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As the demand for quality healthcare increases, healthcare systems worldwide are

grappling with time constraints and excessive workloads, which can compromise

the quality of patient care. Artificial intelligence (AI) has emerged as a powerful

tool in clinical medicine, revolutionizing various aspects of patient care and

medical research. The integration of AI in clinical medicine has not only

improved diagnostic accuracy and treatment outcomes, but also contributed to

more e�cient healthcare delivery, reduced costs, and facilitated better patient

experiences. This review article provides an extensive overview of AI applications in

history taking, clinical examination, imaging, therapeutics, prognosis and research.

Furthermore, it highlights the critical role AI has played in transforming healthcare

in developing nations.
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Introduction

Artificial Intelligence (AI) has become an increasingly important technology in today’s

era. AI seeks to build machines that can learn, solve problems, make decisions, and perceive

in a manner similar to that of humans (IBM, 2023). It involves developing computer systems

and algorithms that can process enormous volumes of data, analyse that data, and generate

predictions or conclusions based on that data. Several of the most recent developments in

the subject have been driven by Machine Learning (ML), a branch of AI. ML algorithms

are able to analyse large datasets and learn patterns and insights that can be used to make

predictions and automate complex tasks (IBM, 2023). It is important to understand certain

terminologies in AI before moving forward to its applications (Table 1).

AI is a potent technology with the potential to favorably enhance many domains

of our life by automating tasks, improving decision-making, and enabling new kinds of

interactions between humans and machines. Without consciously realizing it, humans are

constantly surrounded and helped by AI in their daily lives (Figure 1). For example, AI-

powered virtual assistants like Siri or Alexa understand natural language and respond

to voice commands, making it easier for people to perform tasks like setting reminders

or playing music without having to use their hands (The AI of Alexa and Siri, 2018).

Navigation apps like Google Maps use AI algorithms to analyse traffic patterns and provide

real-time recommendations for the fastest route (The AI of Alexa and Siri, 2018; A

smoother ride and a more detailed Map thanks to AI Google, 2021; IBM, 2023). Online

retailers and streaming services like Amazon, Netflix, and Spotify use AI algorithms
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TABLE 1 Terminology in AI.

Machine learning Involves programming algorithms to make

decisions or predictions based on data

Deep learning A type of ML that utilizes artificial neural

networks for processing and analyzing a

significant amount of data

Natural language processing A branch of AI that aims to teach computers

how to comprehend and analyse human

language

Robotics The study and development of robots capable

of performing tasks autonomously or with

human assistance

Computer vision Machines’ ability to interpret and

comprehend images and video

Expert systems AI systems that mimic a human expert’s

decision-making abilities in a specific field

Neural networks Computer systems that are designed to

mimic the structure and function of the

human brain

Cognitive computing AI systems that can simulate human thought

processes, including perception, reasoning,

and problem-solving

Natural language generation The process of using AI to generate

human-like language in written or spoken

form

Data mining The revelation of patterns and insights in

large datasets

Bayesian networks A probabilistic graphical model used for

probabilistic reasoning

Swarm intelligence The collective behavior of decentralized,

self-organized systems

Decision trees A graphical representation of

decision-making processes

Support vector machines (SVM) A machine learning algorithm used for

classification and regression analysis

Human-in-the-loop A type of AI system that incorporates human

feedback to improve performance

to recommend products and content based on a user’s past behavior

and preferences (Netflix Recommendations, 2022; How Amazon

Uses AI to Dominate Ecommerce: Top 5 Use Cases, 2023; How

Spotify Uses Artificial Intelligence—andWhat You Can Learn from

It, 2023). Even in the field of medicine, there is so much use

of AI without our knowledge (Figure 1). Wearable devices like

Apple Watch use AI algorithms to monitor a user’s health data

and provide insights into their activity levels, sleep quality, and

other metrics (Healthcare—Apple Watch, 2023). The device is

also capable of detecting an irregular pulse using inbuilt sensors

and notify the user (Perez et al., 2019). AI is being used in

electrocardiogram (ECG) reading to improve the accuracy and

efficiency of diagnosis and monitoring of cardiac conditions (Attia

et al., 2021). It can calculate intervals, axis, detect arrhythmias and

even give a diagnosis based on ECG waveform. There are so many

fascinating and lucrative applications of AI in clinical medicine

which shall be discussed later in this article.

AI-powered healthcare technology is rapidly evolving in the

field of clinical medicine (Briganti and Le Moine, 2020). The

integration of AI in healthcare offers significant advantages over

traditional medical practice, particularly in terms of the learning

curve and time efficiency. Figure 2 depicts the learning curve

of a physician vs. that of AI. The learning curve is a critical

factor in determining the efficiency and effectiveness of medical

professionals. Formedical doctors, the learning process spans years,

including undergraduate education, medical school, internships,

and residency. This extensive training is necessary to ensure

that physicians have the knowledge and expertise to accurately

diagnose and treat patients. In addition to the steep learning

curve, human physicians are limited by the time it takes to

evaluate and treat patients. A medical doctor can only see a

finite number of patients each day, as they must spend time

conducting interviews, reviewing medical records, and performing

examinations. Moreover, a physician’s ability to recall information

and synthesize it with newly acquired data is inevitably limited

by human cognitive capacity. In contrast, AI systems possess the

ability to learn and adapt at an exponential rate. With access to vast

amounts of data and the ability to process it in real-time, AI systems

can “learn” and improve their performance through ML. This

allows AI to quickly become proficient in new areas of medicine,

surpassing the rate at which a human physician could acquire

the same knowledge. AI systems can evaluate and treat patients

with greater speed and accuracy. By processing vast amounts of

medical data instantaneously, AI can generate precise diagnoses

and recommend optimal treatment plans in a fraction of the time it

would take a human physician. This efficiency has the potential to

improve patient outcomes by allowing for more rapid intervention

and reducing the likelihood of medical errors. AI systems not only

have a shorter learning curve but are also capable of continuous

learning and adaptation. As new medical research and discoveries

emerge, AI systems can quickly integrate this information into their

existing knowledge base, ensuring that they are always up-to-date

with the latest advances in medicine. This adaptability allows AI to

stay current and provide the most accurate and effective treatments

possible, while human physicians must dedicate significant time

and effort to keep pace with the ever-evolving field of medicine.

Applications of AI in clinical medicine

History taking

AI has the potential to significantly improve medical history

taking by enabling more accurate and efficient diagnosis. Natural

language processing (NLP) can be used to analyse the text or

voice of a patient’s responses to questions about their medical

history. This can help to identify relevant information, such

as symptoms, conditions, and treatments, which can then be

used to create a differential diagnosis. AI-powered chatbots can

provide patients with a way to answer questions about their

medical history in a conversational manner (Nadarzynski et al.,

2019). One of the most advanced AI chatbots available is GPT-

4 (Generative Pretrained Transformer 4), a large language model

(LLM) developed byOpenAI, with support fromMicrosoft (GPT-4,

2023). Real-time transcriptions of physician-patient conversations

can be made using GPT-4 (Haug and Drazen, 2023). This can

speed up the note-taking process because the doctor can examine,
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FIGURE 1

Common applications of AI in daily life and medicine.

revise, and add to these transcriptions as needed in the future

(Haug and Drazen, 2023). Another clinical intelligence solution,

Nuance Dragon Ambient eXperience (DAX) product, harbors the

ability to capture patient-clinician conversations and transcribe it

into comprehensive clinical notes (Ambient Clinical Intelligence,

2023). ML algorithms can also be employed to assess a patient’s risk

for developing certain diseases based on their medical history and

other factors, such as lifestyle and genetics (Kumar et al., 2022).

However, it is vital to note that chatbots have inherent

limitations which requires them to be deployed thoughtfully in

clinical settings (Haug and Drazen, 2023; Lee et al., 2023). They

may struggle with complex histories, potentially missing out on

important information. This can also be augmented by inability

to detect non-verbal cues. Not to mention, the technical issues

such as disruption of software and connectivity such as system

crashes may pose a hindrance to patient interactions. Thus, human

clinicians remain crucial in providing compassionate care. Another

major limitation with chatbots is the need for proofreading notes

transcribed by the language model for accuracy and missing

information. At the end, the onus of patient care lies on the

clinician and not the technology. Therefore, AI tools can assist in

medical history taking by streamlining the process and improving

efficiency, but require to be used carefully by clinicians in order to

protect patient health and safety.

Clinical evaluation

The single most essential tool for examining a patient is the

doctor’s hand. Fortunately, there is no AI tool which can replace

the human touch. The next most prominent piece of clinical

equipment is the stethoscope, which has been modified by AI for

optimum performance and newer capabilities. The invent of digital

stethoscopes have enabled the integration of AI into auscultation

to improve diagnostic performance and compensate for inferior

auscultation skills (Arjoune et al., 2023). AI-based supervised

learning models have been applied to auscultation data to construct

an algorithm to identify valvular stenotic lesions (Ghanayim et al.,

2022). Lighter and less expensive models have also been proposed

for detecting cardiac and pulmonary sounds (Zhang et al., 2023).

Recently, a deep learning (DL) system (AI-ECG) was used to

analyse single-lead ECGs obtained during clinical examination

using an ECG-enabled stethoscope (Bachtiger et al., 2022). The

system was found to detect heart failure with an ejection fraction

of 40% or lower with high sensitivity and specificity. Due to the

algorithm’s connection to a stethoscope, it is now possible to

diagnose low left ventricular ejection fraction in a larger population

of patients just by doing an auscultatory exam.

Many other applications of AI in clinical evaluation have

been proposed and developed in recent years. In a study,

the identification of Parkinson’s disease using voice signal

features was proposed through the utilization of ML and

DL approaches, with multilayer perceptron (MLP) and SVM

models showing high accuracies of 98.3% and 95% respectively

(Alshammri et al., 2023). Another study aimed to use AI

and data mining approaches to diagnose COVID-19 through

cough sounds, with the goal of reducing treatment costs

and preventing the disease. Supervised Learning classification

algorithms, such as Support Vector Machine, random forest,

Artificial Neural Networks, Fully Connected neural network,

Convolutional Neural Networks (CNN), and Long Short-Term

Memory (LSTM) recurrent neural networks were employed.
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FIGURE 2

A comparison between the learning curve of a physician vs. AI.

The models achieved an average accuracy of 83%, with LSTM

reaching the highest accuracy at 95% (Askari Nasab et al.,

2023).

The integration of AI in clinical examination has revolutionized

the healthcare industry by providing more accurate and efficient

diagnostic capabilities. By embracing these innovative tools,
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clinicians can harness the power of AI to transform clinical

examination, ultimately leading to better patient outcomes,

reduced healthcare costs, and an improved overall healthcare

experience for all.

Di�erential diagnosis

AI can significantly improve the process of making differential

diagnosis by analyzing patient data and providing clinicians

with a list of potential diagnoses along with the likelihood of

each diagnosis being correct. AI models can use probability

density functions to estimate the probability of an event

occurring (Probability Density Function, 2019). This approach is

commonly used in ML algorithms such as Bayesian networks,

where a probability distribution is calculated based on previous

observations and is updated as new data becomes available (An

Overview of Bayesian Networks in Artificial Intelligence, 2023).

Using decision trees, the probability of an event based on a set

of rules or conditions (Gupta, 2017). Neural networks can also

be used to estimate probabilities by training the network on

a large dataset of inputs and their corresponding outputs, and

then using the network to predict the probability of new inputs

(Picton, 2023). The output layer of the network can be configured

to produce a probability distribution over possible outcomes.

Through these techniques and algorithms, AI can analyse patient

data, such as medical images, lab results, and electronic health

records, to identify patterns and anomalies that may indicate a

particular disease or condition. This can help clinicians to consider

a broader range of potential diagnoses and identify rare or complex

conditions that may be difficult to diagnose. Utilizing patient data,

artificial neural network (ANN) models can be used to stratify

patients into various risk categories of different diseases they are

prone to. Based only on personal health data, one such ANN has

been constructed to predict pancreatic cancer with a sensitivity

of 80.7% and a specificity of 80.7% (Muhammad et al., 2019). In

order to provide more specialized screening and risk management,

the created ANN was also able to stratify people into groups with

low, medium, and high cancer risk. Another population-based ML

model has been shown to predict accurately a woman’s 5-year

risk of getting endometrial cancer based solely on her personal

health data, without the use of invasive tests, imaging or genomic

biomarkers (Hart et al., 2020).

Quite often there are rare conditions and syndromes that

are over emphasized, and the treating consultant ends up doing

extensive and often expensive workup unnecessarily. With AI, a

physician would have better understanding of actual likelihood of

such rare conditions to avoid unwarranted investigations. Also,

with the help of AI, a wider range of potential diagnoses can be

looked for in a shorter amount of time. This can help to reduce

the time it takes to diagnose a patient and ensure that they receive

appropriate treatment as quickly as possible. A few examples of

this application of AI include Isabel DDx Companion and Glass AI

(Glass, 2023; Isabel DDx Companion, 2023). LLMs like GPT-4 have

also been shown to assist in the process of differential diagnosis

(Nori et al., 2023). Given its exceptional capability for reasoning,

it is perceivable that GPT-4 could be a regular tool in clinics and

medical education in the near future.

Pathology

Data processing and learning have become essential in

advancingmedicine, including the field of pathology and laboratory

medicine. A growing area of expertise termed computational

pathology uses modern digital communication networks and

information integration to provide better-integrated solutions for

whole-slide images, multi-omics data, and clinical informatics

(Cui and Zhang, 2021). Computational pathology attempts to

improve clinical workflow effectiveness, diagnostic quality, and

patient-specific treatment regimens by utilizing digital pathology,

which entails digitizing histopathology, immunohistochemistry,

and cytology slides using whole-slide scanners (Cui and Zhang,

2021).

Various studies have demonstrated the effectiveness of AI

in pathology. Deep neural network-based algorithms have been

developed for accurate image classification and categorization of

various neoplasms including prostate cancer, basal cell carcinoma,

and breast malignancy (Campanella et al., 2019). Similarly,

convolutional neural networks have been shown to outperform

traditional machine learning classifiers in diagnosing prostate

cancer using different imaging sources (Wildeboer et al., 2020). In

the context of colorectal cancer, AI algorithms have been successful

in classifying different types of colorectal polyps and predicting

patient outcomes based on tissue samples (Korbar et al., 2017;

Bychkov et al., 2018). Additionally, AI has shown promise in

breast cancer diagnosis, biomarker assessment and sentinel lymph

node analysis, leading to increased accuracy and efficiency in

pathologists’ diagnoses (Hamidinekoo et al., 2018; Robertson et al.,

2018; Houssami et al., 2019). CNN techniques have alsodisplayed

notable success in neuropathology immunohistochemistry (IHC),

effectively classifying tauopathies according to p-tau lesions,

categorizing Aβ lesions, and accurately quantifying alpha-synuclein

burden from submandibular gland biopsies (Koga et al., 2021;

Signaevsky et al., 2022; Wong et al., 2022).

Overall, AI’s potential in computational pathology extends

beyond morphological pattern detection. Its ability to integrate

diverse clinical data enables it to contribute to various aspects of the

clinical workflow, significantly improving medical outcomes. As AI

algorithms continue to advance, the collaboration between AI and

pathologists holds great promise for transforming pathology and

delivering better patient care.

Imaging

With the development of extremely precise computer vision

technologies, there has been an upsurge in research into the

subject of AI in clinical radiology. AI has various uses in the field,

including assisted reporting, follow-up planning, data storage,

data mining, and many others. It may also be used to acquire and

process images. It has been used quite extensively in imaging in

various fields ranging from neurology to oncology and applied to

various imaging modalities, ranging from an X-Ray to Positron

Emission Tomography (PET) scan. The major driving force behind

this development was the availability of large datasets through

RadImageNet, REFINE SPECT (REgistry of Fast Myocardial

Perfusion Imaging with NExt generation SPECT), National
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Institutes of Health (NIH). Chest X-ray dataset and other imaging

datasets (Clinical Center, 2017; Slomka et al., 2020; Mei et al.,

2022). ML algorithms, DL networks, and other computational

techniques can be trained on such large datasets of medical

images to learn patterns and features that are characteristic of

different diseases, structures, or abnormalities. Once trained,

the AI algorithm can be applied to new, unseen images to

automatically detect, classify, segment, or enhance them. The

algorithm compares the features of the new images to the patterns

it learned during training, and makes a prediction or decision

based on the similarity between them. CNNs have paved way

for widespread use of AI in imaging modalities. By applying a

number of convolutional filters to the input data, such as images,

CNNs are made to automatically learn and extract significant

features. In many image-related applications, CNNs have

attained state-of-the-art performance, revolutionizing the field of

computer vision.

One of the significant applications of AI in radiology is the

detection of lung diseases. DL algorithms have been used to

detect malignant pulmonary nodules, pneumonia, lung fibrosis,

tuberculosis and pleural effusions on chest radiographs (Nam

et al., 2019; Kundu et al., 2021; Rajasenbagam et al., 2021;

Huang et al., 2022; Li et al., 2022; Kazemzadeh et al., 2023).

Breast cancer detection is another area where AI has made a

substantial impact (Shen et al., 2019; Yoon and Kim, 2021).

The currently available AI technology also allows for automated

echocardiographic measurements including classifying severity

of valvular heart diseases and identification of patients with

coronary artery disease (Nedadur et al., 2022; Upton et al.,

2022; Barry et al., 2023). In a study, a CNN-LSTM model was

constructed to differentiate between the various etiologies of left

ventricular hypertrophy. The DL algorithm’s overall diagnostic

accuracy was shown to be substantially greater than that of

echocardiography experts (Hwang et al., 2022). The applications of

AI echocardiography are way more than the examples mentioned

and is rapidly expanding (Barry et al., 2023).

Ischemic stroke is an disease with highmorbidity andmortality.

The application of AI in stroke imaging has enabled early stroke

diagnosis, automated calculations of Alberta stroke program early

CT score (ASPECTS) score, detection of large vessel occlusion,

evaluation of ischemic core and penumbra, and predicting

functional outcomes after the stroke (Cui et al., 2022). AI has

also been employed for detection and classification of neurological

disorders such as Alzheimer’s disease, multiple sclerosis, acute

cerebral infarction and brain tumors using magnetic resonance

imaging (MRI) data (Eshaghi et al., 2021; Frizzell et al., 2022; He

et al., 2022; Ranjbarzadeh et al., 2023). Notably, AI systems have

been demonstrated to perform better than radiology residents,

general radiologists and neuroradiology fellows in generating top

three accurate differential diagnosis on brain MRI (Rauschecker

et al., 2020). Another use of AI in imaging apart from improving

sensitivity and specificity is in reducing the amount of contrast

agent used and duration of radiation exposure. SubtleGADTM is

a DL model that can predict contrast enhanced images of MRI

with only 10% of contrast agent dose. Structural similarity index

measure (SSIM) between full dose and prediction models was 0.92

± 0.02 using this model (Pasumarthi et al., 2021; SubtleGAD, 2023).

AI has also emerged as a transformative technology in the

field of endoscopy, offering promising advancements with its

sophisticated algorithms and machine learning capabilities like

computer-aided detection (CADe) and diagnosis (CADx) of

abnormalities, such as polyps and lesions, leading to improved

accuracy and reduced miss rates (El Hajjar and Rey, 2020; Okagawa

et al., 2022). AI can also assist in early diagnosis of gastric

cancer as well as staging and estimation of depth of invasion

(Kanesaka et al., 2018; Yoon et al., 2018). Optical biopsy, a

novel application, allows real-time histology prediction based

on endoscopic images, potentially mitigating the need for tissue

sampling. Additionally, AI-driven colonoscope guidance aids in

smoother insertion and loop prevention, benefiting patients and

endoscopists alike. In video capsule endoscopy, AI algorithms aids

in detecting small bowel bleeding, leading to quicker diagnosis

of obscure gastrointestinal bleeding (Pan et al., 2011; Hassan and

Haque, 2015). For IBD patients, AI can analyse colonoscopy images

and predict mucosal inflammatory activity (Maeda et al., 2019).

These applications highlight the potential of AI to revolutionize

endoscopy by improving diagnostic accuracy, reducing procedural

burden, and enhancing overall patient care.

Therapeutics

AI has a pertinent role in disease management and medical

therapeutics. As more evidence-based research is being conducted,

newer data is made available for precise treatment plans

and personalized intervention. Precision medicine involves

using patient data, including genetic information, to develop

personalized treatment plans (König et al., 2017). AI algorithms

can analyse this data to predict patient outcomes and recommend

tailored treatment plans, including medication options (Johnson

et al., 2021). Data repositories have been created to facilitate the

use of genomic data and deep phenotyping to aid in the practice

of precision medicine (Nagai et al., 2017; Bycroft et al., 2018; Stark

et al., 2019). Large amounts of genomic data can be analyzed by AI

models to identify genetic variations that may be associated with

specific diseases or conditions and develop personalized treatment

plans based on an individual’s genetic profile (Huang et al., 2018).

Companies like Foundation Medicine specialize in genomic

profiling of cancer patients to predict tumor behavior and response

to therapy (FoundationOne Liquid CDx, 2023). In a recent phase

III randomized controlled trial, a team from Genentech Inc. and

Foundation Medicine Inc. used circulating tumor DNA (ctDNA)

metrics to predict overall survival and pain-free survival patterns

in patients with non-small-cell lung cancer (NSCLC), assisting in

the early prediction trial outcomes (Assaf et al., 2023).

Clinical decision support systems (CDSS) are software

applications that use AI algorithms to provide healthcare providers

with real-time information and recommendations for patient care

(Sutton et al., 2020). CDSS are typically integrated into electronic

health record (EHR) systems and can provide a range of decision

support functions, including clinical guidelines, health protocols,

drug interaction alerts, clinical documentation, predictive analyses,

and diagnostic and treatment recommendations based on patient-

specific data and evidence-based guidelines (Sutton et al., 2020).
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For example, IBM Watson for Oncology (WFO), a software as a

service (SaaS) developed by IBM Corporation (USA) with the help

of top oncologists from Memorial Sloan Kettering Cancer Center

(MSK), is a cognitive computing decision support system that

provides evidence-based treatment recommendations for cancer

patients (5725-W51 IBM Watson for Oncology, 2020). Studies

have been conducted assessing the efficiency of WFO, and have

reported high consistency between decisions made by WFO and

multidisciplinary teams in most cancers, lower human-made error

rate in chemotherapy drug regimen selection and significant

improvement in work efficiency of doctors providing care to cancer

patients (Jie et al., 2021).

AI is also being used to monitor patient health data in real-

time, also known as remote patient monitoring (Shaik et al., 2023).

For example, the start-up company Current Health has developed

a wearable device that monitors patients’ vital signs and uses AI to

detect early warning signs of deterioration, which can help prevent

hospital readmissions (Hospital at Home Powered by Current

Health, 2023). AI-powered tools are also being used to monitor

patient medication adherence, detecting when patients miss doses

or stop taking medication (Babel et al., 2021).

Prognosis and outcome prediction

One of the significant impacts of AI on healthcare is the ability

to accurately predict disease prognosis. Prognosis is the prediction

of the probable outcome of a disease, which is critical in healthcare,

as it helps doctors make informed decisions about patient care,

including treatment options and future health management (Rizzi,

1993).

One of the most widely used techniques is predictive modeling,

which usesML algorithms to analyse enormous amounts ofmedical

data to find patterns and correlations that can forecast a patient’s

likelihood of contracting a specific disease or the likely course

of that disease (readmissions, mortality, etc.). Through big data

analytics, AI systems are able to develop predictive models that

can identify patients who are at risk of developing certain diseases

or conditions. One such venture is DeepMind, a subsidiary of

Alphabet, that has an AI system that can predict the onset of acute

kidney injury up to 48 h in advance using patient data (Using AI

to give doctors a 48-hour head start on life-threatening illness,

2023). In order to estimate the death of dialysis patients while

they are waiting for a kidney transplant, a method for survival

prediction based on ML technique was recently proposed using

sociodemographic data (Díez-Sanmartín et al., 2023). Studies have

demonstrated the efficacy of ML models in predicting symptoms

and mortality associated with COVID-19 using evidence that is

readily available to patients as well as professionals (Jamshidi

et al., 2021). As a result, both can assess the disease’s severity

quickly, enabling doctors to make better-informed healthcare

decisions on hospitalization. Random forest ML models have

also been validated for predicting 90-day readmission risk and

cause at the time of discharge from index admissions for chronic

obstructive pulmonary disease (COPD) patients (Bonomo et al.,

2022). Recently, eXtreme Gradient Boosting (XGBoost) MLmodels

trained on large COVID datasets have also been developed and

validated to identify potential long COVID among all patients with

COVID-19 with high accuracy (Pfaff et al., 2022).

To create more accurate and thorough prognostic models,

AI may combine and analyse data from many sources, including

omics (e.g., genomes, proteomics, and metabolomics) data, lifestyle

factors, clinical measures, and demographics. For instance, the

application of ML algorithms to multi-omics data has revealed

novel chemicals such as cytokines, lipids, and metabolites as

predictive biomarkers of severe and catastrophic outcomes after

COVID-19 infection (Byeon et al., 2022). Recurrent neural network

(RNN), a DL AI technology, has also been shown to predict 30 days

of all-cause readmission following discharge from a heart failure

admission (Allam et al., 2019). ML approaches have been used to

predict COPD patients’ 30-day hospital readmissions using data on

their physical activity continually obtained via an accelerometer-

based device (Verma and Lin, 2022).

In summary, AI shows great promise in revolutionizing the

field of disease prognosis and outcome prediction. This can further

assist clinicians and healthcare institutions to prioritize care and

judiciously allocate resources.

Research

The field of clinical research is constantly evolving, with

new technologies and methodologies being developed to improve

patient outcomes and advance medical knowledge. AI has the

potential to transform the way clinical research is conducted, by

enabling researchers to analyse large datasets, identify patterns

and correlations, and make more accurate predictions about

patient outcomes.

ML and DL have the ability to automatically identify patterns

of meaning in huge datasets such as text, audio, or images,

whereas NLP is capable of understanding and correlating evidence

in spoken or written language. These capabilities can be used

to automatically and continuously monitor patients throughout

the trial as well as to correlate large and diverse datasets

like EHRs, medical literature, and trial databases for better

patient-trial matching and recruitment before a trial starts. By

minimizing population heterogeneity, selecting patients who are

more likely to have a measurable clinical outcome, and identifying

a population more likely to respond to a treatment, AI models and

methodologies can also be used to improve patient cohort selection

(Harrer et al., 2019).

The process of discovering and studying newer therapies are

often hindered by slow patient recruitment and selection processes

AI can speed up the recruiting process, aid in the identification

of possible participants, and ensure that the proper patients

are chosen for the study, a phenomenon known as “electronic

phenotyping” (Banda et al., 2018). Finally, by utilizing generative

and prediction-based AI, ML, and reasoning techniques, AI can

help with preclinical ligand discovery, drug-target testing, and

defining lead compounds for clinical trials (Harrer et al., 2019;

Bender and Cortés-Ciriano, 2021).

The integration of AI in clinical trials offers various strengths

such as shorter patient recruitment times, less manpower for

conducting studies and greater efficiency of dealing with data, but
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it also presents some notable weaknesses that need to be addressed

(Khan et al., 2023). One significant challenge is the lack of data

standardization, as diverse data sources and formats can hinder the

seamless integration of data into AI algorithms, leading to potential

biases and reduced accuracy. Additionally, the use of AI in clinical

trials raises ethical and regulatory concerns, such as patient consent,

data privacy, and potential biases in algorithmic decision-making.

The interpretability and transparency of AI algorithms can also be

problematic, as some models are considered “black boxes,” making

it difficult to understand how they arrive at certain predictions.

This lack of transparency can raise concerns for regulatory

approval and may affect the trust of researchers and patients in

AI-driven technologies. Moreover, implementing AI technologies

in clinical trials may require substantial financial investment

and specialized infrastructure, which may not be feasible for all

research settings. Lastly, the limited generalizability of AI models

trained on specific datasets may hinder their transferability to

different patient populations or geographic regions, limiting their

overall applicability in diverse healthcare settings. Addressing these

weaknesses will be crucial to unlock the full potential of AI in

clinical trials and to ensure its responsible and effective use in

advancing medical research and patient care.

AI in developing countries

While AI is making its way into a myriad of fields within

the healthcare space (Table 2), a major sector of healthcare in

developing nations remains underserved and in dire need of

such tools. The quality and availability of healthcare services in

developing countries significantly lags behind developed countries.

This emphasizes on the requirement of technology to bridge this

wide gap and ensure basic healthcare access in low and middle

income countries (LMIC).

In most developing nations, healthcare workers are

overburdened and face time constraints. AI-powered systems can

automate many tasks, such as data entry and patient scheduling,

which can free up healthcare providers’ time and improve patient

care. In rural areas and remote regions where the population lacks

access to proper infrastructure and healthcare professionals, AI

can fill the gap through telemedicine (Kuziemsky et al., 2019;

Alami et al., 2020). To attain health goals, mHealth uses wireless

and mobile technologies. Mobile phone usage has grown rapidly

in low-income nations, opening up an array of opportunities

for employing such technologies to aid in health initiatives. AI

solutions based on smartphones offer a potential remedy for

screening underserved and under-resourced populations, enabling

quick treatment, halting illness progression, and lowering mortality

and morbidity (Alami et al., 2020). A smartphone app created at

Emory University, for instance, can evaluate pictures of fingernail

beds to calculate hemoglobin levels (Mannino et al., 2018). In

a pilot trial, the application’s sensitivity for detecting anemia

was 97%. Machine-learning algorithms have been developed by

a number of research collaborates to identify skin disorders in

images recorded by smartphones (Pangti et al., 2021; Ouellette and

Rao, 2022). A deep-learning technology developed by Stanford

University (Stanford, CA, USA) researchers proved capable to

characterize skin cancer with performance at par with certified

dermatologists when evaluating clinical images (Esteva et al., 2017).

Similar to this, smartphone applications have been developed with

sensitivities and specificities of over 90% to detect dermatitis and

psoriasis. These techniques could significantly broaden access to

routine skin disease screenings and make it feasible for front-line

staff to detect these conditions promptly (Chan et al., 2020).

Smartphone applications can also accurately identify Parkinson’s

disease by analyzing patient voice samples using machine-learning

algorithms (Singh and Xu, 2020). Other AI tools are also being

used in developing nations to increase remote access to quality

care. An excellent example of this is the use of deep learning and

neural networks in remote screening for early changes in diabetic

retinopathy (DR), so that patients can be diagnosed and referred

to higher centers for management much earlier as compared to

diagnosis with conventional screening methods. This application

delivered via a smartphone device has been shown to have a high

sensitivity and specificity in detecting DR for early referral to an

ophthalmologist (Sosale et al., 2020). Another major development

for DR screening is the DL system (Inception-V3), which has a

high sensitivity (≥96%) and specificity (≥93%) in detecting DR.

It was tested and validated by Google AI using a large training

dataset of 128,175 and two separate publicly available datasets

(Gulshan et al., 2016, 2019). ML models are also being trained to

identify newborns with risk of birth asphyxia (Onu et al., 2017;

Sachin et al., 2017; Darsareh et al., 2023). Given the high neonatal

mortality in low and middle income countries, this could prove to

be a revolutionary application of AI in such circumstances.

The role of AI in pandemics is also prominent, as it can be

used to predict and mitigate the spread of infectious diseases. For

example, AI-powered systems can analyse data from social media

and other sources to identify potential disease outbreaks, which

can enable early interventions to prevent the spread of the disease,

assist in source identification, hotspot detection and, tracking and

forecasting (Zeng et al., 2021; Brownstein et al., 2023). Various AI

models have been employed to detect infectious disease outbreaks

such as dengue, zika virus, influenza etc. (Akhtar et al., 2019;

Anno et al., 2019; Zhu et al., 2019). Similarly, AI-powered contact

tracing systems can help track and isolate individuals who may

have been exposed to a disease (Saba and Elsheikh, 2020; Abbar

and Mokbel, 2021; Wahid et al., 2023). The recent COVID-19

pandemic illustrated all too well the severe shortage of qualified

medical professionals and also the inherent risks of infection

due to person-to-person contact, culminating into a public health

crisis. AI emerged as an ally in our fight against the pandemic

by enhancing screening, treatment, contact tracing, prediction and

forecasting and, drug and vaccine development (Lalmuanawma

et al., 2020). Multiple ML and DL models were also developed

during the pandemic to assist in triaging of patients and prioritize

healthcare to the most needy (Liang et al., 2020; Wang et al., 2020;

Park et al., 2022; Rajendran et al., 2022).

Finally, AI can play an important role in national database

creation (Lauricella and Pêgo-Fernandes, 2022). In many

developing nations, there is a lack of reliable data on healthcare. By

ensuring that vital information is accessible for making informed

policy and programme decisions, health informatics can aid

in the shaping of public health projects. Health informatics

relies heavily on EMRs, which are digital versions of patient and

population health data. In an era of networked computers, their
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TABLE 2 AI innovations in clinical medicine.

AI tool/
software/company

Utility

Clinical evaluation

Suki (For Physicians, 2023) • AI voice assistant for physicians to assist in taking notes and maintain electronic health records

VisualDx (2023) • Clinical decision support tool that uses images and searchable clinical features to assist physicians in the diagnostic decision-making process

Isabel DDx Companion

(2023)

• Diagnostic decision support tool that uses artificial intelligence and natural language processing to help clinicians improve their diagnostic

accuracy

• The system allows clinicians to enter a patient’s symptoms, medical history, and other relevant information into the system, which then

provides a list of potential diagnoses and related information to help the clinician make an accurate diagnosis

Medical imaging

Radiology AI (2023) • AI-powered software platform that analyzes X-ray, CT, and MRI images to flag critical findings and prioritize cases for radiologists

• It can detect abnormalities such as intracranial hemorrhage, pulmonary embolism, and spine fractures, and has been shown to reduce

turnaround times for urgent cases

qXR by qure.ai (qXR, 2023) • Deep learning technology trained on over 4.2 million X-rays, aids in detecting comprehensive findings across lungs, pleura, mediastinum,

bones, diaphragm, and heart on a chest X-ray

• It segregates normal X-rays to reduce TAT for reporting and flags radiological signs of diseases like TB, lung cancer & heart failure

Viz.ai (2023) • A company that offers AI-powered solutions in the field of healthcare imaging

• Viz.ai LVO uses deep learning algorithms to analyze CT scans of the brain and detect large vessel occlusions (LVOs) in patients with suspected

stroke with high accuracy and also sends an automated alert to the stroke team, allowing them to quickly initiate treatment

• Viz.ai CTP analyses CT perfusion images and provide automated analysis of blood flow, volume, and permeability. Similarly, the company

has other AI-based softwares in other fields of imaging

Arterys (Medical Imaging

Cloud AI for Radiology,

2023)

• AI-based medical imaging analytics company that offers a cloud-based platform for analyzing CT scans, X-rays, Cardiac MRI and Digital

Breast Tomosynthesis

Therapeutics

AiCure (Patient Connect,

2023)

• Mobile App to assist in monitoring patient medication adherence in real-time using computer vison

IBM watson for oncology

(5725-W51 IBMWatson for

Oncology, 2020)

• Cognitive computing decision support system that provides evidence-based treatment recommendations for cancer patients

Lexicomp (2023) • Clinical decision support tool and drug information database that provides healthcare professionals with accurate, up-to-date information

on drugs, dosages, drug interactions, and clinical guidelines

Research

Deep 6 AI

(Home—Deep6.ai, 2023)

• A clinical trial recruitment platform that uses AI to identify eligible patients for clinical trials. The platform analyzes electronic health

records (EHRs) to find patients who meet the inclusion and exclusion criteria for a given trial, and then matches them with available trials

Medidata AI (2023) • A clinical trial management platform that uses AI to automate various aspects of the trial process, such as data capture and analysis

• The platform uses natural language processing (NLP) to extract data from various sources, such as electronic health records (EHRs) and

medical imaging data, and then analyzes the data to identify trends and patterns

use has increased significantly in low-resource settings, which

has increased the potential applications of AI to enhance public

health decision-making and informatics. To make data entry

quicker, more accurate, and easily verifiable, health records can be

digitalized utilizing already available AI tools like optical character

recognition, speech-to-text, and other NLP techniques. Greater

linkages and record deduplication can be made possible by more

advanced functions, ensuring an uninterrupted continuum of care.

Many developing nations are currently using cloud-based EMR

systems, with OpenMRS serving as one example (Verma et al.,

2021). The system has been used in fields of maternal and child

health as well as HIV management and has been found to increase

the completeness of data collected and close critical gaps in care

(Haskew et al., 2015a,b).

AI-based solutions can efficiently bring advanced, personalized

expertise to themost far-flung patients and enable targeted, patient-

centered healthcare delivery. The deployment of AI conserves

human resources and ensures equal access to healthcare for people

who reside away from major cities. Additionally, it can reduce the

cost of basic medical care for individuals who cannot afford to visit

a real doctor for treatment.

AI in healthcare: the way forward

The research and application of AI in healthcare encounter a

variety of difficulties, such as ethical dilemmas, legal issues, security

concerns, and public acceptance (Cath, 2018). Informed consent,

privacy, data protection, ownership, objectivity, and transparency

are major issues in data ethics (Kayaalp, 2018). Patient rights

and data use are questioned by the ownership of personal health

data. Another key ethical problem is unfairness based on by

prejudiced data, which can be generated by biases that stem from

socioeconomic, racial, or gender reasons (Rajkomar et al., 2018).
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Healthcare disparities and ethical issues including biased resource

allocation may result from it. Human elements such as mistakes

made by developers or doctors could threaten patient health, which

adds to concerns about AI security. Legal frameworks for DNA

transmission, storage, and collecting ought to be strengthened. The

application and standardization of AI-based healthcare solutions

are made more difficult by the lack of globally established standards

and regulations for AI in medicine. Finally, patients may place

more trust in doctors than in AI-based diagnoses, which could pose

problems with both trust and accountability.

The following steps can be taken to address the challenges

mentioned earlier and to ensure smooth integration of AI

in healthcare:

• Preliminary algorithms must be developed and tested for

stability and safety before being applied in small-scale clinical

settings. These algorithms should be optimized through

experience in studies and eventually applied in large-scale

clinical settings.

• By integrating blockchain and big data technologies, high-

quality datasets can be securely stored and maintained.

• To manage the entire procedure and provide complaint

channels for issues to be addressed and resolved quickly, a

separate supervisory department must be established.

• An independent ethics committee must be established to

oversee the entire AI development process, addressing ethical

issues in data, resource allocation, and practice.

• Patients must retain ownership of their medical data, while the

right to access the data for healthcare improvement purposes

can be granted to healthcare providers or government entities.

• To ensure fairness, marginalized populations must be

considered, and equal outcomes, performance, and allocation

must be prioritized.

• A comprehensive legal system must be established to regulate

every step of AI integration into healthcare. The system must

be flexible, guiding AI development without hindering it.

• Doctors must remain skeptical of AI-generated information

and make informed decisions based on patients’

specific circumstances.

• AI products must be user-friendly, reliable, and stable.

Feedback from users should be used to improve product

performance and functionality.

• Increasing public exposure to AI through offline experience

stores, social media, and live broadcast platforms

can foster greater acceptance and trust in AI-based

healthcare technologies.

As we conclude this review, its necessary to mention

‘Friedman’s fundamental theorem of informatics’ which posits

that the combination of human intelligence and AI is superior

to human intelligence alone (Friedman, 2009). By integrating AI

into our decision-making processes, we can leverage its strengths,

such as processing large volumes of data, pattern recognition, and

unbiased analysis, while also harnessing the creativity, empathy,

and contextual understanding that humans bring to the table. The

theorem suggests that a synergistic partnership between humans

and AI will lead to better outcomes than relying solely on either

entity. The integration of AI in healthcare is not meant to

replace doctors, but rather to reshape their roles and augment

their capabilities. In domains where challenges and complexities

abound, such as healthcare, the integration of AI has the potential

to improve diagnostics, treatments, and overall care, while still

emphasizing the crucial role of human touch and emotional

intelligence. In the era of AI, various industries are increasingly

embracing this technology, and the medical field is no exception.

This collaboration between humans and AI has the power to

drive innovation, enhance decision-making, and foster a more

informed and adaptive workforce, ultimately benefitting society as

a whole.

Conclusion

In conclusion, AI has demonstrated significant potential

in shaping the future of clinical medicine. From enhancing

history taking and clinical examination to streamlining imaging,

therapeutics, prognosis and research, AI has made substantial

strides in various aspects of patient care. Additionally, AI’s

contributions to healthcare in developing nations have bridged

disparities and improved access to quality care. As AI technologies

continue to evolve, it is essential for the medical community

to embrace this innovation, ensuring ethical and responsible

applications to optimize patient outcomes and promote global

health equity.
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