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In recent years, precision agriculture and smart farming have been deployed

by leaps and bounds as arable land has become increasingly scarce. According

to the Food and Agriculture Organization (FAO), by the year 2050, farming

in the world should grow by about one-third above current levels. Therefore,

farmers have intensively used fertilizers to promote crop growth and yields, which

has adversely a�ected the nutritional improvement of foodstu�s. To address

challenges related to productivity, environmental impact, food safety, crop losses,

and sustainability, mobile robots in agriculture have proliferated, integratingmainly

path planning and crop information gathering processes. Current agricultural

robotic systems are large in size and cost because they use a computer as a server

and mobile robots as clients. This article reviews the use of mobile robotics in

farming to reduce costs, reduce environmental impact, and optimize harvests.

The current status of mobile robotics, the technologies employed, the algorithms

applied, and the relevant results obtained in smart farming are established. Finally,

challenges to be faced in new smart farming techniques are also presented:

environmental conditions, implementation costs, technical requirements, process

automation, connectivity, and processing potential. As part of the contributions

of this article, it was possible to conclude that the leading technologies for the

implementation of smart farming are as follows: the Internet of Things (IoT),mobile

robotics, artificial intelligence, artificial vision, multi-objective control, and big

data. One technological solution that could be implemented is developing a fully

autonomous, low-cost agricultural mobile robotic system that does not depend

on a server.

KEYWORDS

mobile robotics in agriculture, smart farming, path planning in agriculture, IoT in

agriculture, unmanned ground vehicle in agriculture, precision agriculture, intelligent

agriculture

1. Introduction

In recent years, the global population has increased unprecedentedly, leading to

significant changes in food demand (Dhumale and Bhaskar, 2021). As we move into the

future, it is expected that the demand for food will continue to rise, driven by factors such as

population growth, urbanization, and changing dietary preferences. In addition, the effects

of climate change have also impacted food demand and supply, creating new challenges

for the food industry (Dutta et al., 2021). In Springmann et al. (2018), it is mentioned

that by 2050, the food chain might increase production by 50%. Besides, the FAO shows

that the world population will reach approximately 10 billion by that year (Ahmed et al.,

2018). This population increase affects the environmental conditions, which changes the

harvesting process forcing farmers to use fertilizers and pesticides (Shafi et al., 2019). The
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residuals of those chemical pollutants contaminate water

(Rajeshwari et al., 2021). Another concern is the nutritional

outcome that offers food since the previous statement that the

environmental condition worsens, creating floods and droughts.

Therefore, humans are not receiving enough nutrients to be

healthy by eating processed food, requiring pills and supplements

(Mostari et al., 2021). The Intergovernmental Panel on Climate

Change (IPCC) warns that global warming reduces the nutritional

value of crops due to the intensive use of fertilizers to boost crop

yields; they also predict that in the incoming years, people might

suffer from zinc deficiency, causing even their psychological and

cognitive disorders (Ryan et al., 2021).

Technology in the food production industry is a significant

challenge that impedes progress and innovation in this critical

sector. With the rapidly growing global population and increasing

demand for food, it has become imperative to adopt technological

advancements to improve food production and distribution (Ferrag

et al., 2021). However, in many parts of the world, particularly in

developing countries, technology in food production still needs to

be improved, resulting in low productivity, high food losses, and

reduced efficiency. Given that a big part of food production is

from developing countries, exists a lack of advanced agricultural

technologies (Khan et al., 2021). They face significant financial

constraints and limited access to modern technologies, which can

impede their ability to improve their food production processes.

This concern also extends to the education and training of

the workforce, who may not have the knowledge and skills

to operate and maintain technological tools and equipment

effectively (Xuan, 2021).

To mitigate the concerns mentioned above about food supply,

FAO proposes four bullet points to guarantee food quality in

the incoming years, which they closely related to the use of

technology since information plays a fundamental role in ensuring

the economic and sustainability impacts of new cutting-edge

techniques in the food production process (Mooney, 2020).

Implementing emerging technologies in agriculture is often

called smart farming, which aims to improve productivity,

efficiency, and sustainability (Raj et al., 2021). In Belhadi et al.

(2021), mention that smart farming might use trend technologies

such as robotics, artificial intelligence, and the IoT. Therefore, these

devices can gather data from crops to extract intrinsic knowledge

from plants to improve agricultural decision-making and reduce

environmental impact (Megeto et al., 2021). However, the full

exploitation of the potential of smart farming presents several

challenges and technical, socio-economic, and administrative

constraints (Mengoli et al., 2021). Works such as Ahmed et al.

(2016), Jawad et al. (2017), Bermeo-Almeida et al. (2018), Kamilaris

and Prenafeta-Boldu (2018), and Rahmadian and Widyartono

(2020) present broad approaches to smart farming and trend

technologies without focusing only on robots. These studies do not

include a detailed discussion of the tools and techniques used to

develop the differentmobile systems and their level of maturity. It is

relevant to discuss the use of mobile robotics in smart farming from

different perspectives and describe their corresponding nuances.

This article stands out from others of a similar nature because

it offers a broad overview of the challenges and opportunities

presented by precision agriculture and robotic farming. The

article focuses on the use of robotics and precision agriculture in

agriculture 4.0 and provides a detailed description of the many

types of agricultural robots used, as well as the techniques and

hardware used for their operation and monitoring. Additionally,

the article highlights the areas where literature is least developed

and suggests potential solutions to address these challenges. Future

trends in precision agriculture and robotics are also discussed,

including the use of multi-objective control algorithms and

artificial intelligence in low-cost mobile robots for planning the best

path while accounting for energy efficiency, soil type, and obstacles,

as well as for evaluating and managing pests and diseases that affect

crops.

This work aims to present an overview of mobile robotics

implemented for agricultural production related to smart farming

techniques. The main contribution of this work is showing the

existing frameworks, tools, and applications where robots are

currently used. Also, it presents shortcomings in smart farming

applications, which might provide future trends in robots. The

rest of the manuscript is structured as follows: Section 2 gives

the smart farming background and provides a detailed overview

of the leading mobile robots with existing technologies. Section

3 presents the discussion highlighting the technical and socio-

economic obstacles to successfully integrating mobile robotics in

agriculture. Section 4 presents the future trends related to mobile

robotics in agriculture. Finally, Section 5 presents the conclusions.

2. Research methodology

A systematic literature review (SLR) was performed to manage

the diverse knowledge and identify research related to the raised

topic (Ahmed et al., 2016), especially to investigate the status of

mobile robotics in precision agriculture. In particular, we searched

for papers on “mobile robotics” with the term “agriculture 4.0”

in the title, abstract or keywords. Prior to the SLR, a review

protocol was defined to ensure a transparent, high quality and

comprehensive research process (Page et al., 2021) including three

steps: formulating the research questions, defining the search

strategy, and specifying the inclusion and exclusion criteria. The

preferred reporting approach for systematic reviews and meta-

analyses (PRISMA) was used to conduct the SLR.

2.1. Review protocol

Before starting the bibliographic analysis, a review protocol was

defined to identify, evaluate and interpret the relevant results of

the research topic (see Table 1). The first step was to formulate

research questions to identify the studies published on the subject of

interest from different approaches. The appropriate keywords were

then identified order to formulate search strings to obtain relevant

information using four databases: IEEE Xplore, Web of Science,

Scopus, and ScienceDirect. To refine the search results, inclusion

and exclusion criteria were defined to evaluate the content of the

publications and used as a preliminary filter of themetadata sources

and limit the scope of the research.
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TABLE 1 Review protocol for SLR.

Review questions RQ1: How are mobile robotics used in agriculture?

RQ2: What technologies, methods, and tools are being

used in agricultural fields?

RQ3: What are the main challenges of multi-objective

control in agriculture 4.0?

Selection criteria Inclusion criteria:

- Journal and conference articles.

- Research published during the period from 2016 to 2022.

- Studies that provide answers to the research questions

posed.

- Literature focused on the application of mobile robotics

in agricultural field activities.

- Early access articles.

Exclusion criteria:

- Summaries of events and seminars.

- Literature focused on the application of mobile robotics

to post-field stages.

- Publications not available in full text.

- Articles in languages other than English.

Literature search Sources: IEEE Xplore, Web of Science, Scopus, and

ScienceDirect for academic literature.

Search strings were used: “agriculture” AND “UGV” AND

“Path Planning” OR “Multi-objective Control” OR “Path

Tracking” OR “Precision Agriculture” OR “Smart Farming”

OR “Agriculture 4.0” OR “IoT”

FIGURE 1

Three-steps evaluation of literature search process (PRISMA).

After performing the SLR, 69 research articles were obtained on

the proposed topic. After the PRISMA selection and eligibility steps

with the help of the Mendeley bibliographic reference manager,

similar files were identified and eliminated, leaving a total 65

research papers, as can be seen in Figure 1.

2.2. Trends in agriculture

The distribution of the 65 articles by year, about 38% of the

most recent scientific papers were published in 2021, reflecting

the considerable progress of agriculture in the context of mobile

robotics, although the pace can still be considered slow compared to

other domains such as healthcare, the manufacturing, the mining,

the automation, the energy, among others (Araújo et al., 2021).

Figure 2 gives the breakdown of publications on the five most

common activities carried out by agriculture 4.0 and the type of

mobile robot employed. The multiple tasks in the field category

include activities such as row recognition and tracking, obstacle

detection and avoidance, and information gathering and reporting

in both outdoor and greenhouse agriculture.

According to the International Federation of Robotics (IFR),

the top five service robot applications for professional use

sold during 2019 and 2020 are: transportation and logistics,

professional cleaning, medical robotics, hospitality, and agriculture

(International Federation of Robotics, 2021). Figure 3 gives the

percentage of robots employed in each of these areas.

3. Background and related works

Smart farming is a technique that uses advanced technology to

optimize yield and efficiency in agricultural production. In Lohchab

et al. (2018), explored the application of IoT technologies in smart

agriculture. Subsequently, in a 2020 review article, Sharma et al.

(2020) focused on the use of artificial intelligence and machine

learning in smart agriculture. Furthermore, in a 2021 review article,

Ratnaparkhi et al. (2020) discussed the implementation of sensor

technologies and Geographic Information Systems (GIS) for smart

agriculture. Finally, in a recent 2022 review article, Botta et al.

(2022) examined the integration of robotics and automation in

smart agriculture. Some topics that very little has been addressed

in smart agriculture are: the integration of smart agriculture

with the circular economy and environmental sustainability,

the development and application of artificial intelligence and

machine learning technologies in pest and disease identification

and management, increased focus on optimizing water use and

irrigation management in response to climate change and limited

water availability, improved connectivity and interoperability of

systems to facilitate large-scale adoption and implementation, and

the development of specific low-cost solutions for small farms

and rural communities in developing countries to improve food

security and reduce rural poverty.

3.1. Smart farming

Smart farming is based on the information provided by

sensors placed on an agricultural field (Ahmed et al., 2016);

Machine Learning (ML) models could learn patterns to support

the farmers’ decision-making (Mammarella et al., 2020; Shorewala

et al., 2021). These sensors joined with a microcontroller sending

data constantly, are considered part of the IoT. Besides, data

might be processed in big servers allocated in the cloud (cloud

computing). However, IoT devices are often a rigid solution since
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FIGURE 2

Mobile robotics activities in agriculture.

they are placed in a single location. Therefore, Autonomous

Robotic Systems (ARS) can walk around crops taking data from the

whole farm and providing accurate information (Ozdogan et al.,

2017; Kamilaris and Prenafeta-Boldu, 2018). This combination

of sensors, data analysis, and robots provides farmers with a

smart farming application with diverse tools to address challenges

related to productivity, environmental impact, food safety, crop

losses, and sustainability. The objectives of smart farming are

to increase crop yields, minimize costs, and improve product

quality through using a modern system (Araújo et al., 2021).

In the last years, with technological evolution, different types

of sensors have been developed that make it possible to collect

data in almost any location, allowing real-time monitoring

of agricultural fields without wiring. Therefore, the three

leading technologies that contribute significantly to this field are

as follows:

• Drones: These are small flying robots commonly used for

crop monitoring, food infrastructure inspection, supply chain

monitoring, and food safety surveillance (Costa et al., 2021).

• Autonomous tractors: These are generally Unmanned

Ground Vehicles (UGV) incorporating sensors and actuators

that enable crop monitoring, irrigation, harvesting, and

disease control (Lisbinski et al., 2020).

• Software for decision making: These are platforms where

data acquired by drones and/or UGV sensors are visualized

and analyzed. They generally provide information on weather,

soil, crop yields, and other factors relevant to agricultural

production to improve decision-making (Ojeda-Beltran,

2022).

FIGURE 3

Percentage of top five applications of service robots in 2020.

3.2. Mobile robotics in agriculture

The emerging field of agricultural mobile robotics is UGV

and UAV (Prakash et al., 2020). The main applications of mobile

robotics in farming are:

• Identify the state of the crop and corresponding application of

chemical products, fumigation, or harvesting, as required by

the fruit or plant.

• Mobile handling through collaborative arms (harvesting,

fruit handling).

• Collection and conversion of helpful information for

the farmer.

• Selective application of pesticides and avoidance of food waste.
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UGV and UAV have limited available power. Therefore, their

design and control optimization is paramount for their application

in smart farming. Therefore, research on the cooperation between

UGV and UAV is being carried out to cover large agricultural

areas. These autonomous robots are intelligent machines capable

of performing tasks, making decisions, and acting in real-time

with a high degree of autonomy (Rahmadian and Widyartono,

2020). Interest in mobile robotics in agriculture has grown

considerably in the last few years due to its ability to automate tasks

such as planting, irrigation, fertilization, spraying, environmental

monitoring, disease detection, harvesting, and weed and pest

control (Araújo et al., 2021). Furthermore, mobile robotics in smart

farming uses a combination of emerging technologies to improve

the productivity and quality of agricultural products (Bechar and

Vigneault, 2016).

UGV are robots that control can be remote (controlled by

a human operator through an interface) or fully autonomous

(operated without the need for a human controller based on

AI technologies) (Araújo et al., 2021). The main components of

UGV are locomotive, manipulator and supervisory control systems,

sensors for navigation, and communication links for information

exchange between devices. The main locomotion systems used

are wheels, tracks, or legs. To properly operate UGV in the field,

they must meet size, maneuverability, efficiency, human-friendly

interface, and safety requirements. Table 2 summarizes the diverse

range of UGVs designed for agricultural operations.

The main issue of mobile robotics in agricultural fields is

to perform multiple tasks (obstacle avoidance, tracking, path

planning, crop data collection, disease detection, among others)

autonomously with reduced hardware for low-cost robots that

can be acquired and implemented by farmers. Most UGV

presented above have a wheeled locomotion system, offering

easy construction and control. Some UGV incorporate low-

cost computer vision systems, i.e., using conventional cameras.

UGV might employ heuristic algorithms still in the conceptual

or prototyping phase. Due to the limitations of UGV and to

cover larger areas and less time, in the last years, the UGV-

UAV collaboration has been developed (Khanna et al., 2015).

The UGV operates in the areas selected by the UAV, which also

cooperates in the generation of 3D maps of the environment with

centimeter accuracy; however, merging themaps generated by UAV

and UGV in an agricultural climate is a complex task since the

generated maps present inaccuracies and scale errors due to local

inconsistencies, missing data, occlusions, and global deformations

(Gawel et al., 2017; Potena et al., 2019). Table 3 reviews some

collaborations between UGV and UAV in smart farming.

Most collaborative systems between UAV and UGV are in the

conceptual (simulation) phase.

3.3. Multi-objective control in smart
farming

Agricultural systems use and produce energy in the form of

bioenergy and play a vital role in the global economy and food

security. Modern agricultural systems might therefore consider

economic, energy, and environmental factors simultaneously

(Banasik et al., 2017). Multi-objective control is an important tool

in smart farming to simultaneously run and optimize multiple

objectives, such as productivity, water use efficiency, product

quality, and economic profitability. Some cases of multi-objective

control in smart farming are presented in Table 4, which shows

their primary function, control techniques, and the hardware

deployed. However, there are few studies since this topic is new in

smart farming applications with mobile robots. Furthermore, path

planning is an essential application of smart agriculture that focuses

on optimizing routes and movements of agricultural machinery to

improve efficiency and reduce production costs (Nazarahari et al.,

2019).

Another application of multi-objective control in path planning

is the optimization of fertilization and pesticide application in

crops. According to a study by Zhao et al. (2023), multi-

objective control can optimize the routing of pesticide and fertilizer

application machinery to reduce the number of inputs used and

improve application efficiency. In addition, multi-target control

can also improve product quality and reduce environmental

pollution by accurately applying crop inputs.

Finally, a study proposes a Residual-like Soft Actor-Critic (R-

SAC) algorithm for agricultural scenarios to realize safe obstacle

avoidance and intelligent path planning of robots. The study

also proposes an offline expert experience pre-training method

to improve the training efficiency of reinforcement learning.

Experiments verify that this method has stable performance in

static and dynamic obstacle environments and is superior to other

reinforcement learning algorithms (Yang et al., 2022).

4. Discussion

With the information mentioned above about mobile robots in

smart farming, this section aims to show the future steps in this

research field related to its challenges. Given the new UGV and

UAV trends in Table 2, the multi-objective control has yet to be

widely explored in smart farming applications. It might be due to its

complex setup and the expensive computational resources needed.

However, multi-objective applications might be doable in incoming

robots with the increasing microcontrollers and microprocessor

development. Conversely, IoT devices that collect data from farms

are extensively deployed in several applications. However, there

are new concerns about their confidentiality and the risk that data

is exposed when traveling by communication channels (Pylianidis

et al., 2021).

Smart farming needs final devices with robust systems working

in harsh conditions in outdoor scenarios. However, several works

have shown prototypes with their tentative functionalities. Building

robots may need several debugging rounds to solve issues with the

hardware and software. Consequently, since the robot links people

and plants, farmers, considered experts in smart farming, must

work closely with the robot’s developer. However, the variety of

plant and crop species makes it challenging to develop a multi-task

robot (Selmani et al., 2019).

The main challenges and future research for deploying smart

farming are presented. The present study sought to articulate

mobile robotics with smart farming. Looking at Table 4, it can

be seen that multi-objective control has not been significantly
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TABLE 2 Di�erent types of UGV in agriculture 4.0.

Application Control Hardware Citation

Fusion of color and depth images Remote-controlled Kinect v2 sensor and laptop computer Gai et al., 2020

Artificial vision and weed algorithms Remote-controlled and

autonomous

AgBotII Robotic platform: RGB camera,

GPS, PLC, laptop, others

Bawden et al., 2017

Grid-based using Neural Network Autonomous Laptop and obstacle sensor Arindam et al., 2018

Sampling-Based Method and PSO Autonomous Laptop computer Prakash et al., 2020

Non-holonomic A∗ Autonomous An all-terrain vehicle developed by Polaris

with LiDAR, IMU, and GPS

Zhang et al., 2019

D–S evidence theory Autonomous Laptop, camera, and laser scanner Zhao et al., 2019

Genetic algorithm Autonomous Laptop Tsiogkas and Lane, 2018

Automated Deployment of IoT Networks Autonomous Pioneer 3-AT, Raspberry Pi B2, IMU, GPS,

Arduino Nano, and laptop

Romeo et al., 2020

UTR control using VSC and Hyper Schemes, and Fuzzy

potential motion

Autonomous Computer Banihani et al., 2021

Heuristic path planning Autonomous Computer Wang et al., 2021

Grid-based algorithms Dijkstra, A∗ , and the

sampling-based algorithms RRT and RRT∗

Autonomous Jackal from Clearpath Robotics with Jetson

TX2, and LiDAR

Pak et al., 2022

Kalman filter estimation Autonomous Car-like-type, GPS, a 3D orientation sensor,

and KNRm controller

Sun and Liang, 2022

Allan Variance in a Kalman Filter - Laptop and GPS Luo et al., 2019

Ant Colony Optimization with a Probability− based

random− walk strategy and an Adaptive waypoints

Autonomous Laptop Liu et al., 2022

Robust model predictive control (RMPC) Autonomous Husky A200 with IMU, LiDAR, laptop Khan et al., 2022

Traveling salesman problem (TSP) enhanced with−

Coverage path planning (CPP)

Autonomous Computer Xie and Chen, 2020

Generation optimal polynomial trajectories Autonomous Rover Dedalo Gentilini et al., 2021

Compound Fuzzy Control Autonomous Jingguan PZ-60 with STM32 controller,

laptop, and position sensors

Li et al., 2020

A∗ Algorithm Manual controlled The Kinect sensor, and laptop Nerlekar et al., 2022

Dynamic analysis of skid-steering tracked vehicles Autonomous Robot smaller than a standard tractor Tazzari et al., 2020

Auto-guidance algorithm Manual controlled Stereo camera, angle sensor, electric power

steering, GPS, and workstation ZBOX

QK7P3000

Changho et al., 2021

Voronoi diagram Autonomous Multi-robot Kim and Son, 2020

Algorithm row− change maneuver Autonomous Robotic platform with LiDAR Mengoli et al., 2021

Machine vision algorithms Wheels RGB camera, and laser distance sensor Berenstein and Edan, 2018

Harvesting Convolutional neural

networks

Platform Vegebot with camera, UR10

controller, and laptop

Birrell et al., 2020

Smart irrigation Teleoperation NodeMCU, water level sensor, Arduino,

temperature and humidity sensor

Srinivas and Sangeetha,

2021

explored in smart farming. One of the reasons could be that

applying advanced technologies with complex operations can be

costly. Hence, the development of these technologies in smart

farming should increase in the coming years. Also, the IoT is

widely deployed in agriculture for crop monitoring and tracking.

Therefore, it can be said that IoT is a research trend within smart

farming. However, only a few studies have considered data security

and reliability, scalability, and interoperability when developing a

smart farming system (Pylianidis et al., 2021).

The results presented also show that most of the use cases are

in the prototype phase. One possible reason could be that smart

farming links people, animals, and plants making it more difficult

than creating systems for non-living things. Another reason could

be that the technology is due to the transdisciplinarity of this

field, and therefore for the development of intelligent systems,

farmers should be familiar with these technologies. Finally, the

variety of plant and crop species makes implementing technology

in agricultural fields complex (Selmani et al., 2019). The results
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TABLE 3 Collaborations between UGV and UAV in smart farming.

Primary function Techniques used Hardware Citation

Monitoring and drone landing Re-configurable chassis Solar panels Quaglia et al., 2018

Optimal control for the refueling of UAV Non-linear optimal control Computer Rucco et al., 2017

UAV/UGV trajectory planning Partial Differential Equation (PDE) Computer Radmanesh et al., 2021

Energy-constrained minimization Computer Edmonds et al., 2021

Path-following of UGV/UAV Null Space control Computer Bacheti et al., 2021

Ground station for UAV/UGV Improved Ant Colony algorithm Commercial UAV/UGV, communication

module, and Computer

Liang et al., 2021

TABLE 4 Multi-objective control in agriculture 4.0.

Primary function Techniques used Hardware Citation

Energy management Multi-objective genetic algorithm (MOGA) Computer Shamshirband et al., 2015

Crop pattern optimization Crow Search Algorithm (CSA) and Particle Swarm Optimization

(PSO)

Computer Jain et al., 2021

Optimization of water-food-energy Fuzzy multi-objective programming model Computer Li et al., 2019

Path planner Non-dominated Sorting Genetic Algorithm using Reference

Point Based (NSGA-III)

Computer Azimi-Mahmud et al., 2019

MP-PSOGA algorithm Computer, and UAV Zhai et al., 2018

Combinatorial multi-objective MGV and UGV Chirala et al., 2021

Multi-objective particle swarm optimization (CMOPSO) Computer Mac et al., 2017

Irrigation General Algebraic Modeling System (GAMS) Computer Galán-Martín et al., 2017

also show that most systems developed are for free-range farms.

In addition, it is also evident that research is limited to soil

management, fruit detection, and crop quality management. With

this, it is corroborated that work must be done on research

and development of systems that guarantee the deployment of

smart farming at affordable costs. The natural complexity of

agricultural fields presents a number of obstacles that prevent the

full integration of mobile robotics in smart farming. Therefore,

from the analysis, blockages at the technical and socio-economic

levels have been identified and classified.

4.1. Technical roadblocks

• Interoperability. To establish effective communication

between heterogeneous devices, they need to be

interconnected, and interoperable (Aydin and Aydin,

2020).

• Dataquality. Lack of decentralized systems impedes the

deployment of smart farming (Liu et al., 2022).

• Hardware. A suitable casing must be constructed that is

robust and durable enough to withstand actual field conditions

(Villa-Henriksen et al., 2020).

• Power sources.A proper energy-saving scheme is necessary as

instant battery replacement is complicated. A possible solution

to optimize power consumption is using low-power hardware

and proper communications management (Jawad et al., 2017).

• Wireless architectures. Wireless communication networks

and technologies offer several advantages in terms of low cost,

wide area coverage, network flexibility, and high scalability

(Brinis and Saidane, 2016).

• Security. The nature of agricultural fields leads to risks to data

privacy, integrity, and availability (Chen et al., 2017).

• User interface.Most graphical user interfaces are designed so

that only experts can use them (Del Cerro et al., 2021).

4.2. Socio-economic roadblocks

• Costs. Costs associated with adopting robotic technologies

and systems are the biggest drawback to deploying smart

farming (Sinha and Dhanalakshmi, 2022).

• Return on investment. When implementing new

technologies, farmers are concerned about the payback

time and the difficulties in assessing the benefits (Miranda

et al., 2019).

• Gap between farmers and researchers. Farmer involvement

is paramount to the success of smart farming. Farmers face

many problems during the production process that technology

could solve (Bacco et al., 2019).

Finally, in Charatsari et al. (2022) discusses the importance

of responsibility in the process of technological innovation in the

agrifood industry. It highlights the need to consider not only

technical aspects but also social implications and societal values

when introducing innovative technologies. The authors argue that

the perception of responsible innovation is limited in various

industrial sectors, making it challenging to implement responsible

innovation approaches. The complexity of responsible innovation

in the agrifood industry requires addressing the multiple scales

and levels of interaction between actors and the constant evolution
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of agrifood systems. Therefore, the article emphasizes the need

to adopt responsible innovation practices that consider the

social, ethical, and environmental implications of technological

innovations in the industry.

5. Future trends

The upcoming initiatives related to using robots represent

significant improvements in smart farming. Government

initiatives, public-private sectors, and research work in this field

might contribute to establishing the right conditions to add new

hardware to crops. However, there are some challenges to consider

when developing mobile robots in agriculture such as: navigation

on uneven terrain (loose soil and unpredictable obstacles) without

damaging plants or compromising their own safety, energy

efficiency so that they can operate for long periods of time avoiding

constant human intervention, crop manipulation, integration with

farm management systems and adaptability to different crops and

conditions.

For instance, a robotic system can be developed for smart

farming, starting from a basic architecture with few components

and simple functionality that allows the gradual addition of

features and functionality to create a complex system. Future

trends in smart farming involve using multi-objective control

algorithms and artificial intelligence in low-cost mobile robots to

plan the best trajectory considering energy efficiency, soil type,

and obstacles while monitoring crop growth and assessing and

controlling crop pests and diseases. To ensure good connectivity

and live transmission of crop data, 5G technology needs to

be widely explored. 5G technology minimizes internet costs

and increases information management by remotely performing

accurate inspections of agricultural fields (Abbasi et al., 2021).

Finally, blockchain, combined with IoT and other technologies,

should be applied to address the challenge of information privacy

and security (Bermeo-Almeida et al., 2018).

As seen in the tables in the previous sections, most of the UGV

have a computer, which increases the cost of this type of robots.

Table 5 shows several state-of-the-art boards that could deploy

smart farming at affordable prices for farmers.

Finally, in Figure 4, we can see the future of agriculture,

for which a correct 5G network deployment and path

planning/tracking is essential. Artificial intelligence, machine

learning, machine vision, IoT, and cloud computing are needed in

each of the activities carried out in agricultural fields.

6. Conclusions

Growing concerns about global food security have accelerated

the need to incorporate mobile robots in agriculture. The scientific

community and researchers are integrating disruptive technologies

into conventional agricultural systems to increase crop quality

and yields, minimize costs, and reduce waste generation. This

article analyzes the current state and challenges of smart farming.

Considering the impact of farming on climate change and healthy

food production, it is vital to provide the agricultural sector with

low-cost, functional mobile robots. Research questions were posed

and answered regarding the use of mobile robotics in agriculture,

the technologies, methods, and tools used in agricultural fields, and

the main challenges of multi-target control in this area. Several

conclusions were drawn, such as the integration of scalable mobile

robots incorporating efficient systems. It should be noted that most

cases address a specific problem and are in the prototype phase.

From the SLR conducted, it was identified that research on the

following topics is limited:

• The implementation of digital twins for robot-based

production lines

• Ingenious software project management while narrowing the

impact aspect.

• Blockchain in agriculture.

• Context-aware wireless sensor network suitable for precision

agriculture.

• Internet of Things (IoT) for smart precision agriculture and

farming in rural areas.

• Semantic and syntactic interoperability for agricultural open-

data platforms in the context of IoT using crop-specific trait.

• Multi-objective path planner for an agricultural mobile robot

in a virtual and real greenhouse environment.

• Closing loops in agricultural supply chains using multi-

objective optimization.

• New control approaches for trajectory tracking and motion

planning of unmanned tracked robots.

These areas require further research to improve the efficiency

and effectiveness of precision agriculture. Likewise, the information

gathered in this article makes it clear that the emerging fields of

research are:

• Autonomous navigation. Planning, tracking of trajectories,

and task planning should be considered in this area.

• Energy efficiency. Good navigation autonomy is not the only

thing that must be taken into account, but also the design and

all components that make up the mobile robot since its size

and cost directly influence the deployment of smart farming.

• Communication. Due to the number of devices involved

in smart farming, middleware that improves communication

between field devices and the station is important to ensure

the reliability and security of information.

The interdependence of these challenges means that a

practical solution must be sought with a suitable compromise

between the theoretically optimal path that facilitates information

exchange and overall system energy optimization. Moreover,

the following questions must be considered: the kinematic and

dynamic design of the mobile robot, the terrain traversability,

the computational complexity of the various algorithms to ensure

real-time performance, the use of sensors and low-energy control

boards, and the sending and receiving of information. It also

identifies the leading technical and socioeconomic obstacles that

must be overcome to deploy smart farming successfully. We

can see leaps and bounds being made in this area, but there

is still a long way to go to mitigate the impact of farming on

the environment in the coming years. Finally, one of the areas

to be investigated is multi-objective heuristic optimization for

autonomous navigation, communication, and energy efficiency of

mobile robots.
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TABLE 5 Boards for agriculture 4.0.

Feature Description

Raspberry Pi 4 Model: B+

System on a chip: Broadcom BCM2711

CPU:1.5 GHz quad-core processor with Cortex-A72 arm

GPU: VideoCore VI

Memory: 1/2/4GB LPDDR4 RAM

Connectivity: 802.11ac Wi-Fi / Bluetooth 5.0, Gigabit Ethernet

Video and sound: 2 x micro-HDMI ports supporting 4K@60Hz displays via HDMI 2.0, MIPI DSI display port, MIPI CSI camera port, 4-pole stereo

output and composite video port.

Ports: 2 x USB 3.0, 2 x USB 2.0

Power Supply: 5V/3A via USB-C, 5V via GPIO header

Expansion: 40-pin GPIO header

Jetson Nano Model: B01

CPU:ARM A57 quad-core

GPU: NVIDIA Maxwell 128-core

RAM: 4 GB of 64-bit LPDDR4

Video Encode: 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 (H.264/H.265)

Video Decode: 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 (H.264/H.265)

Connectivity: Gigabit Ethernet 10/100/1000

Power Supply: Micro-USB 5V 2A, Barrel connector 5V 4A

Inputs and Outputs: 4x USB 3.0, USB 2.0 Micro-B, HDMI/DisplayPort, GPIO, I2C, I2S, SPI, UART, Two MIPI-CSI camera connectors, Fan connector,

PoE connector.

Arduino Portenta Model: H7

Microcontroller:STM32H747XI Dual Cortex R©-M7 + M4 32bit low-power Arm R©MCU

Radio module: Murata 1DX dual WiFi 802.11b / g / n 65 Mbps y Bluetooth 5.1 BR / EDR / LE

Secure element: NXP SE0502

Power supply board (USB/VIN): 5 V

Compatible battery: Single cell Li-Po, 3.7 V, 700 mAh minimum

Circuit operating voltage: 3.3 V

Consumption: 2.95 µA in standby mode

Display connector: MIPI DSI and MIPI D-PHY host for interfacing with a large low pin count display

GPU:Chrom-ART Graphics Hardware AcceleratorTM

Timers: 22x timers and watchdogs

UART: 4 ports (2 with flow control)

PHY Ethernet: 10/100 Mbps (through expansion port only)

SD card: Interface for SD card connector (only through expansion port)

Operational temperature:−40 ◦C to +85 ◦C

High density connectors: Two 80-pin connectors will expose all on-board peripherals to other devices

Camera interface: 8 bits, up to 80 MHz

ADC: 3× ADC with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS)

DAC: 2× 12 bits (1 MHz)

USB-C: Host/device, DisplayPort output, high/full speed, power supply

Finally, numerous international political organizations play a

crucial role in spreading awareness of the technologies involved

in precision agriculture and advocating for their successful

implementation. These organizations are:
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FIGURE 4

Future of agriculture.

• The FAO promotes the use of advanced agricultural

technologies through programs and projects, providing

technical assistance, training, and resource access for farmers.

• The European Union (EU) supports agricultural

modernization and the adoption of innovative technologies

in the industry through its Agricultural Common Policy

(ACP). Additionally, the UE funds research and development

projects in precision agriculture, agricultural robotics, and

digital solutions to increase efficiency and sustainability.

• The Department of Agriculture (USDA) of the United States

places emphasis on the adoption of cutting-edge agricultural

technologies. The USDA supports the implementation of

precise agriculture systems, the integration of sensors and IoT

devices into agricultural operations, and the promotion of

digitalization in the industry through its funding and grant

program.

• The focus of AGRA is to encourage the use of contemporary

agricultural technologies across the African continent. AGRA

works in close partnership with governments, regional

organizations, and the private sector to increase access to

and availability of improved seeds, fertilizers, and digital

farming technologies that boost agricultural productivity and

sustainability.

• TheWorld Economic Forum (WEF) has established initiatives

and projects to advance precision agriculture. TheWEF brings

together many actors-including political leaders, business

executives, and members of civil society-through its platform

“Shaping the Future of Food Security and Agriculture” to

develop innovative and collaborative solutions that foster the

digital transformation of agriculture.

These political organizations play a crucial role in the spread of

advanced agricultural technologies, and they are actively working

to promote the adoption of “agriculture 4.0” on a global scale with

the aim of enhancing the efficiency, productivity, and sustainability

of the agricultural sector.
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