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Examining the impact of green
technological specialization and
the integration of AI technologies
on green innovation
performance: evidence from
China

Sirinant Khunakornbodintr*

Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China

China’s commitment to achieving carbon neutrality by 2060 has sparked scholars’

interest in examining the environmental ramifications of green technologies

in the digital era. While plenty of them provide eco-e�ciency policy such as

increasing R&D investment or stimulating green exports, little attention has been

paid to the firm-level technological management and recombination strategies

such as di�erentiation/specialization of green portfolios along with AI integration,

which can significantly impact the pace of net-zero transitions. To address these

gaps, this study investigates the moderating e�ect of technological specialization

on levels of AI integration into green technologies estimated by green-AI

technological distance and enterprises’ innovation performance in Chinese

contemporary contexts. Regression results of fixed-e�ectmodel in Chinese patent

data (2011–2020) indicate that enterprises’ green innovation performance is

significantly improved as AI integrates more into the green technologies due to

the legitimacy and the inability to appropriate more green values. Interestingly,

specialized green-technological enterprises demonstrate superior performance

in integrating distant AI technologies. This occurrence could potentially be driven

by the governments’ incentives and the organization’s risk attitudes, shaping

green innovation outcomes. Hence, the study underscores the importance of

considering both the AI integration and green specialization in shaping innovation

outcomes amidst green transitions.

KEYWORDS

green technologies, artificial intelligence, technological specialization, innovation

performance, technological distance, relatedness, AI integration

1 Introduction

Green initiatives have prompted the development of technologies leveraging

digitalization to promote environmental sustainability by departing the innovation from

existing technological portfolios (Montresor and Quatraro, 2020; Ahmad et al., 2021; Chen

et al., 2022). However, the extent to which each green sector has been integrated with

artificial intelligence (AI) technologies and their impacts on firm innovation performance

is unknown. Firms are heterogeneous in their innovative capacity and resources, which
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lead to different strengths in integrating simple and complex

AI technologies, respectively (Caviggioli et al., 2023; Li et al.,

2023). The current literature lacks appropriate innovation

strategies for heterogeneous firms to manage complex

technological integration.

AI technologies can process big data and predict future

scenarios based on existing information. It has the potential to solve

climate problems and create paths toward sustainable development

goals, enabling organizations to explore more distant, unrelated

technologies (Montresor and Quatraro, 2020). While AI offers

numerous benefits, its flexible boundaries result in heterogeneous

outcomes across regions, technologies, and industries (Kopka and

Grashof, 2022). As AI’s features continue to evolve, they reshape

market dynamics and increase in complexity (Nambisan, 2017; Dou

and Gao, 2022). Some enterprises may struggle to adapt, assimilate,

and integrate complex AI technologies. Given the recent techno-

economic paradigm shift driven by climate change (Santoalha et al.,

2021), the strategic hybridization of green and AI technologies in

specialized green-technological enterprises (SGTEs) for innovative

impact requires further exploration. In light of these research

gaps, an important question is raised: Do SGTEs integrate related

(proximate) AI technologies, and why?

In this study’s context, organization capabilities are proxied

by their technological specialization, which refers to the build-

up of an organization’s competitive advantage in specific research

domains or sectors (Balland et al., 2019). By calculating the

proportion of the share of a given industry in a given enterprise

over the share of this industry in all enterprises in China, the index

provides information about the degree to which the enterprise

is devoted to a specific industry not presented in any other

enterprises. Meanwhile, the integration of AI could be measured

using technological distance which determines the commonalities

in green and AI technologies, signifying the cross-section of

technological knowledge of the inventors.

The relatedness theory suggests that firms integrating new

AI technologies related to existing green knowledge are more

likely to exhibit greater green innovation performance than those

integrating AI technologies less related to existing green knowledge,

due to the inherent risks and difficulties involved (Neffke et al.,

2011; He et al., 2018; Balland et al., 2019). However, with

active policy support and the involvement of a multitude of

agents, green entrepreneurs may take risks in integrating unrelated

technologies by leveraging special resources and capabilities to

pursue disruptive innovations (Ning and Guo, 2022). Related

activities have cultivated regional specializations, attracting highly

capable firms to invest in the areas but technologically specialized

enterprises may have varying approaches to integrating AI

technologies in the green industry.

This research emphasizes the importance of conducting

relevant studies within the context of Chinese enterprise for

two primary reasons. Firstly, China’s institutional environment

is unique and has achieved notable success in implementing

various green sectors, such as hydropower, biomass, and solar PV

(Lema et al., 2020). However, the intricate relationship between AI

development and green technologies presents a critical challenge

in China, impacting its structural transition and innovation (Yin

et al., 2023). Furthermore, the outcomes of ecological footprints

caused by a variety of country-level factors vary across different

levels of institutional quality (Rafei et al., 2022). Secondly,

China seems to overcome the ‘environmental resource curse’

where countries experience high carbon dioxide emissions and

natural resource consumption at the early stage of economic

development, the time when firms struggle to find a balance

between financial pursuits and environmental legitimacy (Wang

et al., 2015; Chen et al., 2022; Jahanger et al., 2022). Recently, many

Chinese enterprises increasingly adopt environmental labeling

certification which leads to higher corporate environmental

innovation (Ren et al., 2022).

Running fixed-effects regression models based on green and

AI patent data obtained from the Bureau van Dijk (BvD) Orbis

Intellectual Property (IP) database spanning from 2011 to 2020,

this study aligns with the prevailing relatedness theory that

the integration of proximate AI technologies enhances green

innovation performance measured by the number of green

patents. Contrary to hypothetical arguments though, SGTEs exhibit

superior performance when AI technologies are distant from green

technologies. This finding challenges the assumption that SGTEs

would perform better when AI technologies are closely related

to green technologies, considering the inter-dependencies among

similar agents and high-risk perception. Instead, SGTEs excel

when AI technologies are more detached from green technologies.

Two theoretical explanations are provided for this phenomenon.

From a competition-based view, enterprises attempt to influence

the resolution of uncertainty in their favor over the competitors

by increasing their specialization (Toh and Kim, 2013). This

is connected to the attribute of SGTE managers whose risk-

averse attitude increases their awareness of integrating distant

and complex AI technologies, thereby achieving higher innovation

performance. The government’s favor for SGTEs also provides

them an advantage to take more risks (Zhang and Zhang, 2023).

Lastly, the research reveals that Chinese enterprises tend to

generate more AI technologies alongside the development of

green technologies when these technologies are closely related.

Consequently, this study sheds light on the competitive advantages

and limitations of SGTEs when engaging with AI technologies.

This study makes three key contributions to existing literature.

Firstly, it provides empirical evidence that aligns with the

relatedness theory, confirming that enterprises achieve high

innovation performance in green innovation when AI technologies

are closely related to green technologies. Secondly, it contributes

to the specialization theory by highlighting the significance

of SGTEs in future development. These enterprises possess

the ability to recognize the advantages offered by distant AI

technologies. Lastly, this research offers policy and management

recommendations for the evaluation of green technologies

with substantial potential for AI integration, aligning with

the Sustainable Development Goal (SDG) initiatives in the

digital era.

The remainder of this study is organized as follows: Section

2 presents the theoretical background and hypotheses. Section 3

elaborates on the methodology, whereas the results are presented

in Section 4. Section 5 discusses the implications, limitations,

and future research prospects. Finally, Section 6 summarizes the

discussions into conclusions.
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2 Literature review and research
hypotheses

2.1 The role of AI in China’s
green industries

In 2017, China unveiled its “Next Generation Artificial

Intelligence Development Plan” aiming to position itself as a global

AI innovation center by 2030 (CAST, 2017).With renewable energy

production targets set in the 11th Five-Year Plan (FYP, 2006–2010)

and specific provisions for green investments in the 12th Five-

Year Plan (FYP, 2010–2015), AI has become increasingly crucial to

drive green innovation in China. As the government continues to

support AI and green technological development, sustainability has

garnered attention from business managers across various sectors,

including energy and ICT.

So far, AI is recognized for its general-purpose properties

that facilitate the recombination of knowledge, enabling firms

to bridge sectoral technological gaps (Qiu and Cantwell, 2018).

General Purpose Technologies (GPTs) such as AI exhibit

horizontal applications, transformative potential, pervasiveness,

and complementarities that contribute to innovation (Bresnahan,

2010). GPTs widen the sets of knowledge items and enable

individuals to master more complex technologies while vertically

extending knowledge items through the co-occurrence of specific

applications (Cicerone et al., 2023).

Despite the government’s incentives and the appreciation of

GPT advantages, businesses engaged in green innovation face

the dilemma of whether to adopt AI technologies. There are

risks and concerns regarding organizational secrets exposure,

poor management, and excessive digital infrastructure (Dou and

Gao, 2022). Additionally, Chinese AI scientists are specialized in

segregated areas, resulting in technological gaps in less popular

technologies (Barton et al., 2017). While some studies have

examined the integration of AI technologies into green innovation

in the form of 5G and the Internet of Things (Yin and Yu, 2022),

the technological distance represented by organizations’ ability to

transfer AI knowledge to green technologies through inventions

also plays a crucial role in green innovation.

Current research trends primarily focus on manufacturing

firms’ environmental responsibility and external factors,

contributing to national dual-carbon policies but overlooking

firms’ future innovation plans. Although studies indirectly suggest

that firms can gain green legitimacy through increased adoption

of robotics and AI-related academic publications (Wang et al.,

2015; Zhang and Wu, 2021; Liu et al., 2022a,b), the extent

of AI applications in the green industry varies across sectors,

developmental stages, and firms’ capabilities (Kang and He, 2018).

Research on internal factors and their impact on green-digital

integration is limited, mainly within the manufacturing industry.

Digital and green technologies are interconnected through

digital literacy, which refers to the workforce’s competencies

in researching, communicating, planning, and organizing AI

technologies, including ICT infrastructure (Santoalha et al., 2021).

The lack of such skills, resistance from staff, long implementation

time, and technical complexity are barriers to reaching efficient

operations (Ahmad et al., 2021). Consequently, firms’ innovation

capabilities in the green industry rely on their workforce’s ability to

recognize and develop AI applications within green technologies.

Overall, despite the significant support provided by the

Chinese government to address pollution through emerging

green technologies, the role of AI in the green industry

remains relatively unexplored. There is a scarcity of research

investigating the technological distance between two separate

technological domains. Existing studies primarily examine

the influence of exogenous factors on firms’ environmental

performance, overlooking endogenous factors and their impact on

innovation performance.

2.2 The main e�ect of green AI
technological distance on innovation
performance

Technological distance, an antonym of technological

relatedness, refers to two technologies sharing a high degree

of commonality in knowledge bases that derive from mutual

scientific principles or cognitively similar industries (Hidalgo

et al., 2007). The stylized fact of technological distance in the

relatedness theory is that innovating new products based on what’s

available in the basket (portfolio) would yield optimal advantages

(Balland et al., 2019). Short technological distance facilitates

knowledge spillovers, absorptive capacity, organizational learning,

and resource complementarity leading to faster innovation and

exploration successes (Cantner and Meder, 2007; Boschma, 2017).

Absorptive capacity is spawned during the learning process

in R&D activities (Cohen and Levinthal, 1990) through which

firms can recognize new knowledge, assimilate it, and apply it

to commercial ends (Gilsing et al., 2008). Existing evidence has

shown that the process of knowledge transmission is easier and

favorable to industrial developments and regional specialization

when technologies are similar (Caviggioli et al., 2023). In contrast,

unrelated technologies consist of combinations of unfamiliar

knowledge fields making its diversification strategy riskier and

more costly. Hence, some scholars even seek answers regarding

how unrelated variety increases the occurrence of technological

breakthroughs (Saviotti and Frenken, 2008; Castaldi et al., 2015).

Nonetheless, most breakthrough patents are not purely unrelated

technologies but mixed with the related (existing) ones (Boschma

et al., 2023).

Therefore, the degree of technological distance depends on

the weighted combination of related and unrelated technologies.

Arguably, short technological distance may increase knowledge

homogeneity and reduce the value of innovation (Guan and

Yan, 2016). However, in the context of green innovation and

AI technologies, enterprises bear higher market failure risks,

R&D and opportunity costs, and slower returns when integrating

complex AI technologies (Ning and Guo, 2022) due to stringent

regulatory requirements, stakeholder expectations, and customer

demands. Therefore, many enterprises may only attempt to reach

the bare minimum (legitimacy) requirement by pursuing easier

approaches, i.e., integrating most-related AI technologies, to boost

green innovation performance and green reputations.
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Hypothesis 1: Green-AI technological distance negatively

impacts enterprises’ green innovation performance.

2.3 The moderating role of green
technological specialization

The relationship between green-AI technological distance

and innovation performance may not be uniform across all

enterprises. While many firms tend to pursue the easier path

of adopting related technologies, some enterprises are capable

of recombining complex technologies (Neffke et al., 2018) and

reaping higher benefits (Boschma et al., 2023). This section

questions what kind of enterprises are likely to opt for distant

AI technologies.

Green technological specialization plays a crucial moderating

role in this relationship. SGTEs are motivated to integrate

proximate AI technologies due to two key factors: similar

collaborative agents and risk perception. Rooted in a resource-

based view, SGTEs benefit from entering related digital

technologies as they attract specific and similar collaborative

agents (Bathelt et al., 2012, p. 72–76; Colombelli et al., 2014)

to increase economies of scale, lowering infrastructure and

labor costs (Malmberg and Maskell, 1997). As specialization

connotes the specificity of resources shared, the chance to

cooperate increases when there is a certain technological

overlap between the potential partners. At the regional level,

specialized areas tend to have high competitive pressure due

to continuous knowledge upgrading, thus requiring multiple

dimensions of proximity to establish trust relationships

(Sánchez-García et al., 2023). Thus, SGTEs with advanced

technological sophistication may face difficulties in matching

distant digital technologies with less complementary infrastructure

and resources.

Risk perception correlates with high technological complexity

or distance. In SGTEs, certain technologies are highly invested in

and thereby restrict the organization’s cognition on technological

exploration and exploitation. In green digital innovation,

organizations that perceive the outcome to be unpredictable and

risky tend to solve problems less effectively (Yin and Yu, 2022),

and the success rate of green technology innovation is negatively

correlated with managers’ loss aversion (Li et al., 2023). High

specialization implies that organizations pay more attention or

share more responsibility in addressing certain environmental

problems and social pressures and adhering to environmental

regulations which reduce their tolerance to risks. It is then argued

that SGTEs are more risk averse as they are not able to spread

the R&D costs and probability of successful outcomes to varied

(unspecialized) technology fields.

Therefore, this section argues that SGTEs benefit significantly

from seeking easily deployable AI technology in the green sector,

driven by the attraction of similar collaborative agents and

risk perception.

Hypothesis 2: Specialization in green technologies negatively

moderates the relationship between green-AI technological

distance and enterprises’ innovation performance.

3 Materials and methods

3.1 Sample selection and data sources

To retrieve nationwide information on Chinese firms’ patents

and financial information, three Bureau van Dijk (BvD) sources

are used: Orbis (firm financial information), Orbis Intellectual

Property (IP) (patent information), and Orbis-Zephyr (merger

and acquisition). The databases cover patents filed in eight key

jurisdictions and merger and acquisition events, including public

and private sectors in China. The dataset covers the period from

2011 to 2021, following the 12th Five-Year Plan (FYP), and is based

on the first filing (priority) date. It includes both granted and non-

granted patents while excluding duplicated patents filed in different

patent offices by utilizing a patent family identifier.

To account for the presence of subsidiaries within a

corporation, which may have different focuses such as marketing,

R&D, or other divisions, a network of firms under the same

parent company, known as Global Ultimate Owners (GUOs), is

constructed to calculate the total number of patents produced.

This study adopts Leusin’s (2022) method to construct the datasets.

Firms are considered subsidiaries of GUOs if the minimum

ownership threshold is 50.01%. The implementation process

involves extracting information about the GUOs and subsidiaries

from BvD Orbis IP, enabling the construction of an ownership

network. Information on patent owners acquired or merged by

a GUO or a subsidiary can be found in BvD Orbis Zephyr and

merged with the initial dataset. This can be merged with the dataset

in the first step. Individual patent owners are removed, retaining

only companies. Furthermore, firms within the same corporation,

referred to as enterprise c hereafter, are assigned a unique ID to

facilitate aggregating information such as patents, financial values,

and numbers of employees within a single network. These firms are

geographically distributed in various cities, with some potentially

located outside China but belonging to a Chinese parent company.

Green patents are identified based on the first 4-digit IPC class

officially classified by the World Intellectual Property Organization

(WIPO).1 The green technology sectors can be classified into

38 sub-topics under 7 broad topics. AI patents are filtered

by examining whether the patent title, abstracts, claims, and

description contain a list of AI-relevant keywords, using AI-specific

key terms provided by Leusin et al. (2020).

The resulting panel dataset comprises 435 Chinese enterprises,

c, that have filed at least one green patent, with the same enterprise

potentially producing AI patents or not. Among these enterprises, a

total of 83,099 green patents are recorded, with only 77 enterprises

filing a total of 4,951 AI patents over the ten-year observation

period.2 The dataset is cleaned by excluding a single firm that

does not form a network, applying forward and backward filling

methods to address missing values commonly found in firms’

financial datasets, centralizing all variables, and normalizing the

1 Green IPC category is provided in the following website: https://www.

wipo.int/classifications/ipc/green-inventory/home.

2 The total number of AI-related patents in China is 72,802 which is

registered by a total of 5,385 Chinese individual companies.
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specialization index using a logarithmic function to adjust for

skewness and reduce heteroskedasticity. However, missing values

may still exist due to companies not producing patents in certain

years, resulting in an unbalanced panel. The total number of

observations in the dataset is 8,928.

3.2 Regression model

Hausman’s (1978) test suggested that the fixed-effect model

is more appropriate than the random-effect model. A two-way

fixed effect is applied to remove any variations explained by the

enterprise and time. The model is specified as follows:

Total number of green patentsc,t = Technological distancei,t

×Green specializationc,t + Network sizec,t + Employee sizec,t

+ Turnoverc,t + Total patent numberc,t + Total assetsc,t + ϕc

+ αt + εc,t

Where c is the enterprise, i is the technology sector, and t is

time. ϕc is the firm-fixed effect. αt is the time-fixed effect. εc,t

is the error term of the regression model. This model originally

faces a reliability issue with negative R2 because the technological

distancei,t does not vary across firms, unlisske other variables.

Nevertheless, running a fixed effect 2SLS model with instrumental

variables eliminates this issue.

3.3 Variables

3.3.1 Dependent variable
An enterprise’s green patent output (Green Patents) is used as a

proxy of green innovation performance. In the smart specialization

and green innovation literature, the number of green patents

is commonly used as a determinant of innovation performance

and is a robust measurement in the context of GPTs and high-

tech industries (Hagedoorn and Cloodt, 2003; He and Su, 2022;

Iacobucci and Perugini, 2023).

3.3.2 Independent variable
Green-AI technological distance (Technological Distance) is

expressed as the difference between the relatedness density of

green and AI technologies in the Smart Specialization framework.

Technological relatedness refers to the extent to which patents

are included in the same technology classifications, which has

been a common method (Guan and Yan, 2016; Li and Rigby,

2023). While such literature explores technological relatedness

among all general technologies or in certain industries, none

has computed technological distance between two separate

technological domains, i.e., green and AI technological domains.

Green technology has a total of 38 sub-topics (AI is the 39th sub-

topic; i= 39) where 435 enterprisesmay be involved or not involved

in the innovation at all and simultaneously participate in a variety

of topics. Thus, some pairs of sub-topics are highly related while

some are not.

Relatedness density (RD) is first calculated for each enterprise

in each green technology sub-topic. To calculate the average

technological distance between green and AI technologies with

differential degrees of overlapping technology classifications across

every sub-topic, computing the Mean Average Error (MAE)

between the relatedness density of green IPC sectors and the AI

sector serves as a proxy for their technological distance (Leusin,

2022). Relatedness density (RD) is the technological relatedness of

technology i to all other technology j in which enterprise c exhibits

revealed technological advantage (RTA) (xi,c,t). EconGeo package

for patent database is used to compute RD (Balland, 2017):

RDi,c,t =

∑

j ∈c, j 6=i xi,c,t ∗ ϕi,j,t
∑

j 6=i ϕi,j,t
× 100

Since RD and the relatedness score (ϕi,j,t) calculate the

proximity (reverse of technological distance) between technology i

to all other technologies, Leusin (2022) adoptedMAE to specifically

measure the difference between the relatedness density of a given

green technology sector i and the AI cluster, divided by the total

number of enterprises (N). The formula is as follows:

MAEi,t =
1

N

n
∑

j=1

∣

∣RDgreen,j − RDAI,j

∣

∣

3.3.3 Moderating variable
Green Specialization is measured by the coefficient of

specialization, also known as a location quotient. It measures

the degree of a firm’s specialization in technology i relative to the

standard and the degree of concentration of the industry (Gomez

and Stair, 2017). Differing from other methods that measure

concentration within a specific industry such as the Herfindahl

index, the specialization index measures an enterprise’s distribution

of technologies enterprises by industrial sectors (technological

sub-topics) relative to the reference enterprises. The coefficient has

an application in identifying key industries that contribute to the

national economy rather than the competition strategy as provided

by the Herfindahl index. The maximum value corresponds to a

situation when a firm devotes its business entirely to an industry

that is not present in any other enterprise at time t. The EconGeo

package is used to compute the specialization score (Balland, 2017):

Green Specializationc,t = Average(

patentsc,i,t
∑

i patentsc,t
∑

c patentsc,i,t
∑

c

∑

i patentst

)

Where the numerator is the enterprise’s share of total patents

in technology i. The denominator is the share of total patents

in enterprise c in the whole economy (overall enterprises). If the

numerator is larger than the denominator, the specialization value

is bigger which indicates the enterprise’s high level of specialization

in certain technology.

3.3.4 Control variables
Control variables include enterprises’ general and financial

characteristics, as well as other innovation indicators. The general
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FIGURE 1

The number of enterprises with RTA and the relationship between green technological specialization and green-AI technological distance

(2011–2020). The figure shows that three green sectors “Energy conservation,” “Alternative energy production,” and “Waste management” capture

RTA in green technologies that are distant from AI at a high specialization degree.

characteristics encompass the total number of companies (Network

size) and the total number of employees (Employee size) of

enterprise c. The size not only controls the differences in firms’

capabilities to produce patents but also the legitimacy pressures

firms face, i.e., larger firms tend to receive high attention from the

government and media coverage (Li et al., 2018) and the entry and

technological performance (Leten et al., 2016).

Financial and innovation variables include their total income

(Turnover) and Total Assets. Other innovation-related factors

considered are the combined green and non-green patents (Total

Patent Numbers) and the total R&D expenditure (R&D Intensity).

Higher turnover implies that companies have more profits to

be pooled into the R&D investment which, therefore, must be

controlled for (Park et al., 2018). Assets can be redeployed in firms’

path-branching process where firms build on their capabilities in

existing industries (Grillitsch et al., 2018). Patents are the products

of R&D expenditure, and other non-green inventions may also

affect enterprises’ productivity to invent green patents.

4 Results

The study reports 3 main results in Section 4. The descriptive

evidence in section 4.1 illustrates the heterogeneity of green sectors

and enterprises’ specialization patterns. Section 4.2 introduces

regression analysis to examine the role of SGTE across a spectrum

of green-AI technological distance. Section 4.3 reports additional

empirical tests.

4.1 Descriptive evidence

Figure 1 illustrates four quadrants that depict technologically

specialized (SGTE) and non-specialized enterprises with revealed

technological advantage (RTA) in the green industry, based on

the green-AI technological distance. Each quadrant highlights the

trade-off between gaining specialization and integrating proximate

AI technologies. Figure 2 provides a visual representation of

the number of AI patents created by enterprises across all

four quadrants.

The findings from Figure 1 suggest that capturing green

RTA is relatively easier in all industries within the lower-left

quadrant, where firms have low specialization and a short green-AI

distance. Additionally, several sectors are situated in the upper-

right quadrant, such as “Energy conservation,” “Alternative Energy

Production,” “Waste Management,” and “Transportation.” These

sectors have successfully captured RTA in green technologies

that are distant from AI. Notably, the first three sectors span

across all four quadrants, indicating a diverse range of candidates

within those sectors. On the other hand, the lower-right quadrant

consists of sectors with low specialization and a long green-AI

distance. Enterprises in this segment tend to gain less RTA and
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demonstrate lower innovation performance, as further analyzed in

the subsequent section.

Figure 2 highlights that enterprises with a high number of AI

patents predominantly occupy the lower two quadrants, indicating

a lower specialization in the green domain. In contrast, SGTEs

in the upper quadrants tend to have fewer AI inventions, which

may explain their inclination toward acquiring RTA in distant and

complex AI technologies, as depicted in Figure 1.

It is important to note that the “Agriculture/Forestry” sector

is absent from Figure 2 due to the exclusion of a single firm from

the dataset. Statistical evidence reveals that over 40% of companies

in China have not prioritized AI as a strategic focus (Barton

et al., 2017). Similarly, the “Nuclear Power Generation” sector

has minimal representation in AI innovation within China. This

can be attributed to the sector’s high localization and regulation

by the State Council (Andrews-Speed, 2023). Typically, R&D

development in this sector involves collaborations with Chinese

research institutes and universities, aiming to stimulate product

exportation in the nuclear power domain.

4.2 Regression analysis results

Table 1 presents the descriptive statistics of the variables

and the correlation matrix for the variables. All variables are

centralized with a mean of zero. The VIF is less than the

threshold value of 10, suggesting no serious multicollinearity

issues. Correlation between variables is highly significant. For

example, enterprises with high R&D Intensity, Network size,

Employee size, Turnover, and Assets tend to generate high

green innovation performance (Green Patents). Within this,

Network Size, Employee Size, and Turnover are associated with

increased technological distance. Meanwhile, Green Specialization

negatively correlates with Green Patents and Network size and

Employee size, suggesting that enterprises that diversify their

green portfolios and target less monopolistic green sectors tend

to be large enterprises that could generate high numbers of

green patents. Small enterprises thus have a high tendency to

be SGTEs which are typically involved in highly specialized

green activities.

Table 2 provides a summary of the time-series regression

analysis conducted to test the first and second hypotheses. The

regression compares the 2SLS method with the ordinary least

squares (OLS) method to address the potential endogeneity

problem arising from the influence of enterprise characteristics

on the explanatory and moderating variables. Durbin and Wu-

Hausman test was performed to test the consistency of both

models. In Table 2, the explanatory variables are regressed on their

instruments, which include the inverse of Technological Distance

and 2-year lagged Green Specialization for the moderator. All

instruments solely affect the outcome through the independent

variables and are not weak (p < 0.05), satisfying instruments’

FIGURE 2

The number of AI technologies and the relationship between green technological specialization and green-AI technological distance (2011–2020).

The figure shows that enterprises with high numbers of AI patents tend to be less specialized (diversify more).
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TABLE 1 Descriptive statistics and pairwise correlation matrix.

Variable Mean SD Min Max VIF 1 2 3 4 5 6 7 8

Green patents 0.00 89.31 −49.81 746.19

Technological

distance

0.00 18.59 −18.52 231.53 1.453 0.036∗∗∗

Green specialization 0.00 0.99 −1.34 5.50 1.220 −0.24∗∗∗ 0.24∗∗∗

Network size 0.00 5.83 −3.53 45.47 2.254 0.61∗∗∗ 0.034∗∗∗ −0.22∗∗∗

Employee size 0.00 4.44 −2.32 33.23 1.615 0.4∗∗∗ 0.044∗∗∗ −0.15∗∗∗ 0.61∗∗∗

Turnover 0.00 107.66 −39.35 832.93 1.943 0.36∗∗∗ 0.017∗ −0.17∗∗∗ 0.64∗∗∗ 0.43∗∗∗

Total patent number 0.00 37.89 −3.66 1329.52 1.007 0.36∗∗∗ −0.0013 −0.053∗∗∗ 0.045∗∗∗ 0.07∗∗∗ 0.025∗∗

Assets 0.00 367.01 −75.44 6846.64 1.176 0.1∗∗∗ −0.00007 −0.092∗∗∗ 0.27∗∗∗ 0.18∗∗∗ 0.38∗∗∗ 0.0025

R&D intensity 0.00 18.82 −8.07 185.97 1.110 0.091∗∗∗ 0.012 −0.15∗∗∗ 0.2∗∗∗ 0.089∗∗∗ 0.29∗∗∗ 0.00019 0.12∗∗∗

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. All variables are mean–centered.

TABLE 2 Regression results for direct and moderation e�ects.

Green innovation performance

Model 1 Model 2

OLS 2SLS OLS 2SLS

Technological distance −0.151∗∗ −0.369∗∗∗ −0.223∗∗ −0.395∗∗∗

(0.070) (0.131) (0.103) (0.153)

Green specialization −3.072∗∗∗ −37.060∗∗

(0.856) (16.480)

Network size 5.482∗∗∗ 8.575∗∗∗ 5.410∗∗∗ 7.331∗∗∗

(0.412) (0.415) (0.411) (0.668)

Employee size 0.783∗∗∗ 0.546∗∗ 0.770∗∗∗ 0.297

(0.184) (0.260) (0.183) (0.295)

Turnover −0.068∗∗∗ −0.032∗∗ −0.066∗∗∗ −0.055∗∗∗

(0.020) (0.015) (0.020) (0.021)

Total patent number 0.493∗∗∗ 0.584∗∗∗ 0.492∗∗∗ 0.567∗∗∗

(0.025) (0.056) (0.025) (0.053)

Total assets 0.002∗∗ −0.007∗∗∗ 0.002∗∗ −0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)

Total R&D intensity 0.038 −0.005 0.042 −0.103

(0.034) (0.059) (0.034) (0.078)

Technological distance× green specialization 0.059∗∗ 0.270∗

(0.030) (0.138)

Weak instruments 0.000∗∗∗ 0.000∗∗∗

Wu–Hausman 0.254 0.173

Observations 8,928 8,168 8,928 8,166

R2 0.246 0.407 0.247 0.341

Adjusted R2 −0.133 0.106 −0.131 0.006

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01; Robust standard error is reported.

conditions in 2SLS. The DurbinWu-Hausman test fails to reject the

null hypothesis of inconsistency between the two models (p > 0.1),

indicating that the OLS estimates do not significantly differ from

the 2SLS estimates and thus can be used to interpret the results.

Furthermore, the OLS regressions in both Models 1 and 2 exhibit

poor fit with the data, as indicated by negative adjusted R-squared
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FIGURE 3

The moderating e�ect of green technological specialization on the relationship between green-AI technological distance and green innovation

performance.

values, which are resolved when conducting the same regression

with the 2SLS method.

The negative coefficient of green-AI Technological Distance

is most significant in the 2SLS model (p < 0.01), supporting

hypothesis 1. The increased significant results suggest that 2SLS

effectively eliminates the bias and heterogeneity issues within the

sample population (Card, 2001). This pattern applies to Model 2

as well. The reduction of bias and heterogeneity issues is due to the

shift of the population group toward the sub-group population with

higher-than-average innovation performance when using 2SLS’s

instruments.3 Overall, the first hypothesis is supported, indicating

that enterprises generally benefit more, in terms of innovation

advantages, from integrating AI technologies that are closer to

existing green technologies.

The interaction term of green-AI Technological Distance

and SGTE significantly relates to green innovation performance.

Interestingly, the relationship is contrary to the hypothetical

expectation, leading to the rejection of Hypothesis 2. The

moderation effect is moderately strong, with p < 0.05 (OLS model)

and 0.1 (2SLSmodel) inModel 2. Figure 3 illustrates the interaction

results, demonstrating that SGTEs perform better at longer green-

AI Technological Distance. Therefore, the theoretical assumption

regarding their short cognitive proximity and high-risk perception

is not supported in the case of Chinese enterprises.

The rejection of the second hypothesis can be attributed to

several factors. Firstly, in the digital industry, where technologies

are accessible to various types of enterprises, specialized firms

have a lower probability of survival (Mangani and Tarrini, 2017),

because they are less agile compared to diversified industries

3 OLS only estimates the average di�erence in green innovation

performance for each unit di�erence of green-AI Technological Distance

across the entire population.

when competing for related AI technologies (Fernández et al.,

2016). However, under high technological uncertainty, firms

may increase their specialization to compensate for the lack

of speed, lead-time advantage, or litigation capability (Toh and

Kim, 2013). Technological uncertainty may arise, for example,

when environmental regulations prompt the government to fund

valuable but faltering green projects (Guo et al., 2018), increase

accessibility to technical support and subsidies (Zhang and Zhang,

2023), and enhance green legitimacy (Li et al., 2023). These factors

act as a risk-mediating buffer, encouraging SGTEs to invest in

a highly complex innovation. From a management perspective,

a high-risk attitude may not limit managers’ open attitude or

lower their tolerance for failure in SGTEs. Instead, it might allow

them to be more cautious and objective when selecting distant AI

technologies (Yin and Yu, 2022).

4.3 Robustness checks

To account for the potential influence of variable indicators

on the research results, particularly within “green” enterprises,

a focus is placed on enterprises from renewable energy sectors

within the initial sample data. This selection is made to understand

the potential impact on the research findings. As a result,

the unbalanced panel data is reduced to 690 observations and

100 enterprises.

The findings presented in Table 3 indicate that the impact of

green-AI Technological Distance on green innovation performance

remains stable and consistent. However, the moderating effect of

Green Specialization on green innovation performance is not found

to be significant. This lack of significance can be attributed to

the fact that enterprises from the renewable energy sector exhibit

high specialization in specific sub-sectors within the Alternative
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Energy Production sector, as classified by WIPO’s Green IPC

category. By reducing the heterogeneity of green sectors through

this specialization, the observed effect becomes non-significant.

4.4 Heterogeneity tests

The correlation matrix (Table 1) suggests that enterprises with

large networks and employees tend to diversify more complex

green patents into a variety of green sectors, reducing their

specialization score and increasing the number of green patents

produced. Small network/employee enterprises, on the other hand,

seem to be highly specialized. The interaction term of regression

analysis suggests that specialized enterprises tend to innovate

more at a high technological distance, given the network/employee

size is constant. To examine which size of enterprises is more

significant to the relationship between technological distance, green

specialization, and green innovation performance, heterogeneity

analyses of enterprises’ Network Size and Employee Size are

conducted in Tables 4, 5.

4.4.1 Heterogeneity analysis of enterprises’
network size

In Table 4, the network size is split into large and small network

enterprises, using mean value as a threshold. The impacts of

technological distance and its interaction with the moderator are

significant only in enterprises with small network sizes. However,

the technological distance and green specialization have a positive

and negative coefficient at p < 0.001 and p < 0.1 respectively

(Model 6), suggesting that enterprises with fewer subsidiaries or

acquired/merged companies tend to produce more green patents

when integrating distant AI technologies, and this effect would be

reduced if they become more specialized.

4.4.2 Heterogeneity analysis of enterprises’
employee size

Similarly, the employee size is split into two groups based

on the mean value in Table 5. Contrary to the heterogeneity

analysis of network size, the employee size shows a result consistent

with the main results in the population of enterprises with

large (higher than average) employee sizes (Table 5). Therefore,

even if the number of observations in enterprises with large

employee sizes is small, the model remains robust in this group. In

combination with the previous heterogeneity analysis, the results

suggest that diversifying resources to too many companies within

the corporation could reduce the R&D efforts in integrating distant

AI technologies while increasing the number of employees will

benefit the innovation process.

5 Discussion

5.1 Main findings

The growing concern over climate change has prompted

enterprises to incorporate AI technology into the realm of

TABLE 3 Regression results of robustness tests.

Variables Model 1 Model 2

Technological distance −0.136∗∗∗ −0.111∗∗

(0.044) (0.044)

Green specialization −8.995∗∗∗

(2.164)

Network size 4.896∗∗∗ 4.495∗∗∗

(0.699) (0.650)

Employee size 1.159∗∗∗ 1.064∗∗∗

(0.426) (0.407)

Turnover −0.139∗∗ −0.121∗∗

(0.064) (0.061)

Total patent number 5.384∗∗∗ 5.262∗∗∗

(1.042) (1.024)

Total assets −0.037 −0.041

(0.050) (0.048)

Total R&D intensity 0.110 0.108

(0.169) (0.163)

Technological distance× green specialization 0.004

(0.017)

Observations 690 690

R2 0.519 0.534

Adjusted R2 0.123 0.147

∗∗p < 0.05; ∗∗∗p < 0.01; Robust standard error is reported.

green innovation. However, our understanding of organizational

innovation strategies in the green industry is limited. In particular,

this research contributes to the green-digital literature, suggesting

the appropriate strategies to recombine green and AI technologies

for SGTEs and non-specialized enterprises. It also adds evidence to

the relatedness and specialization theories, unveiling the pros and

cons of becoming specialized in green technologies.

The first finding supports the existing relatedness theory where

short-distant technologies facilitate faster innovation performance.

These are enterprises that aim to capture a larger share of RTA.

The second finding rejects the initial hypothesis, showing that

SGTEs produce more green patents when integrating distant AI

technologies. This finding leads to two theoretical explanations.

First, SGTEs face challenges in commercializing technologies

swiftly (Toh and Kim, 2013; Mangani and Tarrini, 2017), so they

compensate by taking advantage of special circumstances, such as

environmental regulations and government incentives, to integrate

distant AI technologies that are deemed to contribute more to

the country’s innovation. These advantages include eligibility to

obtain government R&D funding or access to technical support

and enhanced green legitimacy (Li et al., 2023). Particularly, a

recent study reports that government subsidies in China tend

to promote enterprises with specialization in a specific sector

of green technologies but not those with mixed focuses (Zhang

and Zhang, 2023). The subsidies act as a risk-mediating buffer,
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TABLE 4 Heterogeneity tests of enterprises’ network size.

Green innovation performance

Large network size Small network size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Technological distance 0.018 0.023 0.023 0.046 0.086∗ 0.174∗∗

(0.093) (0.051) (0.094) (0.051) (0.051) (0.083)

Green specialization −1.059 −1.006 −8.861∗∗∗ −8.403∗∗∗

(1.084) (1.084) (1.084) (1.120)

Network size 4.349∗∗∗ 4.338∗∗∗ 4.337∗∗∗ 11.350∗∗∗ 9.677∗∗∗ 9.645∗∗∗

(0.233) (1.059) (0.233) (1.176) (1.059) (1.062)

Employee size −0.175 −0.186 −0.186 0.784∗∗ 0.719∗ 0.725∗

(0.179) (0.373) (0.181) (0.379) (0.373) (0.373)

Turnover −0.014 −0.014 −0.014 0.034 0.028 0.027

(0.009) (0.028) (0.009) (0.028) (0.028) (0.028)

Total patent number 14.870∗∗∗ 14.870∗∗∗ 14.870∗∗∗ 0.516∗∗∗ 0.511∗∗∗ 0.511∗∗∗

(0.536) (0.033) (0.536) (0.035) (0.033) (0.034)

Total assets 0.001 0.001 0.001 −0.048∗∗∗ −0.046∗∗∗ −0.045∗∗∗

(0.001) (0.015) (0.001) (0.015) (0.015) (0.015)

Total R&D intensity −0.448∗∗∗ −0.454∗∗∗ −0.453∗∗∗ 0.192∗∗∗ 0.178∗∗ 0.181∗∗∗

(0.076) (0.070) (0.077) (0.073) (0.070) (0.070)

Technological distance× green specialization −0.013 −0.064∗

(0.045) (0.033)

Observations 2,628 2,628 2,628 6,300 6,300 6,300

R2 0.839 0.839 0.839 0.291 0.313 0.315

Adjusted R2 0.754 0.754 0.754 −0.054 −0.020 −0.019

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01; Robust standard error is reported.

encouraging SGTEs to invest in a highly complex innovation.

Second, SGTE’s high-risk attitude may increase the cautiousness of

decision-making, resulting in fewer errors and superior innovation

performance when integrating distant AI technologies (Yin and Yu,

2022).

In the descriptive evidence, it is observed that enterprises

generate a higher number of AI patents when they exhibit lower

specialization (greater diversification) in green technologies. This

implies that the use of AI technologies expands the breadth of

knowledge items horizontally. However, as firms allocate time and

resources across numerous technology classes, their specialization

becomes compromised. This poses questions regarding whether

specialization should be emphasized more as a long-term strategy

for China’s green development (Conti et al., 2019).

5.2 Limitations and future research

The present study exhibits several theoretical and

methodological limitations that should be acknowledged.

Theoretical limitations encompass two aspects, while

methodological limitations can be categorized into three areas.

The first theoretical limitation concerns the generalizability

of the research in the context beyond Chinese firms. Chinese

entrepreneurs’ technological diversification strategies could be

unique due to specific external influences such as political systems,

government intervention, and historical background. Known for

its leadership in green industries, China serves as a model for

other emerging economies to apply (Hain et al., 2021). Therefore,

replicating the study in other contexts such as advanced countries

or least developing countries would further contribute to the

relevant literature.

The second theoretical limitation concerns the direct

translation of invention as a sole product of the innovation

process. Innovation, as defined, encompasses the entirety of

production processes, which may not necessarily be fully captured

by patents. It is important to recognize that firms strategically opt

for intellectual property (IP) rights to yield greater benefits for their

businesses (Lanjouw and Schankerman, 2001). Nonetheless, the

advantages of IP rights outweigh the disadvantages, as they foster

progress in scientific innovation and establish market foundations

(Spulber, 2015). Furthermore, technological advancements do

not guarantee a substantial reduction in carbon pollution. Firms

engaged in global value chains, particularly those operating in

developing countries, often cause more environmental issues
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TABLE 5 Heterogeneity tests of enterprises’ employee size.

Green innovation performance

Large employee size Small employee size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Technological distance −0.387∗∗∗ −0.312∗∗ −0.401∗∗∗ −0.016 −0.004 0.011

(0.143) (0.140) (0.154) (0.047) (0.047) (0.061)

Green specialization −11.610∗∗∗ −12.950∗∗∗ −2.732∗∗∗ −2.658∗∗∗

(2.164) (2.312) (0.505) (0.506)

Network size 8.581∗∗∗ 8.193∗∗∗ 8.223∗∗∗ 6.327∗∗∗ 6.217∗∗∗ 6.214∗∗∗

(0.485) (0.504) (0.501) (0.473) (0.471) (0.472)

Employee size 1.734∗∗∗ 1.756∗∗∗ 1.775∗∗∗ −2.215∗ −2.363∗ −2.350∗

(0.498) (0.495) (0.496) (1.290) (1.300) (1.300)

Turnover −0.064∗∗∗ −0.060∗∗∗ −0.060∗∗∗ 0.028∗∗ 0.023∗∗ 0.023∗∗

(0.021) (0.020) (0.020) (0.012) (0.012) (0.012)

Total Patent number 0.542∗∗∗ 0.537∗∗∗ 0.537∗∗∗ 9.285∗∗∗ 9.227∗∗∗ 9.226∗∗∗

(0.044) (0.043) (0.043) (0.894) (0.893) (0.893)

Total assets −0.012∗∗∗ −0.014∗∗∗ −0.014∗∗∗ −0.002∗∗∗ −0.002∗∗ −0.002∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Total R&D intensity −0.637∗∗∗ −0.680∗∗∗ −0.690∗∗∗ −0.062∗ −0.069∗ −0.069∗

(0.089) (0.098) (0.098) (0.037) (0.037) (0.036)

Technological distance× green specialization 0.115∗∗ −0.013

(0.050) (0.021)

Observations 2,465 2,465 2,465 6,463 6,463 6,463

R2 0.438 0.445 0.446 0.659 0.661 0.661

Adjusted R2 0.151 0.162 0.163 0.491 0.494 0.494

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01; Robust standard error is reported.

(Wang et al., 2020). Therefore, it is recommended that future

research assesses the impact of variable indicators on sustainable

development or environmental issues.

Regarding methodological limitations, the absence of spatial

characteristics in the data samples precludes the inclusion of

China’s regions as control variables. In other words, this study

defines an enterprise as a network of firms from a variety

of divisions segregated across different geographical locations.

Considering that green development varies across regions and

governmental institutions, this limitation prevents the model from

achieving greater stability (He and Su, 2022; Yin et al., 2023).

Consequently, the study employs 2SLS instruments as discussed

in the main analysis to address this issue. Nevertheless, the sample

data could be potentially biased toward Chinese enterprises located

in the Eastern region, where technologies are well-developed.

Furthermore, despite the elimination of patent owners filed as

individuals in the data sample, universities that actively collaborate

with companies are included. Additionally, the algorithm used to

construct a network of firms sharing the same patents is static

rather than dynamic. For instance, the algorithm assigns inventor

A as a partner of inventor B since 2011, even though in reality they

were separate entities that year but later became sister companies or

were acquired by others. This is because the same identifiers must

be assigned to enterprises even though they have been mobilized or

removed from the networks. Issues are rectified by combining the

dataset with the merger and acquisition database which provides

more precise information, making the network less static.

5.3 Contributions and implications

This study contributes theoretical and practical insights to

the literature on relatedness and green digitalization, specifically

within the context of developing countries. The findings highlight

that SGTEs, which hypothetically have short cognitive proximity,

exhibit significant innovation when incorporating complex AI

technologies. However, this pattern is not without its limitations.

On one hand, only a limited number of SGTEs can effectively

integrate AI technologies that are less closely related to their current

green technologies. On the other hand, enterprises that encompass

a broader range of technology sectors tend to compromise

their specialization advantages by pursuing less complex AI

technologies, thereby overlooking the transformative potential of

distant AI technologies.

The study offers practical recommendations for policymakers

and organizational managers or industry practitioners. It
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emphasizes the need to incentivize non-specialized enterprises

to explore and engage with distant AI knowledge domains

with support from policymakers, other than incentivizing the

‘pure’ green sectors. Providing R&D subsidies to non-specialized

enterprises will encourage them to take more risks in integrating

complex AI technology, promoting the development of green

industries. Meanwhile, recent news reports that EV cars have

been over-supplied and caused bankruptcy, affecting the industrial

supply chain (BloombergNews, 2023).With the lack of government

support, SGTEs are most susceptible to market change due to

their diversification risks. Therefore, SGTEs with high potential

should receive appropriate protection. For industry practitioners,

the provision of open-collaboration platforms and maintaining

competitiveness is recommended. Creating spillover channels

from specialized to diversified firms (and vice versa) is a low-risk

strategy that elevates the complexity of the nation’s knowledge of

green technologies. Simultaneously, SGTEs could take a leadership

role in searching for AI breakthroughs or collaborative partners

outside China. For instance, selecting potential partners with a

small overlap of technological knowledge (experience) may reduce

the probability of cooperating due to cultural and professional

differences and increase technological values once accomplished.

Overall, the integration of complex AI technology would contribute

more to net-zero transitions since many green industries are still

seeking better technologies to solve environmental problems.

6 Conclusion

This research addresses the research question of “What is

the role of AI in enhancing organizational green innovation

performance, and how does it favor an organization’s green

specialization?”. The research confirms the role of relatedness on

innovation performance and reveals that green specialization

performs more innovatively when integrating distant AI

technologies into green innovation.

The study adds a different insight into the roles of green

specialization in AI technological integration. It puts forward

several speculations to explain the phenomenon of why SGTEs

tend to experience a decline in their innovation advantages when

integrating related AI technologies but gain incentives to generate

breakthrough innovations by integrating distant AI technologies.

As powerful digital technology becomes pervasive, enterprises

that diversify their technological focuses tend to gain the greatest

advantages from integrating AI close to their knowledge. However,

SGTEs possess a specific competitive advantage, perhaps due to

high-risk perception and national support, creating incentives

for them to pursue breakthrough innovations with distant

AI technologies.

Therefore, the ability to enact policies and management

practices favorable to SGTEs and non-specialized enterprises’

innovative behavior could drive the nation closer to sustainable

goals. This requires the coordination of all stakeholders. For

example, the government’s provision of R&D incentives and

collaboration between public and private sectors to create spillovers

and incentivize firms to engage more in recent, complex AI

technologies. Complex technologies are valuable assets that can

be easily innovated by SGTEs. Hence, SGTEs serve as an

example of good management practices, addressing complex

environmental problems that cannot yet be remedied by general

(short technological distance) AI technologies.

Admittedly, the study subjects to a few limitations in terms of

generalizability and the use of patent data as a sole determination

of enterprises’ innovation development. The study also poses some

methodological limitations, which call for a replication of research

experiments with better methodologies. Future improvement

includes exploring the phenomena found in this research in

contexts outside China or across Chinese provinces with different

institutional qualities and exploring the technological growth’s

impacts on ecological efficiency.

In light of these findings, it is hoped that this research will

stimulate further interest in future studies on the twin transition

of green and AI technologies, as well as the mechanisms underlying

firms’ digital integration in the context of sustainability.
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