a common step when using CNNs, e.g.,

Atyabi et al. (2023) rescaled their images from 1,680× 1,050 pixels

to 100 × 100. Extracting Image Patches also changes the size of

the input image, but by cropping the image into smaller patches,

mostly around fixations or certain AOIs. Finally, Fixation filtering

involves limiting fixations above or below a certain duration, e.g.,
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FIGURE 10

A bar chart showing all the reported unsupervised machine learning algorithms across all five research domains.

George and Routray (2016) limited their fixations to a minimum of

12 ms and a maximum of 100 ms, while David et al. (2019) limited

them between 80 and 1,300 ms.

4.3.2.2 Network hyperparameters

A neural network set of hyperparameters depends on multiple

factors, such as the size of the dataset, the model complexity,

and the learning task. However, we are reporting the different

hyperparameters to provide an overview since they are all related

to scanpaths processing and passive gaze-based applications.

Batch Size determines the number of training samples used

in one iteration. It can be optimized by evaluating different

values, e.g., Smith et al. (2018) evaluated an MLP with batch

sizes of 5, 10, 25, and 50. However, most publications used only

one value, 64 and 100 being the most common. Number of

Epochs refers to the total number of times that a network passes

through the entire training dataset during the learning process.

The most common values were 50, 100, and 500 epochs, while

larger values, e.g., 1,000 and above, were not that common. Early

Stopping is commonly associated with larger numbers of epochs

to prevent the network from overfitting and for computational

efficiency by avoiding unnecessary epochs. However, only six

publications reported using early stopping. Regularization also

helps prevent the network from overfitting. Dropout and L2

regularization were the two most common techniques. Dropout

ignores randomly selected neurons during training, which helps

prevent overfitting by ensuring that the network does not rely too

heavily on any single neuron. The values 0.5 and 0.2 were the most

commonly reported dropout rates across the different networks. L2

Regularization, sometimes called weight decay, adds a penalty to

the loss function based on the magnitude of the neurons’ weights.

This penalty discourages the learning process from assigning too

much importance to any single neuron. Loss Function evaluates

how well the network was able to model the training data. Binary

cross-entropy was by far the most common loss function and

is used for binary classification problems. Cross-entropy is used

for multi-class classification problems, while MAE and MSE were

also reported, and they are typically used for regression problems

where the goal is to minimize the difference between the predicted

and actual values. Activation Function determines the output of

the neural network. Sigmoid activation was the most reported

function and is used for binary classification problems. Softmax

is used for multi-class classification problems. ReLu was also used

often because of the publications that used CNNs for feature

extraction. Linear and Gaussian activation functions were also

reported, and they are used for regression problems. Learning Rate

determines the step size toward finding the minimum loss value.

The most common learning rate was 0.001, followed by 0.1, which

was also the largest reported learning rate. Other less common

values ranged from 1e−6 up to 0.05. Optimization Algorithm

changes the network parameters to reduce the loss, and the Adam

optimizer (Kingma and Ba, 2017) was almost exclusively used by all

of the publications.

4.3.2.3 Network architectures

For the network architectures, we report them based on

whether the network was used for feature extraction or for making

a prediction.We start with the networks used for feature extraction.

Xia et al. (2021) used the Autoencoder by Krizhevsky and Hinton

(2011) to extract features from a dataset comprising 3,378 samples.

The Autoencoder had an encoder composed of five fully connected

layers, each with sizes of 675, 4,096, 2,048, 1,024, and 512

sequentially. This was followed by a bottleneck layer and, finally, a

decoder that mirrored the encoder’s structure but in reverse order.
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For regularization, they applied a weight decay of 0.0002. They

evaluated using 50 and 100 epochs and batch sizes of 100 and 200.

However, using convolutional layers was more common for feature

extraction. Fuhl et al. (2019) used a GAN composed of a generator

with multiple convolutional and deconvolutional layers, and a

discriminator with convolutional layers to convert 5,000 scanpaths

into emojis. They used the Cycle Consistency Loss function and a

batch size of one. Chung et al. (2018), Castner et al. (2020), and

Kanhirakadavath and Chandran (2022) all used CNNs for their

feature extraction. All four publications, i.e., Chung et al. (2018);

Fuhl et al. (2019); Castner et al. (2020), and Kanhirakadavath and

Chandran (2022) essentially followed a similar structure by having

multiple convolutional layers, each followed by a mixture of ReLu

activation, Max Pooling, or Batch Normalization. They all used

Dropout functions and Fully Connected layers, aside from Castner

et al. (2020), who used a VGG-16 (Simonyan and Zisserman, 2015)

network pre-trained on the ImageNet dataset (Deng et al., 2009),

but without a Dropout or a Fully Connected layer. Li et al. (2021)

were the only ones to use a combination of convolutional and

recurrent layers in their framework calledOBF. OBF consisted of an

encoder and four decoders. The encoder had a single convolutional

layer followed by a Leaky ReLu, Average Pooling, and two Gated

Recurrent Units (GRUs) (Cho et al., 2014). Each decoder had two

GRUs followed by Batch Normalization, Sigmoid Activation, and a

Contrastive Learning Siamese Network, which is a neural network

that encodes two scanpath segments using identical subnetworks

to pull similar scanpath segments closer in the feature space and

pushes dissimilar ones apart.

Using neural networks for predictions was more common.

Lethaus et al. (2013) and Li et al. (2022) used shallow ANNs, with

Li et al. (2022) using a linear activation function and Bayesian

regularization. Benson et al. (2012) used a PNN, and George and

Routray (2016) and French et al. (2017) used RBF and FFBP

Networks, respectively. However, RNNs, CNNs, and MLPs were

much more common. For the reported RNNs, all of them used

LSTMs (Hochreiter and Schmidhuber, 1997) aside from David

et al. (2019) who used GRUs with a Gumbel Softmax activation

followed by Log Transformation. The reported LSTM networks

usually had either one or two layers, each followed by a mixture of

Batch Normalization, Dropout, and Sigmoid activation, before final

fully connected layers. Liaqat et al. (2021) were the only exception

with five LSTM layers. All of the used LSTMs used an internal

Tangent activation function. The publications used different LSTM

sizes, but 512 (Alghofaili et al., 2019), 200 (Xia et al., 2021; Castner

et al., 2022), and 128 (Chung et al., 2018; Xu et al., 2018) were

common values. The reported CNNs were quite similar, consisting

of a mixture of two to four convolutional layers, each followed

by a mixture of ReLu, Dropout, and Max Pooling functions, then

fully connected layers before the final activation function. The only

exceptions were Atyabi et al. (2023), who used 32 convolutional

layers, and Liaqat et al. (2021), who used a pre-trained ResNet-

18 (He et al., 2015). The VTNet from Sims and Conati (2020)

was also interesting because they combined a CNN that processed

scanpath images in parallel to a GRU that processed the raw

gaze data. The 2-layer CNN and the 1-layer GRU with 256 units

were combined afterwards using two fully connected layers and a

Softmax activation. The reported MLPs were not often provided

with a lot of details. Smith et al. (2018), Li et al. (2021), and Liaqat

et al. (2021), all reported similar architectures of using two or three

layers each followed by ReLu, Batch Normalization, and Dropout,

before a final fully connected layer.

4.3.3 Model evaluation
Across all 77 publications, multiple publications reported

multiple model evaluation metrics. However, they all focused on a

specific metric either in the abstracts, discussions, or conclusions,

so we noted the main metrics from the different publications.

Accuracy was the choice of most publications, as it was reported

44 times, followed by Area under the ROC Curve (AUC) score

being reported seven times. Other notable mentions are the F1

score (n = 5) and Recall, i.e., True Positive Rate (TPR) (n = 4). Error

rates were also used, especially for evaluating clustering algorithms,

which include Mean Absolute Error (MAE), Mean Squared Error

(MSE), Normalized Root Mean Squared Error, and Root Mean

Squared Error.

5 Discussion

In this review, we presented an overview of the current

state of using ML for processing scanpaths in passive gaze-based

applications extracted from 77 publications from 2012 to 2022.

The overview consisted of two main parts: the first focused on

the possible research domains and learning tasks, while the second

focused on the different stages of the ML workflow, shown in

Figure 6. In this section, we discuss both parts to answer the

questions raised in the introduction.

5.1 Q1. What research domains have used
machine learning to analyse scanpaths, and
what passive gaze-based learning tasks
have they focused on?

Based on the specific ML task for which the scanpaths were

analyzed, we categorized the publications under two dimensions:

research domains and learning tasks. We had a total of five

research domains and 11 learning tasks, and each publication

was categorized under at least one domain and one learning

task. The five research domains were: Education, Healthcare,

Psychology, Information Technology, and Other Domains. Other

Domains includes Driving, Aviation, Maritime, Marketing and

Product Design, and Linguistics, but they each had less than

three publications, so we combined them under one group.

The 11 learning tasks were: Activity, or Stimuli Inference,

Experience, Gender, or Age Categorization, Attention Monitoring,

Emotion, or Face Perception/Recognition, Reading, Cognitive

Modeling, Psychiatric, Mood, Learning, or Neurodevelopmental

Disorders, Medical Decision Support System, User Identification,

Gaze Prediction, andOther Tasks.Other Tasks includes Security and

Privacy, Product Design Evaluation, User Experience Evaluation,

and Visual Search, but they each had less than three publications,

so we combined them under one group.
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Looking at each dimension separately does not provide the

full picture of the research landscape. Figure 11 shows a heatmap

of the intersection and distribution of the learning tasks across

the research domains. We see that each domain has one or

two learning tasks where most of the contribution was focused.

The majority of Psychology publications focused on Activity,

or Stimuli Inference tasks, with 15 out of 19 Activity, or

Stimuli Inference publications being psychology-related, while

the remaining four publications, i.e., Lethaus et al. (2013);

Srivastava et al. (2018); Fuhl et al. (2019), and Peysakhovich

et al. (2022) focused on predicting the task or stimuli without

further investigation of the underlying visual behavior. Information

Technology was the only research domain seen across all the

learning tasks, except for Medical Decision Support System. We

found that multiple publications focused more on the technological

implementation (n = 15 Publications) for different learning tasks

and only used the task as a way to evaluate the technology,

which is why we categorized these publications under Information

Technology; this caused it to have a large intersection with

other research domains across the different learning tasks. Both

Information Technology and Psychology show quite similar behavior

in the distribution of a few learning tasks, mainly caused by

publications on Human-Computer Interaction (HCI); this can

be seen in Activity, or Stimuli Inference, which was also the

most common learning task within Information Technology, and

in Other Cognitive Modeling and Reading. Healthcare had all the

Medical Decision Support System publications, a large number

of Experience, Gender, or Age Categorization publications due

to the focus on healthcare professionals’ visual behavior, and all of

Psychiatric, Mood, Learning, or Neurodevelopmental Disorders

publications except for Król and Król (2019) because they focused

on understanding the difference between ASD and Typically

Developing (TD) children in their face-scanning patterns, and

not on pure diagnosis. We initially expected Psychiatric, Mood,

Learning, or Neurodevelopmental Disorders publications to be

fully categorized under Psychology; however, most of them did

not focus on studying the actual underlying visual behavior or

cognitive process associated with each task, but rather on the

diagnosis. Education had the majority of Experience, Gender,

or Age Categorization publications; this is because most of

the publications focused on differentiating between different

experience levels to provide insights to improve the learning

process. Four out of the seven publications categorized underOther

Domains focused on Attention Monitoring.

Our two-dimensional categorization is quite similar to the

approach followed in the seminal research work of Duchowski

(2002), but with a few key differences. Regarding the research

domains, we did not encounter neuroscience publications, i.e.,

publications that focus on the neural components of vision. We

had three publications that used eye tracking alongside EEG devices

(Shi et al., 2017; Giannakos et al., 2019; Moon et al., 2021), but

they did not qualify as such because they focused on various

tasks and not on how the changes in one signal translated to

the other signal and so on. In addition, Duchowski (2002) had

Industrial Engineering and Human Factors as a domain, but we

split it into its components of Aviation and Driving. Lastly, we

did not want to name a domain as Computer Science because all

of our publications fall under computer science with their focus

on ML; we opted for Information Technology as a substitute to

avoid causing confusion. Duchowski (2002) stated that broader

applications will emerge with the improvement in computer and

graphical systems. This statement holds true and can be seen in

our categorization of more than eleven distinct passive gaze-based

applications across our review. Our tasks differ from their task

categorization because we focused on what the authors wanted to

infer from the ML algorithms and not the actual visual activity the

participants were undergoing; for example, publications on Scene

Perception were mostly categorized under Activity, or Stimuli

Inference or Attention Monitoring. However, we had a lot in

common, such as reading and visual search tasks.

5.2 Q2. Which research domains and
passive gaze-based learning tasks have yet
to use machine learning in scanpath
processing?

After identifying the research domains and learning tasks, we

saw that there were research domains that have yet to use ML

in scanpath processing for passive gaze-based learning tasks. This

section highlights some domains and tasks that we think could

warrant more focus in future research.

Regarding the research domains, Sports is an interesting

domain for eye tracking to understand decision-making for both

players and referees, but surprisingly, despite finding sport-related

publications in our initial pool, none of them used ML to

process scanpaths. Gaming is also quite popular as an important

application domain, with certain eye trackers being marketed

toward gaming purposes,14 but we were unable to find hits, even

in the initial pool of publications. Aside from completely missing

domains, we expected to find more publications on Linguistics,

but we were only left with just one publication. We can see

that a lot of domains still have a large room for exploration

where ML processing of scanpaths might be a suitable solution.

Multidisciplinary publications, i.e., publications categorized under

more than one domain, could also be a promising research

direction. The UpSet plot in Figure 4 shows that 52 publications out

of 77 were categorized under just one domain. This can be further

supported by the fact that most of the remaining 25 publications

had an intersection with Information Technology due to focusing

mainly on the technology rather than the task, which left even fewer

pure multidisciplinary publications. Education and Healthcare had

a total of six common publications, which was due to Experience,

Gender, or Age Categorization publications that focused on how

different levels of experience affect the visual behavior of healthcare

professionals. This opens two possible future research directions,

one direction where the learning task could be utilized in exploring

the differences between professionals in other domains aside from

Healthcare to see if the established findings can be generalized and

transferred to other professions. The other direction focuses on

exploring different learning tasks in the Education domain as it still

has a large room for improvement given that it was the research

domain with the least diversity.

14 https://gaming.tobii.com/games/
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FIGURE 11

A heatmap showing the distribution of the di�erent tasks within each research domain.

Regarding the learning tasks, Evaluating Product Design and

User Experience only had two publications despite being an active

area for scanpath analysis in general. This could mean they still

depend on manual evaluation without ML automation to infer

insights. Extended Reality (XR) publications were also not as

common as we had initially expected, especially with the advances

in headsets with integrated eye tracking, which increased the

popularity of their intersection (Plopski et al., 2022). We only

had three publications that used Virtual Reality (VR). Alghofaili

et al. (2019) focused on predicting if a participant needed help

in navigating a virtual environment, Kim et al. (2022) focused on

stress and cognitive load monitoring, and Xu et al. (2018) focused

on scanpath prediction. Scanpaths have the benefit of retaining

temporal information; if the order of actions is important, then

scanpaths offer valuable insights. We believe that the intersection

of XR applications, both VR and Augmented Reality (AR), and

scanpath processing could open opportunities for both domains

and tasks; it also presents opportunities for research into solving

technical challenges regarding adapting current efforts to 3D

setups. There are already multiple available toolkits that could help

in this regard. Kapp et al. (2021) presented ARETT, a toolkit for

reliable eye tracking data acquisition in AR; it was later tested

in visual Attention Monitoring and identifying the objects in a

user’s view in an AR setup (Barz et al., 2021b). Evangelista Belo

et al. (2022) presented AUIT, a toolkit for designing adaptive user

interfaces (UIs) in XR, which can be extended to work with gaze

data. Creating adaptive UIs is an interesting research area because

it can make use of ML algorithms that use various passive gaze-

based cues to change the UI in response. For example, any of the

tasks in Other Cognitive Monitoring, e.g., stress, can be a trigger

to change the UI in a way to facilitate the user’s experience; or

Experience, Age, or Gender Categorization tasks, e.g., detecting

the age group of the user to present a different UI to children,

teenagers, adults, and seniors in a way to keep them safe and

offer them a tailored experience. This shows that certain tasks still

have room for further investigation and that other tasks are more

mature, which also allows for investigating novel MLmethods since

you could compare them against already established benchmarks.

5.3 Q3. What are the commonly followed
ML practices, in line with a general ML
workflow, that have been used for
scanpath analysis in passive gaze-based
applications?

We present our answer to this question following our

general workflow shown in Figure 6. For each section, i.e., data

curation, learning data preparation, and learning process, we

summarize the key takeaways that can be used as guidelines for

future investigations.

5.3.1 Data curation
For the data curation, we focused on three main points: the

eye tracker frequency, the number of study participants, and

the participants’ demographic information. We found that the

majority of publications, i.e., 59 out of 77, preferred to collect their

own datasets. However, some publications used already available

datasets, which we summarized in Table 1.
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Across all the reported datasets, we found that 60 Hz was

the most frequently used eye tracking frequency, followed by 250

and 1,000 Hz. Using frequencies <60 Hz was not that common,

with only 25% of datasets using frequencies <60 Hz. Eye trackers

operating at lower frequencies are often less expensive, but they

could lead to sampling errors and not being able to compute certain

features accurately. Andersson et al. (2010) argued that sampling

errors can be mitigated by collecting more samples but cease to

be a problem for frequencies above 200 Hz. Analysis of fixations

becomes more stable from 60 Hz, but to correctly detect and

analyze saccades, the eye tracker should have at least a 120 Hz

sampling frequency (Leube et al., 2017), while some saccade-based

features would require frequencies above 200 Hz (Andersson et al.,

2010). Sixty Hz might be the most common due to being more

affordable, but to avoid these issues, we would argue that an eye

tracker of 250 Hz would be better to avoid sampling errors and if

we needed to study fast eye movements and saccade-based features.

For the number of participants, we found that collecting data

from up to 40 participants was the most frequent strategy, with 24

participants being the most popular choice. However, Healthcare

publications preferred larger datasets with up to 80 participants.

We cannot provide a one-size-fits-all answer because it depends

on the number of collected samples, the research question, the

study design, and additional factors such as available time and

funding. The rule that is mostly followed for eye tracking studies

related to usability testing is to collect data from at least 30

participants (Eraslan et al., 2016), but similar statements cannot

be made across the full landscape. The provided numbers are just

an overview of the field of what is commonly found across the

literature, but for amore informed decision to compute the number

of participants, we would recommend reading publications such

as (Martínez-Mesa et al., 2014; Brysbaert, 2019). In addition, the

Supplementary material has full details for more detailed insights

toward the number of participants used by each domain or

learning task.

We found inconsistencies in reporting demographic

information across the reviewed literature, such as the participants’

genders, nationalities, and ages. Reporting this information could

benefit future use of the datasets, e.g., focusing on use cases for

certain genders or age groups. We recommend using checklists

such as the one from Dunn et al. (2023), which provides a list of

information that should be included when reporting eye tracking

studies and the reasons behind their inclusion.

5.3.2 Learning data preparation
For the learning data preparation, we focused on two main

points: how scanpaths are formatted as suitable inputs to an ML

algorithm and how the data is split into training, testing, and,

sometimes, validation subsets.

We found that there were six main formats for representing

scanpaths as suitable inputs to an ML algorithm: Visual Encoding,

String Representation, Time Series, Graph Representation, Feature

Engineering, and HMM. We referred to these six methods as

scanpath representation formats because publications presented

the scanpath data as one or multiple of these formats, which

was then fed into the ML algorithm. Feature engineering was the

most preferred format, followed by string representation. Aside

from feature engineering, Psychology publications preferred to

use HMMs and time series representations. This might be due

to using stimuli without explicit AOIs or stimuli with different

layouts, where the visual behavior might be a bit complex, or

due to the importance of the temporal information in their

learning tasks since HMMs are often used to encode temporal

data. Healthcare publications preferred to use visual encoding

formats, which might be due to their focus on image-based stimuli.

Education publications preferred string representation formats.

String representation focuses on the transitions between the AOIs

within the stimuli in order to enable a quantifiable comparison

between pairs of scanpaths; they are often used to compare pairs of

scanpaths, especially for group categorization, which aligns with the

Experience, Gender, or Age Categorization learning task. Lastly,

Information Technology publications preferred both time series and

string representations.

For feature engineering, we found that publications used five

features on average (5 ± 5.965). We found a total of 126 different

features extracted from scanpath data. Saccade-based features were

the most diverse, but fixation-based features were more commonly

used, especially average fixation duration, total fixation duration,

and total fixation count, while scanpath length was the most

commonly used full scanpath feature. The Supplementary material

provides the full list of features, our feature categorization, and

the mapping to their respective publications, research domains,

and learning tasks. To tackle a specific learning task, we think it

is better to establish a baseline by using the features commonly

used by other publications to solve the task and then explore using

additional feature combinations that are not commonly explored

within this task. Some features, such as scanpath spatial density

and saccade duration per AOI, which were used by only one

publication each, could also be worth investigating. Based on the

findings, we think using five to ten features is a good starting

point, but caution is needed to not overfit the ML model by using

many features (Ying, 2019). In case of needing to use just one

feature extractionmethod, scanpath comparison algorithms, neural

network computed features, scanpath transition probability matrix,

the SRSA algorithm (Hayes et al., 2011, 2015), the SGT algorithm

(Ranjan et al., 2022), the OBF framework (Li et al., 2021), or fixation

duration within each AOI might be the best starting points.

Finally, for the data splits, publications preferred cross-

validation as opposed to holdout methods despite being more

computationally expensive.K-fold Cross-validation has been found

to provide a better model evaluation estimate and a better

generalizability estimate than holdout (Blum et al., 1999). When

using K = 1, this is often called Leave-one-out Cross-validation,

which maximizes the training data and might be beneficial for

small datasets. Leave-one-out is less likely to provide a biased

estimate of the model performance compared to larger K-values

(Fushiki, 2011), but it is very computationally expensive for large

datasets. The choice of K is very critical; based on the reviewed

literature, K = 10 and K = 5 might be the best starting points.

A different approach called Leave-user(s)-out Cross-validation is

very useful for user-independent use cases where we would like

the method to generalize across different users. Leave-user(s)-out

provides better estimates of the model generalizability to unseen

participants’ data (Cho, 2021); with some authors arguing that

for physiological data, such as eye tracking data, K-fold might
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overestimate the model performance and should be evaluated using

Leave-user(s)-out instead (Dehghani et al., 2019; Cho, 2021). It

depends a lot on the dataset and the research questions in mind,

but Cross-validation seems to be the preferred method across the

community, with multiple opinions arguing that Leave-user(s)-out

Cross-validation provides better model evaluation estimates.

5.3.3 Learning process
For the learning process, we focused on two main points: the

usedML algorithms, with a focus on neural networks, and how they

are evaluated.

5.3.3.1 Model selection

We found that supervised ML was more common than

unsupervised and reinforcement learning. Publications tended to

test, on average, two supervised learning algorithms (2.075±1.636)

but only one unsupervised learning algorithm (1.304±0.765). SVM

was the most commonML algorithm for supervised learning tasks,

followed by Linear Models and RNNs. PCA was the only algorithm

that all five research domains used for unsupervised learning tasks,

and partitioning and hierarchical clustering were the two preferred

clustering methods. We only had one publication for RL, i.e., Jiang

et al. (2016), which used the LSPI policy.

We found across the different publications that traditional ML

was more prevalent than neural networks. This was very clear with

unsupervised learning tasks, with GANs and Autoencoders being

the only unsupervised neural networks used by Fuhl et al. (2019)

and Xia et al. (2021), respectively. Figure 12 shows a distribution

of the number of publications in our review that used traditional

ML and neural networks across the period of 2012–2022. We can

see that traditional ML has always been the preferred option. The

gap was quite wide from 2014 onwards, but in 2022, we can see

that the number of neural network approaches largely increased.

This might mean that moving forward, we might expect more

inclination toward adapting neural networks.

5.3.3.2 Neural network insights

To build upon our reported findings regarding neural networks

(Section 4.3.2), we looked at relevant publications that were not part

of the reviewed papers, and more recent publications from 2023

to 2024. We did not find any differences regarding pre-processing

and hyperparameters but rather a few differences regarding the

networks themselves.

The studies by Bao and Chen (2020), Kerkouri et al. (2022), and

Kümmerer et al. (2022) all used the SALICON dataset (Jiang et al.,

2015) to train their networks. Bao and Chen (2020) and Kerkouri

et al. (2022) trained a ResNet-50, and a MobileNet (Sandler et al.,

2018) with an additional CNN and MLP networks, respectively,

to predict visual attention based on saliency maps. Kümmerer

et al. (2022) trained a DenseNet201 (Huang et al., 2017) with

two additional 2-layer convolutional networks to predict upcoming

fixations from prior ones. Bao and Chen (2020) additionally trained

a VGG-16 on the OSIE, the KTH (Kootstra et al., 2011), and

the EyeCrowd (Jiang et al., 2014) datasets to predict the fixation

duration. The studies by Barz et al. (2020), Bhattacharya et al.

(2020b), and Barz and Sonntag (2021) are more related to our

scope. Barz and Sonntag (2021) evaluated a ResNet-152 pre-trained

on the ImageNet (Deng et al., 2009) dataset, and an R-CNN (He

et al., 2017) pre-trained on the MS COCO (Lin et al., 2015) dataset,

separately, to map visual attention to an AOI. Barz et al. (2020)

used a SegNet (Badrinarayanan et al., 2016) pre-trained on the

indoor scenes from the SUN RGB-D dataset (Song et al., 2015),

and an AlexNet (Krizhevsky et al., 2012) pre-trained with ImageNet

to extract features from scanpaths. Bhattacharya et al. (2020b)

used a VGG-19 pre-trained on ImageNet to process scanpaths

for perceived relevance estimation. All six publications used pre-

trained convolutional models on large image datasets.

Using pre-trained convolutional networks did not changemuch

during the last 2 years. We found that VGGs pre-trained on

ImageNet are still popular; Byrne et al. (2023a,b) used VGG-16

and VGG-19, respectively, to predict a user’s decision. Fuhl (2024)

proposed a feature extraction network based on ResNet-12 and

evaluated it on the Doves (Bovik et al., 2009), WherePeopleLook

(Judd et al., 2009), and Gaze (Dorr et al., 2010) datasets. However,

an interesting change was the usage of transformers in more

recent publications.

Transformers are deep learning models that were initially

proposed for Natural language processing (NLP) tasks by Vaswani

et al. (2017) but have since been extended to other domains.

Transformers have two key features: self-attention mechanism

and positional encoding. The self-attention mechanism allows the

model to weigh the importance of the different parts of an input

sequence, regardless of their positional distance from each other.

Transformers do not process data sequentially like RNNs, so they

use positional encoding to incorporate the location information

of the input sequence in the embeddings. Transformers are good

for large-scale data as they can process data using parallelization

and are more highly scalable than other types of deep neural

networks. Jiang et al. (2024a) presented a Transformer-guided

RL approach, called EyeFormer, to predict personalized scanpaths

across various visual stimuli types. The prediction task is framed

as a sequence generation problem, where each predicted fixation

point is treated as an action taken by the RL agent. They used the

Vision Encoder Transformer model by Dosovitskiy et al. (2021)

to process visual information by converting image patches into a

sequence of embeddings, capturing essential local and global details

for comprehensive context understanding. The Fixation Decoder

is a multi-layer Transformer that then predicts the next point

in the scanpath by utilizing these embeddings and considering

the history of previous fixations. They used the REINFORCE

algorithm (Williams, 1992; Rennie et al., 2017) for their RL. To

evaluate their system, they used the OSIE and the Ueyes (Jiang

et al., 2023, 2024b) datasets. Unger et al. (2024) proposed a

Transformer-based deep learning architecture, called RETINA, to

predict a user’s product preference from raw eye-movement data.

They employ a multi-layer bidirectional Transformer architecture,

similar to that of Vaswani et al. (2017), to capture intricate temporal

relationships between gaze points and predict AOIs by leveraging

the Transformer’s inherent ability to process long sequential data

in parallel.

5.3.3.3 Model evaluation

The evaluation metric depends a lot on the dataset at hand and

the type of problem. We found that accuracy was the predominant

ML model evaluation metric, followed by AUC score and F1

score, respectively. There are various publications that focus on
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the benefits and limitations of each evaluation metric; for example,

accuracy is not suitable for imbalanced data, and F1 score is not

suitable when you care equally about the positive and negative

classes. This is why some publications support using alternative

metrics; for example Chicco and Jurman (2020) argued that

Matthews correlation coefficient (MCC) (Baldi et al., 2000) has

benefits over both accuracy and F1 score for binary classification

problems. We argue that computing and reporting more than one

metric gives a better model evaluation estimate, but the choice

of which metric to focus on depends on multiple factors, and

publications such as Hossin and Sulaiman (2015); Naidu et al.

(2023) help in making an informed decision.

5.4 Q4. Are there any notable emerging
machine learning topics that have not been
investigated for passive gaze-based
scanpath processing, and what benefits
could they provide?

The field of ML is fast-paced, with new algorithms and

approaches emerging on a regular basis. We saw that scanpath

processing has a lot of potential for exploring different ML

approaches than the current focus. We formulated this question

to provide insights toward three ML topics that might help tackle

current challenges and open future opportunities that might prove

useful in scanpath processing. The three topics are Self-supervised

learning, Transformers, and Explainable AI. We start by explaining

each topic and offer our opinion on how they can be utilized for

scanpath processing in passive gaze-based interaction.

5.4.1 Self-supervised learning
Self-supervised learning (SSL) is an ML approach where the

system learns to understand and work with data without being

explicitly provided with labeled examples during training; instead,

it generates its labels from the input data (Nguyen et al., 2021;

Liu et al., 2023), which is achieved by designing a task where the

model predicts some parts of the data using other parts of the data.

SSL differs from unsupervised learning because instead of dealing

with structural patterns in the data for clustering or dimensionality

reduction, it focuses on solving supervised learning tasks such as

classification, which can be done using multiple approaches.

Pretext learning is an approach which consists of a pretext

task and a downstream task. In the pretext task, the model learns

generalizable feature representations of the data distribution using

labeled data, while in the downstream task, the model transfers

its pretext knowledge to a different task with less labeled data.

For example, Dubey et al. (2022) had a pretext task of using the

relative pupil positions in estimating the gaze direction, i.e., right,

left, or center, which was then used for a downstream task of visual

Attention Monitoring. In the Contrastive Learning SSL approach,

the model is trained to identify similar, i.e., positive, and dissimilar,

i.e., negative, pairs of data points; this helps the model to encode the

data into a representation space where similar data points are close

and dissimilar data points are far apart (Chen et al., 2020).

SSL could be used inmultiple tasks such as scanpath generation,

experience gender or age categorization, general user grouping,

and cross-modal learning. In cross-modal learning, we could use

scanpath data accompanied by data from different modalities, such

as EEGs or physiological monitoring wristbands. However, it also

presents multiple challenges, such as designing appropriate pretext

tasks and evaluation methods.

5.4.2 Transformers
As we have seen in Section 5.3, Transformers have recently

been used in relevant publications. Transformers have a lot

of potential in processing scanpaths because they can take the

temporal information, i.e., the order of fixations and saccades,

into consideration. Attention mechanisms could also focus on

specific parts of a scanpath if we know that a certain behavior or

a certain AOI holds more importance than others. These could

be an entryway to learning tasks that still depend on manual

interpretation, such as usability studies. Another interesting

intersection would be to use Large Language Models (LLMs),

which are transformer-based models, to investigate how they

could potentially help in scanpath analysis. For example, to

generate a descriptive narrative of a scanpath behavior with

respect to the AOIs, or predict potential AOIs based on previous

scanpaths. However, this intersection presents a few challenges.

LLMs need to have enough contextual information to interpret

scanpaths, model training and optimization would require large

computational resources, and the integration is a novel use case,

so the implementation itself might be technically challenging.

5.4.3 Explainable AI
Explainable AI (XAI) or explainable methods in ML are

techniques designed to help humans understand and trust the

decisions made by ML models by shedding light on the reasoning

behind model predictions, making the models more transparent

and their decisions easier to interpret (Angelov et al., 2021; Kadir

et al., 2023). Traditional ML algorithms are generally inherently

explainable; for example, Valdunciel et al. (2022) created ReMA,

a simple interactive tool designed to assess gaze-based relevance

estimation models; it visualizes the stimulus with a heat map for

fixation duration alongside the values of the extracted features,

model prediction, and ground truth; this enhances the transparency

of the model, and allows researchers to better understand the

strengths and weaknesses of the model. However, deep neural

networks represent the main challenges in XAI because it is not

inherently clear how their internal computations were able to reach

the given output, and such tools as ReMA might not be as helpful.

There are multiple XAI methods, but we will only discuss a few

relevant ones.

Model-agnostic methods are used to explain the predictions

of any ML algorithm regardless of its type or complexity. For

example, Local Interpretable Model-Agnostic Explanation (LIME)

Lundberg and Lee (2017) alters an input data point, e.g., changing a

feature value, and observes the corresponding changes in the model

output to understand how each feature affects the predictions and

which features are the most important. The main problem with

these methods is that they might not provide good insights into

deep neural networks due to their model complexities and abstract

feature space. Gradient-based explainable methods, e.g., Grad-

CAM (Selvaraju et al., 2017) and Grad-CAM++ (Chattopadhay
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FIGURE 12

The distribution of traditional machine learning and neural networks per publication for scanpath analysis in passive gaze-based applications from

2012 to 2022.

et al., 2018), are commonly used for explaining deep neural

networks. Unlike Model-Agnostic Methods, which are invariant to

the type of models, these methods are model-dependent (Samek

et al., 2021). Activation Map Methods, e.g., Grad-CAM (Selvaraju

et al., 2017) and Saliency Maps (Simonyan et al., 2014), try

to understand which regions in the input data activate certain

neurons strongly to try and find out the most important regions

contributing to the prediction. They mostly work with visual inputs

and computer vision tasks to generate heatmaps, i.e., activation

maps, that highlight the most important regions in the input image

that the model used to make its prediction (Samek et al., 2021).

Integrated Gradients (Sundararajan et al., 2017) can be applied

to any differential models, making it versatile across many types

of neural networks for different data modalities, including eye-

tracking. Activation Map methods could be used to explain the

model prediction with visual encoding scanpath representation

format. Integrated Gradients could be beneficial to use with feature

engineering. XAI could help identify the underlying scanpath visual

behavior that led to a certain prediction, which could help in better

user modeling, it could be used for feature importance and maybe

sequence importance in a string representation, and it could be

used to understand how different stimuli affect a model prediction

in order to understand the causal relationship between scanpaths

and stimuli.

5.5 Limitations, challenges and ethical
considerations

In order to give a full picture of how ML has been used for

scanpath analysis in passive gaze-based applications, we also need

to discuss the limitations of the current approaches and the ethical

considerations of using ML in passive gaze-based applications

as a whole.

5.5.1 Limitations and challenges
In this section, we discuss limitations and challenges identified

in the reviewed publications. The main reported aspects were

real-time processing, efficiency, and effectiveness. In addition, we

elaborate further on the reproducibility and replicability of the

proposed systems.

5.5.1.1 Real-time

We found that ML methods for scanpath analysis are often

limited to offline applications such as in post-hoc experiments. The

real-time capabilities and related challenges are rarely discussed,

if at all, for example the latency of the proposed systems,

their throughput, and their hardware constraints. Across the 77

publications, only a few publications, i.e., Biedert et al. (2012);

Ishii et al. (2013); Moacdieh and Sarter (2017); Raptis et al. (2017);

Alghofaili et al. (2019); Kelton et al. (2019); Fu and Steichen (2022);

Southwell et al. (2022), addressed this aspect.

Processing scanpaths in real time poses several challenges.

One primary challenge is deciding on suitable preprocessing

steps and algorithms. In Section 4.3.2, we presented the different

pre-processing steps reported when using neural networks. The

reported artifact removal methods necessitate a compromise

between adding delays and removing noise, which could affect the

overall performance. The reported data scaling methods require

knowledge of the statistical properties of the entire dataset, which

might not be available in real-time. Windowing is also quite

important because using sliding windows would require a trade-off

between having sufficient samples for the ML algorithm to function

properly and not introducing large time delays, which could affect

the overall user experience; while using ever expanding windows

would be inefficient. This poses a question regarding whether or

not to discard older samples, which can be facilitated using available

tools and frameworks, e.g., Barz et al. (2021a).

In Section 4.2.1, we presented the different scanpath

representation formats, but the publications did not consider

their suitability for real-time processing. For example, deciding

whether to use fixations or raw gaze samples to construct a

scanpath is crucial. Using fixations in real-time would require

using suitable online fixation detection algorithms, e.g., Santini

et al. (2016); Lobão-Neto et al. (2022). Otherwise, some detection

algorithms are either infeasible or make use of future samples,

which can cause delays. While string and graph representation

would require real-time fixation-to-AOI mapping, e.g., Barz and

Sonntag (2021); Barz et al. (2021b). Similar questions arise for

deciding the suitability of the different scanpath features for real-

time processing. In addition, using a scanpath as a visual encoding

requires the full scanpath which is not suitable in real-time and is a

limitation of the majority of proposed neural networks.
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5.5.1.2 E�ciency

In Section 4.1.1, we presented the different eye tracker

frequencies. The majority of experiments were conducted with

lower frequency eye trackers, e.g., 60 Hz. According to the

discussion in Section 5.3, lower frequency eye trackers could lead

to sampling errors in the recordings, which was not discussed

or reported by publications. In addition, we found out that for

saccade-based features, it is recommended to use an eye tracker

with 120 to 200 Hz, which was also not discussed by multiple

publications that used lower frequencies.

The usage of complex machine learning algorithms, especially

with large datasets, and cross-validation (Section 4.2.2) can take a

lot of resources to train and optimize the model. The specifications

of the system that ran the experiments were not always reported.

This leads to challenges in estimating the necessary resources,

assessing the environmental impact, and determining the cost to

train and evaluate the proposed systems (Paleyes et al., 2022). These

aspects are often overlooked in existing research literature. We

recommend that future studies should at least discuss these aspects

in hopes of promoting or engaging in conversations that could

potentially lead to solutions for these issues.

5.5.1.3 E�ectiveness

Most of the publications in this review reported good

performance of their models. However, this does not guarantee

that these systems would perform equally well in different settings.

In Section 4.2.2 we saw that cross-validation was the preferred

option, but holdout was quite common. When using holdout, a

claim regarding the system generalizability to other users, tasks, or

environments cannot be made. For cross-validation, leaving users,

tasks, or stimuli out can prove that the system generalizes well to

new users, tasks, and stimuli, respectively. Because as we discussed

in Section 5.3, having a user’s data in both training and testing can

lead to overestimating the model performance.

Many experiments are restricted to controlled lab settings and

do not consider anything beyond. This calls for more in-the-wild

studies that test the transfer from controlled lab environments

to realistic application scenarios. In Sections 3.2 and 4.3.2, we

saw that the majority of publications focused on binary tasks.

For example, a binary classification of confusion does not take

additional emotional or mental states that could have similar

attributes which would lead to mislabeling other mental states

as confusion.

Finally, Ross et al. (2017) defined the “right for the right

reason” principle, suggesting that an ML model has truly learned

to generalize when it conforms to the knowledge and expectations

of domain experts. This requires using interpretability and

explainability methods in the utilized or proposed ML systems,

which was discussed in Section 5.4.

5.5.1.4 Reproducibility and replicability

Paleyes et al. (2022) discussed some common challenges that

practitioners face when deployingML solutions, and they noted the

shortage of reporting deployment experience in academic literature

in general. A step prior to actual deployment would be to test

the reproducibility, and reblicability of the proposed models to

guarantee that there findings hold true and were not highly specific

to their setups.

Gundersen and Kjensmo (2018) defined three levels of

reproducibility in relation to ML experiments: Experiment

Reproducibility refers to achieving the exact same results when

using the sameML system with the same data;Data Reproducibility

refers to achieving nearly identical results when using the same data

but with a different ML method, ensuring that the insights derived

from the data are consistent regardless of the method used;Method

Reproducibility refers to achieving similar results or findings when

using a different ML method on different data, ensuring that the

findings are consistent across various datasets and methods. In

addition to reproducibility, there is also replicability. According to

the Association for Computing Machinery (ACM),15 replicability

is the ability of a different group to achieve similar results using

similar, but distinct, data andmethods that they develop completely

independently. A lot of venues encourage researchers to share their

code base for transparency and to allow the reproduction and

replication of their findings.

However, Samuel et al. (2021) argued that just sharing the

code base might not be enough to reproduce reported results

due to various reasons, such as incomplete and outdated source

codes, insufficient description of model parameters, not reporting

the required packages and their version, and unavailable datasets.

Semmelrock et al. (2023) also shared similar concerns while giving

examples of researchers being unable to reproduce their own

results. Semmelrock et al. (2023) attributed this to multiple reasons,

such as different data, package versions, hardware setups, and non-

determinism of MLmodels, which is why using fixed random seeds

is vital. For example, the code link attached to this publication

(Kerkouri et al., 2022) states the code will be made available, and

has not been updated ever since.

In addition to sharing data and providing a complete,

transparent description of the implementation, it is also important

to accurately report and analyze themodel’s performance. However,

some publications either did not report the statistical significance

of their results or just compared them to chance levels, which

could result in an overestimation of the model’s performance. For

example, in the field of Brain-Computer Interaction (BCI), most

publications compare their results against traditional chance levels,

i.e., dividing 100% by the total number of classes, but Combrisson

and Jerbi (2015) argued that this could only be achieved by

having an infinite number of samples and that chance levels are

usually higher than expected. The eye tracking community should

engage in similar critical discussions in order to promote common

practices in evaluating their results. This will ensure a thorough

understanding of the performance of current approaches and

identify areas that need further investigation. Furthermore, Paleyes

et al. (2022) argued that simply reporting evaluation metrics, e.g.,

model accuracy, is not sufficient for future deployment and that

researchers need to define the requirements of their systems. The

requirements ensure that the proposed systems align with the needs

and expectations of future users and businesses. Requirements

can include performance metrics such as accuracy and F1 scores,

metrics to measure model fairness and bias, and any business-

specific objectives, such as Key Performance Indicators (KPIs).

15 https://www.acm.org/publications/policies/artifact-review-and-

badging-current
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5.5.2 Ethical considerations
Passive gaze-based interaction builds on the assumption that

by monitoring a user’s gaze in the background, we can infer

and understand their behavior, cognitive state, and a wide array

of sensitive information. This is evident from the learning tasks

discussed throughout this paper. However, this could raise multiple

ethical, legal, and privacy issues (Gressel et al., 2023). These issues

become more apparent when passive gaze-based applications are

deployed as part of widely used products outside research. This is

why researchers should take particular care of the potential privacy

and ethical impact of their work.We recommend following what all

of the reviewed user studies stated regarding collecting informed

consent forms from their participants, receiving approvals from

their respective ethical review boards, and adhering to simple

common principles, such as the ethics code published by the

American Psychological Association (APA).16

Furthermore, the possibility of using webcams to record gaze

data,17 even at a low quality, allows for the easy construction of a

scanpath. This would rapidly accelerate the potential deployment

of eye tracking capabilities to consumer laptops, tablets, and

smartphones. This means that webcam-based eye tracking could

lead to understanding a user’s cognitive state, emotional state,

product preference, gender, age, and a host of other information.

The implications of this are vast and warrant careful consideration.

However, discussing the ethical and privacy implications of eye

tracking research has gained more interest over the last few years.

For example, the most recent iterations of relevant conferences,

such as ETRA18 and UMAP,19 encouraged users to consider the

impact of their work on privacy, fairness, and future adoption

or misuse of their work. We believe that using ML for passive

gaze-based applications can have a lot of potential benefits for

users and improve their overall experience when interacting with

technologies, but we must consider the potentially harmful impact

that could arise from their misuse and discuss how we can mitigate

this via appropriate measures.

6 Conclusion

We conducted a literature review on machine learning

applications in scanpath analysis for passive gaze-based interaction.

We reviewed 77 publications spanning a ten-year period from 2012

to 2022. Our goal was to provide an overview of the field and

highlight areas that could garner more attention in future research.

We categorized publications into five research domains and 11

learning tasks. This highlighted that publications concerning

certain domains, such as gaming, sports, and linguistics, and

learning tasks, such as usability testing and user modeling, were

either missing or underrepresented in using machine learning to

analyze scanpaths for passive gaze-based interaction, which offers

room for future research efforts. We then presented commonly

followed machine learning practices in the order of a machine

learning workflow, where we discussed the data curation, the

16 https://www.apa.org/ethics/code

17 For example: https://webgazer.cs.brown.edu/.

18 https://etra.acm.org/2024/

19 https://www.um.org/umap2024/

learning data preparation, and the learning process. For data

curation, we provided guidelines on how to make informed

decisions regarding eye tracker frequency, number of participants,

and reporting the user study. In addition, we saw that some

publications preferred to use already available datasets, so we

reported a list of these 23 datasets. For learning data preparation,

we provided insights toward scanpath preprocessing and data

splits. We discussed the different scanpath features and different

scanpath representation formats. We provided insights toward

the different strategies for splitting the data into training, testing,

and validation subsets, with cross-validation being preferred as

opposed to holdout methods. Finally, for the learning process, we

found that traditional machine learning models were preferred

over neural networks. SVM was the most used machine learning

algorithm across all five research domains, and RNNs were the

most popular choice for neural networks.We also provided insights

toward making an informed decision on how to evaluate the

model performance. Afterwards, we finished our review by focusing

on emerging machine learning methods, i.e., SSL, transformer-

based models, and XAI, by defining each approach and presenting

possible future directions for each concerning scanpath processing.
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