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In today’s modern era, chronic kidney disease stands as a significantly grave

ailment that detrimentally impacts human life. This issue is progressively escalating

in both developed and developing nations. Precise and timely identification of

chronic kidney disease is imperative for the prevention andmanagement of kidney

failure. Historical methods of diagnosing chronic kidney disease have often been

deemed unreliable on several fronts. To distinguish between healthy individuals

and those a	icted by chronic kidney disease, dependable and e�ective non-

invasive techniques such as machine learning models have been adopted. In our

ongoing research, we employ various machine learning models, encompassing

logistic regression, random forest, decision tree, k-nearest neighbor, and support

vector machine utilizing four kernel functions (linear, Laplacian, Bessel, and radial

basis kernels), to forecast chronic kidney disease. The dataset used constitutes

records from a case-control study involving chronic kidney disease patients

in district Buner, Khyber Pakhtunkhwa, Pakistan. For comparative evaluation

of the models in terms of classification and accuracy, diverse performance

metrics, including accuracy, Brier score, sensitivity, Youden’s index, and F1 score,

were computed.

KEYWORDS

forecasting, public health, medicine, deep learning, machine learning

1 Introduction

Chronic kidney disease (CKD) represents a global public health concern (Levey et al.,

2007). The Global Burden of Disease Study in 2010, ranking causes of mortality worldwide

from 1990 to 2010, highlighted CKD’s rise from the 27th to the 18th position over

two decades (Lozano et al., 2012). This escalating CKD epidemic has led to an 82%

increase in kidney disease-related years of life lost, a toll akin to diabetes (Rostron et al.,

2023). The looming specter of premature death is compounded as most CKD survivors

progress to end-stage renal failure. This debilitating condition diminishes life quality and

inflicts extensive societal and financial costs. The incidence of renal replacement therapy

(RRT) displays significant disparities across nations, ranging from 150 to 400 per million
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inhabitants (PMI) in developed countries to 50 PMIs or less in

developing regions, revealing constrained healthcare resources.

Global screening systems are being augmented to curb CKD

progression and improve survivability. Consequently, precise

knowledge of CKD’s prevalence on national and international

scales is pivotal in engaging key stakeholders like patients,

general practitioners, nephrologists, and funding bodies to devise

and enforce effective preventive strategies (Eckardt et al., 2013;

Jayasumana et al., 2014; Rapa et al., 2019).

In contemporary times, CKD poses an increasingly grave

concern across developed and developing nations. The adoption

of unhealthy lifestyles, contributing to diabetes and hypertension,

has surged due to urbanization in developing countries. Notably,

15–25% of individuals with diabetes succumb to kidney disease.

For instance, in Pakistan, the rapid spread of CKD is attributed to

factors such as consumption of substandard food, self-medication,

excessive drug use, polluted water, obesity, hypertension, anemia,

diabetes, and kidney stones (Imtiaz et al., 2018). In contrast,

developed nations like the United States harbor 26 million adults

(one in nine) grappling with CKD, who are also at heightened

risk for other diseases. Researchers in the USA have devised an

eight-point risk factor framework to forecast CKD, encompassing

parameters like advanced age, female gender, anemia, diabetes,

hypertension, cardiovascular disease, and peripheral vascular

disease (Naqvi et al., 2019). Present studies indicate a worldwide

CKD prevalence ranging from 5 to 15%, with ∼5–10 million

annual deaths attributed to CKD (Wang et al., 2023a). As CKD

exacerbates with time, early detection and effective interventions

offer pragmatic ways to mitigate the mortality rate.

Machine learning (ML) methodologies have emerged as pivotal

tools in medical domains for disease identification due to their

specific attributes (Elsheikh et al., 2021; Salazar et al., 2021). A

study by Khamparia and Pandey (2020) employed the support

vector machine (SVM) technique to diagnose CKD, coupled with

diverse data reduction methods, including principal component

analysis (PCA). Notably, their findings favored the SVM model

employing the Gaussian radial basis kernel for superior diagnostic

precision and accuracy over competing models. Other researchers

have examined kernel functions in random forest models. At the

same time, some studies have compared artificial neural networks

(ANN) and SVM algorithms to classify and predict varied kidney

diseases, with ANN demonstrating the highest accuracy among

them. Similarly, statistical and computational intelligence models

have been juxtaposed, utilizing class-balanced order for dual classes

of non-uniform distribution (Zhao and Zhang, 2008; Wang et al.,

2023b). An investigation by Dritsas and Trigka (2022) detailed the

identification of suitable dietary plans for CKD patients, utilizing

Abbreviations: CKD, Chronic Kidney Disease; RRT, Renal Replacement

Therapy; PMI, Per Million Inhabitants; ML, Machine learning; SVM, Support

Vector Machine; PCA, Principal Component Analysis; ANN, Artificial Neural

Networks; XGC, XGBoost Classifier; NN, Neural Network; GNB, Gaussian

Naive Bayes; LR, Logistic Regression; RF, Random Forest; DT, Decision Tree;

KNN, K-Nearest Neighbor; SVM, Support Vector Machine; MLR, multiple

logistic regression; MLE, Maximum Likelihood Estimation; WBC, White Blood

Cells; RBC, Red Blood Cells; ROC, Receiver Operating Characteristic; AUC,

Area Under the Curve.

multiple classification methods, with the multi-class decision forest

model achieving the highest accuracy (99.17%).

Additionally, supervised classifier techniques, widely

employed in diagnosing diverse ailments, have been adopted.

Wickramasinghe et al. (2017) used k-nearest neighbor (KNN) and

SVM classifiers for CKD dataset prediction, with KNN exhibiting

superior performance compared to SVM. A comparative analysis

by Hsu et al. (2018) assessed ML and classical regression models

in which artificial neural networks achieved the highest accuracy

(93%). Recent research primarily employs ML models in medical

research. Tazin et al. (2016) harnessed various ML techniques, such

as ANN, backpropagation, and SVM, for classifying and predicting

patients with kidney stone disease, with backpropagation proving

the most effective. In parallel, SVM models were compared with

naive Bayes (NB) models, revealing SVM’s superiority in disease

classification (Kavakiotis et al., 2017; Zhang et al., 2018). In this

study, diverse ML models were scrutinized for CKD prediction.

This research study undertakes CKD prediction utilizing

various ML models, with its primary contributions outlined

as follows:

• Incorporation of primary data from CKD patients in district

Buner, Kyber Pakhtunkhwa, Pakistan, the machine and deep

learning algorithms aimed at effectively distinguishing healthy

individuals from those afflicted by CKD. In particular, the

pertinent for developing nations.

• Examination of three different training and testing set

scenarios: (a) 90% training, 10% testing; (b) 75% training,

25% testing; and (c) 50% training, 50% testing, along

with 1,000 simulations per validation scenario to gauge

model consistency.

• A Comparison of prominent machine learning models

encompassing: XGBoost Classifier (XGC), Neural Network

(NN), Gaussian Naive Bayes (GNB), Logistic Regression

(LR), Random Forest (RF), Decision Tree (DT), K-Nearest

Neighbor (KNN), and Support Vector Machine (SVM) with

four kernel functions (linear, Laplacian, Bessel, and radial basis

kernels) is performed for CKD prediction.

• Evaluation of model performance through six metrics:

accuracy, recall, error rate, Youden’s index, specificity, and

F1 score to assess the statistical significance of differences in

prediction performance across models.

The subsequent sections of this article are structured as follows:

Section 2 presents materials and methods, Section 3 covers results

and discussion, and Section 4 concludes the study.

2 Data collection and research
method

In this section, an in-depth discussion is presented on the

selected predictive models, along with a detailed description of

the features utilized in the kidney disease dataset from district

Buner. Real world data is often inconsistent which can affect the

performances of models. Preprocessing the data before it is fed

into classifers is vital part of developing machine-learning model.

Similarly, the dataset for this study contains missing values that
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FIGURE 1

Chronic kidney disease dataset preprocessing steps.

needs to be handled appropriately. It has to also be in a suitable

format for modeling. Hence, pre-processing has been conducted as

it has been shown in Figure 1.

2.1 Feature description

The dataset was collected from the medical complex in Buner,

Khyber Pakhtunkhwa, Pakistan. It comprises diagnostic test reports

from numerous patients who sought check-ups with nephrologists

at the Medical Complex. The dataset encompasses 21 categorical

variables, meticulously outlined in Table 1. Data collection spanned

from November 2020 to March 2021, with the sample size

calculated following the formula stated in Singh et al. (2022).

The formula used for sample size determination is given by:

n =
z2pq

m
(1)

Here, n represents the sample size, z signifies the statistic

associated with a certain confidence level, p denotes the anticipated

prevalence proportion of CKD patients, q equals 1 - p, and

m represents the precision linked with an effect size. For our

calculations, it was assumed that 270 patients were afflicted with

CKD and 230 were not. Consequently, the anticipated prevalence

proportion was computed as p = 0.54, q = 0.46, z = 1.96

(95% confidence interval), and m = 0.05. Notably, for expected

prevalence proportions falling between 10 and 90%, a 5% precision

is recommended (Pourhoseingholi et al., 2013). Plugging in the

values of p, z, and m into Equation 1 yielded an approximate

sample size of n = 382, which was subsequently employed for

analysis within this study. Figure 1 illustrates the concept of

complete correlation through a heatmap, providing insights into

the interrelationships among various categorical attributes within

the context of kidney chronic disease analysis. The heatmap

showcases a range of nominal variables associated with the disease,

highlighting the extent to which these variables exhibit shared

patterns or behaviors. Brighter color tones in the heatmap signify

stronger correlations between pairs of attributes, shedding light on

factors that tend to change in tandem. Conversely, darker color

tones indicate weaker or negative correlations, indicating attributes

that may vary independently.

This visualization is invaluable for discerning patterns and

clusters of attributes that might have a collective impact on

chronic kidney disease. By understanding these associations,

medical professionals, researchers, and policymakers gain a deeper

understanding of how different categorical factors interact within

the complex landscape of the disease. Such insights inform targeted

interventions, personalized treatment approaches, and strategies

for managing chronic kidney disease effectively. Overall, Figure 2

serves as a visual representation that aids in comprehending the

intricate relationships that contribute to the disease’s characteristics

and progression.

2.2 Machine learning model specifications

In this section, we delve into the specific machine learning

predictive models harnessed for this study. The chosen models

encompass various algorithms, each designed to offer unique

strengths in capturing patterns, making predictions, and classifying

data. To facilitate data analysis and model implementation, the

statistical software Anaconda was employed on various variables

shown in Table 1. Anaconda provides a comprehensive suite of

tools and libraries for data manipulation, analysis, and machine

learning, offering a cohesive environment for researchers to

conduct their experiments effectively and efficiently. In the

subsequent sections, we delve into the specifics of the model

training, validation, and evaluation processes, shedding light

on the strategies adopted to fine-tune parameters and achieve
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TABLE 1 Variable report.

Variable Scale
of variables

Notation
(counts)

Label

Age Numerical Years (12–99) -

Ph specific

gravity

Numerical Mean (5.565)

Sd (0.561)

-

Gender Nominal Mean (1.016)

Sd (0.0052)

-

Urine color Nominal Yellow (243)

Pale yellow

(137)

1

Albumin Nominal Trace (227)

Nil (153)

1

Glucose Nominal Trace (27)

Nil (353)

1

Sugar Nominal Positive (63)

Nil (317)

1

Ketone bodies Nominal Trace (64)

Not trace (316)

1

Bile pigment Nominal Present (64)

Absent (316)

1

Urobilinogen Nominal Abnormal (38)

Normal (342)

1

Blood Nominal Positive (62)

Negative (318)

1

Mucus thread Nominal Present (181)

None (199)

1

Calcium

oxalate

Nominal Positive (112)

Nil (268)

1

Granular cast Nominal Seen (94)

Nil (286)

1

Bacteria Nominal Seen (123)

Not seen (257)

1

Calcium

carbonate

Nominal Found (335)

Not found (45)

1

Red cells/RBCs Nominal Normal (217)

Abnormal

(163)

0

Epithelial cells Nominal Nil (153)

Positive (227)

0

Pus

cells/WBCs

Nominal Normal (166)

Abnormal

(214)

0

Disease status Nominal CKD (240)

Not CKD

(142)

1

Variable Scale of variables Notation

(Counts)

Label

WBC, White Blood Cells; RBC, Red Blood Cells; Pale yellow.

optimal model performance. The following models were utilized in

the analysis.

2.2.1 Logistic regression (LR)
LR is a dominant and well-established supervised classification

technique (Naing et al., 2006). It extends the regression family and

is used to model binary variables indicating the presence or absence

of an event. It can also be generalized to a multiple variable model

known as multiple logistic regression (MLR). The mathematical

representation of MLR is as follows:

Pr(Z) =
exp (a0 + a1z1 + a2z2+...+akzk)

1+ exp (a0 + a1z1 + a2z2+...+akzk)
(2)

Here, Z = (z1,z2, . . . zk) comprises k predictors, where k

= 21 in our case, as elaborated in the previous section. The

unknown parameters are estimated using theMaximum Likelihood

Estimation (MLE) method.

LR is a fundamental and widely employed method within

supervised machine learning, primarily applied for binary

classification tasks. Unlike its name suggests, Logistic Regression

is used for classification, not regression. This algorithm is

characterized by its ability to model the probability of an instance

belonging to a particular class. It is particularly suitable when the

dependent variable is categorical, and the goal is to predict the

likelihood of an event occurrence. Logistic regression employs the

logistic function, also known as the sigmoid function, to transform

linear combinations of input features into values between 0 and

1. These transformed values represent the probability that a given

instance belongs to the positive class. The model’s coefficients,

derived through iterative optimization techniques like gradient

descent, determine the impact of each feature on the predicted

probability. A threshold value is chosen to make predictions;

instances with predicted probabilities above the threshold are

classified into the positive class, while those below the threshold are

classified into the negative class. Logistic regression’s adaptability

to complex relationships in the data makes it versatile, and it can be

extended to multi-class classification through techniques like One-

vs-Rest. Despite its simplicity and interpretability, the algorithm

has limitations, including sensitivity to irrelevant features, a linear

decision boundary, and potential overfitting when dealing with

high-dimensional data. In essence, while Logistic Regression serves

as an essential tool for binary classification tasks, researchers must

be cognizant of its assumptions, strengths, and limitations when

applying it to diverse datasets and scenarios.

2.2.2 K-nearest neighbor (KNN)
The KNN algorithm stands as one of the foundational

techniques in supervised machine learning, anchored firmly on

the principle of proximity-based decision-making. Unlike many

algorithms that rely on explicit model generation, KNN predicates

its predictions on the similarity between data points in the feature

space. Precisely, a new data point’s classification is ascertained

by inspecting its closeness to “K” data points from the training

dataset (Sinha and Sinha, 2015). The choice of “K” holds paramount

importance; larger values tend to produce smoother decision

boundaries, reducing the risk of overfitting, while smaller values

make the model more receptive to local nuances in the data. To

determine the “nearness” of data points, a standard distance metric,

typically the Euclidean distance, is employed. In classification,

the algorithm conducts a majority vote among the k-nearest

neighbors. At the same time, for regression tasks, it predicts the

outcome based on the average or potentially the weighted average

of the k-nearest data points’ target values. One of KNN’s distinct

advantages is its ability to adapt decision boundaries according to
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FIGURE 2

Visual representation to the disease’s characteristics and progression.

the local data density, enabling it to handle both linear and non-

linear distributions adeptly. Nonetheless, while the adaptability and

simplicity of KNN render it appealing, researchers must exercise

caution: the algorithm’s performance can be sensitive to data

density and, when exposed to large datasets or high-dimensional

spaces, can succumb to computational inefficiencies and the so-

called “curse of dimensionality.” In conclusion, while KNN offers

a robust mechanism to leverage data proximity for predictions,

careful parameter optimization and consideration of the dataset’s

characteristics are crucial for its successful application.

2.2.3 Support vector machine (SVM)
SVM models are versatile tools for classifying linear and

non-linear data. The process involves mapping each data point

into a variable space with k dimensions. A hyperplane is

then used to segregate data items into two distinct classes

while maximizing the margin between classes and minimizing

classification errors (Joachims, 1998). The margin for a class refers

to the distance between the nearest instance and the decision

hyperplane associated with that class. SVM models incorporate

various kernel functions to transform input data into the required

format. Notably, four kernel types—linear, Laplacian, Bessel, and

radial—are adopted as foundational elements.

Linear Kernel: The linear kernel function calculates the inner

product between two points within a suitable feature space:

K(zm, zn) = (zm.zn + 1) (3)

Laplacian Kernel: The Laplacian kernel function is akin to

the exponential kernel, with reduced sensitivity to changes in the

sigma parameter:

K(zm, zn) = e
−| |zm.zn| |

a
(4)

Bessel Kernel: The Bessel kernel, prevalent in the theory of

fractional smoothness kernel function spaces, is represented as:

K(zm, zn) =
Bv+ 1 | |zm.zn| |

| |zm.zn| |
n(v+1)

(5)

Radial Basis Kernel: The radial basis kernel, or RBF,

is commonly used in SVM models for various kernelized

learning applications:

K(zm, zn) = e(−a||zm .zn||
2) (6)
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2.2.4 Decision tree (DT)
DT embodies a tree-like structure where nodes correspond

to features, branches signify decision rules, and leaves indicate

categorical or continuous outcomes. The central concept behind

DT involves creating a tree-like pattern for the entire dataset. Each

leaf processes a single outcome to minimize errors. DT divides

observations into branches to enhance prediction accuracy. The

algorithm identifies variables and their cutoff points, segmenting

input observations into subsets using techniques like information

gain, Gini index, chi-squared test, etc. The splitting process

recurs until the complete tree is constructed. The goal of

splitting algorithms is to identify variable thresholds that enhance

homogeneity in sample outputs. Decision trees are non-parametric

and partition data using mechanisms to uncover potential feature

values (Criminisi et al., 2012). Overfitting concerns are addressed

by adjusting hyperparameters like maximum depth and maximum

leaf nodes. In this study, hyperparameters are tuned iteratively with

maximum depths of 5, 10, 15, 20, 25, and 30.

2.2.5 Random forest (RF)
RF is a supervised machine learning algorithm that assembles a

“forest” of decision trees, introducing an element of randomness.

Deep decision trees often lead to overfitting due to excessive

specialization, causing significant classification outcome deviations

for minor input variations. RF combats this by training different

decision trees using distinct training datasets. For classifying a new

sample, the input vector is processed through each decision tree.

Subsequently, each decision tree evaluates a different part of the

input vector, yielding a classified outcome. The final classification is

determined based on the majority “votes” in discrete classification

cases or the average of all trees in numeric classification cases. By

considering multiple decision trees, the random forest algorithm

mitigates variations stemming from relying on a single tree for the

dataset (Tripepi et al., 2008; Tyralis et al., 2019).

2.2.6 Neural networks (NN)
NN stand as a cornerstone in intense learning stages due

to their remarkable ability to capture complex patterns and

representations in data. Modeled after the human brain’s structure,

a neural network comprises layers of interconnected nodes,

or neurons, each processing and transforming input data. The

input layer receives raw data, traversing through one or more

hidden layers, with each layer applying weighted transformations

through activation functions. These transformations progressively

extract and combine features from the input. The final output

layer produces predictions or classifications. The network’s

architecture, including the number of hidden layers, neurons

per layer, and connectivity patterns, determines its capacity to

capture intricate relationships within the data. Neural networks

excel in tasks such as image and speech recognition, language

processing, and complex data analysis. Learning within a neural

network occurs through backpropagation, where prediction errors

are iteratively fed back to adjust the weights of connections,

optimizing the model’s performance. However, the successful

application of neural networks demands careful parameter tuning,

substantial computational resources, and sufficient labeled data

for training. Their complexity can lead to overfitting if not

appropriately managed, necessitating techniques like regularization

and dropout. In summary, neural networks offer a powerful tool

for tackling intricate data challenges, yet their potential comes with

considerations that researchers must navigate for optimal results

(Almansour et al., 2019).

2.2.7 XGBoost classifier (XGC)
The XGC is an indispensable instrument in the machine

learning toolkit, primarily due to its efficacy in structured or

tabular data classification challenges. An acronym for Extreme

Gradient Boosting, XGC (Ogunleye and Wang, 2019) operates

on the foundation of the gradient boosting framework. It builds

an ensemble of decision trees sequentially, with each tree trying

to correct the errors of its predecessor. What sets XGC apart is

its ability to optimize both the tree structure and leaf weights

using advanced regularization techniques. The model leverages

the gradient information of the loss function, making it adaptable

to differentiable loss functions, thereby supporting regression,

classification, and ranking tasks. One of its notable strengths is

its efficient handling of missing data and built-in capability for

feature selection. In the realm of computational efficiency, XGC

shines by utilizing parallel processing for tree construction and by

its capability to cross-validate at each iteration, selecting the best

tree structure. Furthermore, it offers regularization parameters to

prevent overfitting, which, combined with its scalability, renders

it a popular choice in various machine-learning competitions,

including Kaggle. However, while XGC boasts versatility and

power, understanding its hyperparameters is essential for optimal

results. A well-tuned XGC boost model can outperform other

algorithms, but care must be taken to ensure its complexity

does not overshadow interpretability. In essence, XGC provides a

harmonious blend of computational performance and predictive

prowess, establishing it as a formidable player in ensemble

machine-learning methodologies.

2.2.8 Gaussian Naive Bayes (GNB)
The GNB classifier emerges as a foundational pillar in machine

learning and is incredibly esteemed for its simplicity, speed,

and suitability for high-dimensional datasets. Rooted in Bayes’

theorem, GNB is a probabilistic classifier that presumes each

feature is typically distributed and makes a “naive” assumption

of independence among features. This means it assumes that

the presence of a particular feature in a class is unrelated to

the presence of any other feature. Despite its simplicity, GNB

operates by calculating the probability of a particular event

based on prior knowledge of conditions related to that event. In

practice, for each class, it computes the mean and variance of

the features in the training data. When making predictions, it

uses these statistics to determine the likelihood of a particular

data point belonging to each class. Because of its probabilistic

nature, GNB (Rabby et al., 2019) has the advantage of naturally

handling missing values and providing calibrated probabilities for

predictions. While the naive feature independence assumption

might seem overly simplistic for complex real-world applications,

the classifier often performs surprisingly well, particularly for
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text classification tasks like spam detection or sentiment analysis.

However, it is essential to understand its limitations. GNB can be

sensitive to irrelevant features, and its performance might falter

when feature independence is significantly violated. Nonetheless,

its efficiency, paired with its ease of implementation, cements

GNB as a robust starting point or baseline in numerous machine

learning workflows.

2.3 Performance metrics

Within this study, diverse performancemetrics are employed to

compare models. These metrics encompass accuracy, recall, error

rate, Youden’s index, specificity, and F1 score.

2.3.1 Accuracy
Accuracy pertains to the capacity of correctly classified data

items, signifying the proximity of predictions to actual values.

Mathematically, this can be articulated as:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(7)

2.3.2 Recall
Recall, often called the True Positive Rate or Sensitivity, is a

vital evaluation metric in classification tasks. It gauges the model’s

capability to correctly identify positive instances out of all actual

positive instances in the dataset. In essence, recall emphasizes the

model’s sensitivity to detecting instances of a specific class, which

proves crucial in scenarios where missing even a single positive

instance can have significant consequences. Mathematically, recall

is calculated as the ratio of true positives (correctly predicted

positive instances) to the sum of true positives and false negatives

(positive instances wrongly classified as negatives). A high recall

value indicates that the model is proficient in minimizing false

negatives, thereby ensuring a higher level of coverage for the

positive class. Recall assumes special importance when the cost

of false negatives is considerably high. For instance, in medical

diagnostics, failing to detect a serious condition can have severe

repercussions. Thus, models that exhibit high recall can be

paramount in such domains, even if they lead to a slightly higher

number of false positives. Recall offers insights into a model’s

effectiveness in detecting positive instances, making it a crucial

performance measure in applications where missing positive cases

is undesirable. Balancing recall with other metrics like precision or

F1-score helps create a comprehensive assessment of a classification

model’s capabilities and limitations.

2.3.3 Youden’s index
Youden’s Index (Youdent) is generally formulated as:

Youdent = max{Sensitivity(a) + Specificity(a) − 1} (8)

The threshold that maximizes this index (a∗) signifies the

optimal threshold, as it balances the enhancement of biomarker

discrimination by equally weighing specificity and sensitivity.

2.3.4 Specificity
Specificity corresponds to the number of true negative values

correctly recognized as negative. It is mathematically expressed as:

Specificity =
TN

TN+ FP
(9)

2.3.5 F1 score
The F1 score blends precision and recall, striking a balance

between them. The formula for calculating the F1 score is:

F1 score =
2 ∗ Precision ∗ Recall

(Precision + Recall)
(10)

The F1 score validates classifier efficacy by considering both

precision and recall factors.

3 Results and discussion on model
performance

In this section, we present the outcomes from various

perspectives. We examine the performance of diverse machine

learning techniques on the CKD dataset including XGC, NN, GNB,

LR, RF, DT, KNN, and SVM. Our assessment covers three distinct

scenarios: training and testing predictions set at 50, 75, and 90%.

We evaluate predictive proficiency using six performance metrics:

accuracy, error rate, recall, Youden’s index, specificity, and F1 score.

These metrics were evaluated across a total of one thousand runs.

In the initial scenario, the training dataset constitutes 90%,

while the remaining 10% is the testing dataset. The outcomes are

presented in Figure 3. From the figure, it becomes evident that

SVM and RF exhibit superior predictive abilities compared to the

other models. The optimal predictive model achieved scores of

0.9171, 0.8671, 0.9484, 0.8155, 0.0643, 0.0829, and 0.9319 for mean

accuracy, recall, sensitivity, Youden’s index, error rate, and F1 score.

RF ranks second among the models in terms of performance, while

logistic regression display more robust performance compared

to the remaining two models. To further substantiate the model

superiority, we employed visualization tools.

In this evaluation, the machine learning techniques were

rigorously tested using a 10% testing and 90% training data split.

This approach aimed to provide a deeper understanding of their

performance in situations with limited testing data, mirroring real-

world scenarios with relatively more minor test sets. The results,

as summarized in the provided table, underscore the capabilities

of each technique under these circumstances. KNN exhibited an

accuracy of 0.8289, suggesting its ability to classify instances with

a considerable level of precision. Logistic regression and decision

tree techniques maintained consistent performance, emphasizing

their reliability across various scenarios. The SVM demonstrated
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FIGURE 3

Performance plotting of techniques at 90% training and 10% testing ratio.

strong recall and F1 score values, indicating its potential to

identify positive instances even with a relatively constrained testing

set. Notably, the random forest technique showcased remarkable

performance, achieving an accuracy of 0.8947 and a high recall

and F1 score, underscoring its robustness in handling complex

classification tasks.

Furthermore, the neural network showcased its adaptability

in this scenario, achieving competitive performance metrics. The

XGC maintained its efficiency, with accuracy, recall, and F1 score

values within the expected range. Lastly, the GNB technique

displayed consistent accuracy, even with a smaller testing set. These

outcomes reinforce the notion that machine learning techniques,

when strategically employed and understood, can offer valuable

insights even in scenarios with limited testing data. This evaluation

using a 10% testing and 90% training split highlights the suitability

of these techniques for various practical situations, providing

stakeholders with insights to make informed decisions based

on their specific requirements. For instance, Figure 4 graphically

represents the mean accuracy, Brier score, sensitivity, Youden’s

index, specificity, and F1 score for all models.

In this analysis, a set of machine learning techniques was

employed with a division of 25% of the data for testing and

75% for training. The objective was to evaluate the performance

of each technique under these conditions and gain insights into

their classification capabilities. The outcomes of these techniques

are outlined in the provided. Notably, each technique was

assessed based on performance metrics encompassing accuracy,

recall, F1 score, specificity, Youden’s Index, and error rate.

These metrics collectively provide a comprehensive perspective

on the effectiveness of each technique in both identifying positive

instances and achieving overall classification accuracy. Among the

techniques, KNN exhibited an accuracy of 0.8289, indicating its

proficiency in correctly classifying instances in the given dataset. LR

and DT techniques demonstrated comparable accuracy and recall

values, emphasizing their suitability for this classification task.

Additionally, the SVM technique showcased strong

performance in recall and F1 score metrics, albeit with a

trade-off in specificity. Furthermore, the analysis highlighted the

Neural Network’s impressive performance, achieving an accuracy

of 0.9079, along with competitive recall and F1 score values. The

XGC also displayed robust performance across several metrics,

demonstrating its efficacy in classification tasks. This evaluation

using a 25% testing and 75% training split sheds light on the

relative strengths and limitations of each technique illustrated in

Figure 5. Such insights provide valuable guidance for selecting

an appropriate technique based on the specific requirements of

similar classification scenarios.

The study employed a diverse range of machine learning

predictive models, focusing on achieving accurate classification

results for the dataset. The techniques utilized encompassed KNN,

LR, DT, SVM with different kernel functions (linear, Laplacian,

Bessel, and radial basis kernels), RF, NN, XGC, and GNB. The

dataset was divided into a 50% training set and a 50% testing set to

evaluate the performance of each technique. The obtained results

are summarized in Figure 5. Notably, each technique was assessed

based on multiple performance metrics, including accuracy, recall,

F1 score, specificity, Youden’s Index, and error rate. These metrics

collectively offered a comprehensive view of each technique’s

effectiveness in positive instance identification and overall

classification accuracy. For instance, KNN exhibited a strong

recall rate of 0.9130, indicating its proficiency in identifying true

positive instances. At the same time, logistic regression, decision

tree, random forest, neural network, and XGC demonstrated

competitive accuracy and recall values. It is noteworthy that

SVM with various kernel functions exhibited distinct behavior

regarding specificity and Youden’s Index. This comparative analysis

of different machine learning techniques contributes to a deeper

understanding of their strengths and weaknesses in tackling

the classification problem. Such insights are crucial for making

informed decisions about the choice of technique when applying

machine learning to similar classification tasks.

Figure 6 further enriches the analysis by incorporating

confusion matrices. These matrices provide a comprehensive

view of the classification performance of predictive models
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FIGURE 4

Performance plotting of techniques at 75% training and 25% testing ratio.

FIGURE 5

Performance plotting of techniques at 50% training and 50% testing ratio.

in the context of chronic kidney disease. By illustrating true

positives, true negatives, false positives, and false negatives, the

confusion matrices offer a tangible measure of model accuracy and

effectiveness. This integrated approach combines the visualization

of complete correlation with the quantification of classification

outcomes, enabling a more holistic understanding of the intricate

relationships between categorical attributes and their implications

for disease classification and prediction. Figure 7 empowers

stakeholders to make informed decisions by considering the

underlying performance metrics of the predictive models.

In Figure 7, the integration of Receiver Operating

Characteristic (ROC) curves enhances the analysis by presenting

the performance of multiple classification techniques in the context

of kidney chronic disease prediction. Each ROC curve corresponds

to a specific classification technique: KNN, LR, DT, SVM, GNB, and

MLP. The associated Area Under the Curve (AUC) values provide

a quantifiable measure of each technique’s ability to discriminate

between positive and negative instances. The ROC AUC scores

of the respective techniques showcase the diverse spectrum of

their predictive capabilities. Notably, LR and MLP demonstrate

remarkably high ROC AUC values of 0.96, indicating robust

discriminatory power. DT follows suit with an AUC of 0.78, while

GNB showcases competitive performance with an AUC of 0.92.

KNN achieves an AUC of 0.63, positioning itself with moderate

predictive strength. On the other hand, SVM exhibits a lower

ROC AUC of 0.39, suggesting the need for further refinement. By

presenting the ROC curves and their corresponding AUC values,

Figure 6 offers an insightful comparison of each technique’s ability

to distinguish between positive and negative instances of chronic

kidney disease. This visual and quantitative representation enables
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FIGURE 6

Confusion metrics of performance parameters.

FIGURE 7

Receiver operating characteristic of performance parameters.
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TABLE 2 Results comparison with other studies.

References Method Result Drawback

Zou and Liu (2021) NN, RF, and KNN Detection RF with 99.8% and F1 score Small size of dataset

Nikhila (2021) LR, SVM, ANN, and KNN LR, SVM, ANN, and KNN with accuracy 97.5,

97.5, 65, and 66%

Small size of dataset

Poonia et al. (2022) SVM and DT SVM and DT with accuracy 96.75 and 91.75% Small size of dataset

Salekin and Stankovic (2016) ANN and RF ANN and RF with accuracy 94.5 and 97.12% Small size of dataset

This proposed study XGC, NN, GNB, LR, RF, DT, KNN, and SVM

along with predictive proficiency using six

performance metrics

Greater accuracy with detection of error rate,

recall, Youden’s index, specificity and F1 score

Large size of dataset

FIGURE 8

Applications of machine learning in healthcare sector.

stakeholders to identify the most suitable technique for disease

prediction, thereby aiding in clinical decision-making and shaping

future research directions.

The comparative analysis of this study with recently published

is shown in Table 2. All the previous studies used small dataset size

with some models but this study emphasis on the large dataset size

with most models.

4 Applications of ML and DL in
medical field

ML and DL algorithms can be trained to analyze patient data,

including lab results, medical history and imaging, to identify

early signs of kidney disease. This enables timely diagnoses and

personalized treatment plans, leading to better patient outcomes.

ML and DL methods also predict the waste products such as

creatinine and urea, as well as free water from the blood when the

kidneys are in kidney failure. The detailed applications of ML in

healthcare are presented in Figure 8.

5 Conclusions and future prospects

5.1 Comparative analysis of machine
learning methods

This study presents a novel and comprehensive investigation

into various machine learning techniques applied to a critical

healthcare challenge. The study focuses on chronic kidney disease

(CKD) and utilizes a dataset collected from district Buner in

Khyber Pakhtunkhwa, Pakistan. What sets this research apart is

its unique sourcing from an extensive case-control study involving

CKD patients across the entire Buner district. This novel dataset

provides a nuanced perspective on the disease’s prevalence and

characteristics within a specific geographic region. To address

the complexity of CKD prediction, our research introduces an

innovative approach by evaluating model performances across
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three distinct training and testing prediction scenarios: 50, 75,

and 90%. This multi-scenario evaluation enhances the robustness

of our findings, ensuring that the machine learning techniques’

efficacy is thoroughly explored under varying data conditions. In

the realm of classification analysis, we adopt a comprehensive set

of performance metrics to assess model effectiveness holistically.

These metrics include accuracy, error rate, recall, Youden’s index,

specificity, and F1 score. This thorough analysis goes beyond a

simple comparison of accuracy and delves into nuanced aspects

of model behavior, offering a comprehensive understanding of

their strengths and weaknesses. The novelty of our research lies in

its holistic approach, combining a unique dataset, multi-scenario

evaluation, and a diverse set of performance metrics. By examining

CKD prediction within a specific geographic context, our study

contributes valuable insights to the field of healthcare machine

learning. These insights are not only relevant to the Buner district

but also hold the potential to inform healthcare strategies in other

regions facing similar challenges.

5.2 Dominant model identification

Our findings unequivocally highlight the superiority of

the SVM model across all three scenarios, underscoring

its remarkable predictive prowess. Additionally, the RF

model emerges as a strong contender regarding predictive

capability. Furthermore, the DT test was employed to

validate the dominance of predictive model accuracy

measures, signifying the potential robustness of the

identified models.

5.3 Future avenues and implications

This study lays a robust foundation for forthcoming

medical research endeavors by extending its scope to predict

the effectiveness of specific medications for various ailments.

Moreover, the prominent machine learning models identified

in this study hold the potential for predicting other medical

conditions, such as heart disease, cancer, and tuberculosis.

Furthermore, an opportunity exists to introduce a novel hybrid

framework tailored to the same dataset, potentially yielding

even more precise and efficient prediction outcomes. The

implications of this research extend beyond the realm of chronic

kidney disease prediction and offer promising avenues for

advancements in medical prediction models and personalized

treatment strategies.
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