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Automated feedback and writing:
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e�ects on students’ performance
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Introduction: Adaptive learning opportunities and individualized, timely feedback

are considered to be e�ective support measures for students’ writing in

educational contexts. However, the extensive time and expertise required to

analyze numerous drafts of student writing pose a barrier to teaching. Automated

writing evaluation (AWE) tools can be used for individual feedback based

on advances in Artificial Intelligence (AI) technology. A number of primary

(quasi-)experimental studies have investigated the e�ect of AWE feedback on

students’ writing performance.

Methods: This paper provides a meta-analysis of the e�ectiveness of AWE

feedback tools. The literature search yielded 4,462 entries, of which 20 studies

(k = 84; N = 2, 828) met the pre-specified inclusion criteria. A moderator analysis

investigated the impact of the characteristics of the learner, the intervention, and

the outcome measures.

Results: Overall, results based on a three-level model with random e�ects

show a medium e�ect (g = 0.55) of automated feedback on students’ writing

performance. However, the significant heterogeneity in the data indicates that the

use of automated feedback tools cannot be understood as a single consistent form

of intervention. Even though for some of the moderators we found substantial

di�erences in e�ect sizes, none of the subgroup comparisons were statistically

significant.

Discussion: We discuss these findings in light of automated feedback use in

educational practice and give recommendations for future research.

KEYWORDS

technology-based learning, automated writing evaluation, writing instruction, feedback,

formative assessment, meta-analysis

1. Introduction

Writing is a fundamental, versatile, and complex skill (Graham, 2019; Skar et al., 2022)

that is required in a variety of contexts. Shortcomings in writing skills can thus hinder

personal, academic, and professional success (Freedman et al., 2016; Graham et al., 2020).

A basic aim of educational systems worldwide is to teach students to become competent

writers; however, evidence suggests that while some students may achieve this goal, not all

do (National Center for Educational Statistics, 2012, 2017; Graham and Rijlaarsdam, 2016).

The situation is even further complicated by the fact that there is a large group of students

from different language backgrounds who aspire to become competent writers in (English as)

a second or foreign language and who are not always able to meet expectations (Fleckenstein

et al., 2020a,b; Keller et al., 2020).

Writing skills are influenced by a variety of factors (Graham, 2018). Interindividual

differences between writers are especially problematic as students with weak writing

skills learn less in all school subjects compared to their more highly skilled classmates
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(Graham, 2019). In order to counteract this disadvantage, writing

skills need to be promoted more in school. However, educational

institutions often lack the time and personnel resources to do

this. Graham (2019) reviewed 28 studies on writing instruction at

school, identifying major indicators of inadequacy, including the

insufficient instructional time devoted to writing (Brindle et al.,

2015) and the absence of the use of digital tools for writing (Coker

et al., 2016; Strobl et al., 2019; Williams and Beam, 2019).

In addition to high-quality, evidence-based teaching practice,

digital technologies can be an asset in the individual promotion

of writing skills. Automated writing evaluation (AWE) systems

are able to assess students’ writing performance, produce

individualized feedback, and offer adaptive suggestions for writing

improvement. Several individual empirical investigations have

already looked into the employment of writing interventions with

automated feedback tools, and some have investigated their effect

on writing performance—with heterogeneous findings. Relevant

moderators of effectiveness, however, have seldom been analyzed.

The purpose of this study is to integrate the quantitative empirical

literature on the subject of automated feedback interventions with

a meta-analytic approach. Beyond the overall effect of automated

feedback on student writing, we are particularly interested in

moderating effects of learner and treatment characteristics.

2. Theoretical background

2.1. Formative assessment and AWE

Formative assessment serves to provide individualized learning

support through a combination of (1) (standardized) learning

progress evaluation, (2) individual task-related feedback, and

(3) adaptive support for learners (Souvignier and Hasselhorn,

2018; Böhme and Munser-Kiefer, 2020). Implementing formative

assessments is a challenge for educational systems, especially when

it comes to higher-order competencies that require complex written

responses from students. Assessing complex language performance

as a necessary basis of individual feedback is a key challenge

for teachers (Zhu and Urhahne, 2015; Fleckenstein et al., 2018).

Especially judgment biases (e.g., tendencies toward leniency or

severity; Jansen et al., 2019, 2021) and the use of simple heuristics

in text assessment (e.g., text length; Fleckenstein et al., 2020a,b)

can lead to inaccurate judgments of students’ performance. Recent

technological developments in the field of Artificial Intelligence

(AI)—like AWE systems—can assist in the process of formative

writing assessment.

The procedure of automatically scoring and evaluating

students’ written work through machine learning (ML) and natural

language processing (NLP) techniques is known as automated

writing evaluation (AWE; Bennett and Zhang, 2015). NLP is a

subfield of AI that deals with the interaction between computers

and humans using natural language. It involves the development

of algorithms and systems that can understand, interpret, and

generate human language. This includes ML algorithms, which

learn from a large dataset of language examples and human ratings.

When trained accordingly, AWE systems can evaluate a range

of features of written text, including grammar, spelling, clarity,

coherence, structure, and content. Based on these text features, they

can assign scores to new texts and provide feedback to the writer

(AWE feedback; Hegelheimer et al., 2016; Hockly, 2018).

AWE technology is utilized in a variety of educational contexts

(Correnti et al., 2022), mainly for summative assessment purposes.

Especially high-stakes standardized tests like the Graduate Record

Exam (GRE) and the Test of English as a Foreign Language

(TOEFL) have been using AWE technology for an automatic

evaluation of students’ writing (Zhang, 2021). In recent years,

many tools have been developed to transfer this technology to

low-stakes in-class writing tasks. The two major potentials of

AWE with respect to formative assessment in writing are (a)

assessment in terms of automatic evaluation of linguistically

complex student responses and (b) individualized support

through immediate and specific feedback based on students’

performance. Various studies have demonstrated the quality of

AWE assessment (Shermis, 2014; Perin and Lauterbach, 2018;

Rupp et al., 2019; Zawacki-Richter et al., 2019). This review,

however, focuses on the second part: Feedback that is based on

the automated assessment. In the field of technology-supported

writing instruction, this typically means supporting learners by

providing adaptive automatic feedback on different textual aspects.

While automatic assessment is not the central subject of this

meta-analysis, it is the necessary foundation for adaptive feedback

and individualized support. Therefore, automated assessment is

an important inclusion criterion for the studies considered in

this meta-analysis.

2.2. Feedback and AWE

Feedback is generally considered to be one of the most effective

factors influencing student learning. This is not only shown by

a solid empirical research base (d = 0.62; Hattie, 2022) but is

also consistent with teachers’ professional beliefs (Fleckenstein

et al., 2015). For writing feedback in particular, a meta-analysis by

Graham et al. (2015) showed effect sizes ranging from d = 0.38

to d = 0.87, depending on the source of the feedback. Despite

these positive findings, process-oriented feedback, in particular, is

rarely used by teachers in the classroom as it requires a lot of time

and effort (Graham and Hebert, 2011). Feedback has a particularly

positive effect on learner performance when it is given in a timely

manner when it clarifies the gap between current performance and

learning goal, when it reduces cognitive load, and when it is task-

related, specific, and detailed (Mory, 2004; Hattie and Timperley,

2007; Shute, 2008; Black and Wiliam, 2009).

In the context of automated text evaluation, the quality of

machine judgments is often evaluated on the basis of their

agreement with human judgments. In terms of reliability and

validity, many studies have come up with satisfactory results in this

regard (Shermis, 2014; Rupp et al., 2019; Latifi and Gierl, 2021).

Human raters do not necessarily outperform technology in all

areas of text evaluation. With respect to segmenting and analyzing

texts, experts tend to make coding errors, whereas with respect

to recognizing relationships between concepts, human raters have

been shown to be superior to technology (Burkhart et al., 2020).

Moreover, both human and machine ratings can be affected by

judgment bias in that certain text features are disproportionately
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included in the judgments (Perelman, 2014; Fleckenstein et al.,

2020a,b).

Especially for writing complex and long texts, the evidence

of the effectiveness of automated feedback has been described

heterogeneously (Stevenson and Phakiti, 2014; McNamara et al.,

2015; Strobl et al., 2019). In addition, Graham et al. (2015) noted

that few randomized controlled experimental studies had been

published. Review articles have either looked at the use of digital

technologies in writing instruction in general (Williams and Beam,

2019; Al-Wasy, 2020) or focused on tools and how they work rather

than their effectiveness (Allen et al., 2016; Strobl et al., 2019; Deeva

et al., 2021).

More recent systematic reviews on the effectiveness of AWE

feedback provided an overview of the relevant empirical studies

and identified research gaps (Nunes et al., 2021; Fleckenstein et al.,

2023). However, they did not quantify the effect of automated

feedback on performance and, thus, could not empirically

investigate the heterogeneity of effects.

Two very recent meta-analyses have examined the effect of

AWE systems on writing performance (Zhai and Ma, 2021; Ngo

et al., 2022). Ngo et al. (2022) performed a meta-analysis of AWE

systems within the context of second or foreign language education.

They found an overall between-group effect size of g = 0.59 and

investigated several moderating variables, including publication

data, population data, and treatment data. Zhai and Ma (2021) also

included studies on first language writing in their meta-analysis and

found an effect size of g = 0.86 for AWE on overall writing quality.

However, as outcomemeasures, the authors included holistic scores

only, leaving out individual components of writing performance.

The authors found significant moderating effects of educational

level, target language learners, and genre of writing.

3. Present study

Our meta-analysis goes beyond the scope of the previous

meta-analyses concerning methodological and theoretical

considerations. Like Ngo et al. (2022), we used a three-level model

with random effects to perform the meta-analysis. However,

whereas both previous meta-analyses included post-test data only,

we included pre-test performance in the between-group analyses

to achieve a more accurate effect size estimation (Morris, 2008).

This is especially relevant when drawing on non-randomized

primary data (i.e., quasi-experimental designs), for which an

equal distribution of pre-test scores across groups cannot be

assumed. Furthermore, we used robust variance estimation (RVE)

to account for the dependence of effect sizes. Like Zhai and Ma

(2021), we included L1 and L2 writers; however, we did not limit

the range of outcomes and thus covered holistic and analytic

measures of writing performance. We also investigated relevant

moderators that have been neglected so far, including the type

and level of outcome, the type of control condition, and the time

of measurement.

This meta-analysis addresses the two following

research questions:

RQ1: What is the overall effect of automated feedback tools on

student learning based on an integration of primary studies?

RQ2: To what extent is the effect of automated

feedback tools moderated by sample, intervention, and

outcome characteristics?

4. Methods

4.1. Inclusion criteria

The analysis of the articles was conducted following the

PRISMA (Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) model (Moher et al., 2009). This model provides

an evidence-based minimum set of items for reporting reviews and

meta-analyses. The selection and coding process for the articles was

based on these standards.

In order to be included in the meta-analysis, studies needed

to meet all of the pre-specified criteria regarding population,

intervention, comparators, outcomes, and study design (PICOS) as

specified below:

• Population: Students in primary, secondary and post-

secondary education (ISCED level 1-7; UNESCO Institute for

Statistics, 2012).

• Intervention: Automated writing evaluation (AWE) providing

individualized or adaptive feedback to individual students.

• Comparators: Students receiving no feedback, non-automated

feedback (e.g., teacher or peer feedback), or a less extensive

form of AWE feedback.

• Outcomes: Writing performance (holistic or analystic) on a

revision or transfer task.

• Study design: Experimental or quasi-experimental study

designs with at least one treatment condition and one

control condition.

Furthermore, studies had to be published in scholarly journals

in order to be included. Studies investigating computer-mediated

feedback by teachers or peers and studies on constructed responses

in the context of short-answer formats were not considered in

this meta-analysis.

4.2. Literature search strategy

The literature search was conducted in several literature

databases (i.e., Ovid, PsycArticles, PsycInfo, Web of Science Core

Collection, and ERIC), using various combinations of keywords:

“automated writing evaluation;” “automated essay scoring;” writing

+ computer-assisted; writing + computer-based; writing +

“intelligent tutoring system;” writing + “automated feedback;”

writing + “electronic feedback;” writing + digital + feedback;

writing+ digital+ scaffolding.

The literature search yielded in a total of N = 4,462 reports.

After removing duplicates, individual abstracts were screened using

the open-source software ASReview (Van de Schoot et al., 2021)

for screening prioritization. The tool uses Machine Learning to

assist researchers in the process of reviewing large numbers of

scientific abstracts. Active learning models iteratively improve

their predictions in ordering the abstracts for presentation to the
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FIGURE 1

Flow-chart of the literature search and screening process (adapted from Moher et al., 2009).

researcher. This procedure has been shown to reduce the number

of abstracts to be screened to <40% while retaining a detection

rate of 95% of the relevant publications (Ferdinands, 2021). So the

goal of ASReview is to help researchers reduce the time and effort

required to conduct a literature review, while also improving the

quality and comprehensiveness of the review. Based on this, n =

125 full texts were screened, identifying n= 20 studies that met the

inclusion criteria. Figure 1 provides an overview of the literature

search and screening process according to the PRISMA guidelines.

Following the identification of relevant studies, a coding scheme

was developed, and all studies were coded by two independent

coders. Any coding that differed was discussed and reviewed by

the first co-authors of this paper and corrected if necessary. The

variables that were coded and included in the moderator analyses

are described in Section 4.5.

4.3. E�ect size calculation

The standardized mean differences, also known as Cohen’s d,

between treatment and control conditions were calculated using

the R package esc (Lüdecke, 2019). For studies that did not report

raw statistics (e.g., means and standard deviation), we calculated

Cohen’s d based on other statistical indices (e.g., F- or t-values).

Morris (2008) recommended an effect size calculation based on

the mean pre-post change in the treatment group minus the mean

pre-post change in the control group, divided by the pooled pre-test

standard deviation. This method was shown to be superior in terms

of bias, precision, and robustness to the heterogeneity of variance.

Thus, whenever pre-test values were available, they were considered

in addition to the post-test values (also see Lipsey andWilson, 2001;

Wilson, 2016; Lüdecke, 2019). In further analyses, we conducted

the samemodel but without considering the corresponding pre-test

values to evaluate potential differences in results.

It has been found that Cohen’s d tends to overestimate the

true effect size when the study sample size is small (Grissom and

Kim, 2005), which is the case in some of the included primary

studies. Therefore, all Cohen’s d values were converted into Hedges’

g, which is an unbiased estimator that takes into account the sample

sizes (Hedges, 1981):

g = 1−
3

4 (n1 + n2 − 2) − 1
∗d

To verbally classify the effect sizes, we used a heuristic

derived from the distribution of effects in this research field. This

considered the 33rd and 67th percentile of the absolute value of

all effects found in this meta-analysis: effects smaller than the

33rd were described as small, effects between the 33rd and 67th
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percentiles were described as medium, and effects greater than

the 67th percentile were described as large (see Kraft, 2020, for a

discussion on how to classify effect sizes; Jansen et al., 2022).

4.4. Meta-analytic integration of e�ect sizes

We combined the effect sizes of the included studies by

applying a three-level model with random effects to take into

account that several studies of our meta-analysis reported more

than one effect size (Geeraert et al., 2004; Konstantopoulos,

2011; Cheung, 2014; Van den Noortgate et al., 2015; Assink

and Wibbelink, 2016). This three-level model considers three

levels of variance: variance of the extracted effect sizes at

level 1 (sampling variance); variance between effect sizes of a

single study at level 2 (within-study variance); and variance

between studies at level 3 (between-study variance). Thus, this

hierarchical model accounts for the variation of effect sizes

between participants (level 1), outcomes (level 2), and studies

(level 3).

The multilevel approach is a statistical approach that does

not require the correlations between outcomes within primary

studies to be known in order to estimate the covariance matrix

of the effect sizes. Instead, the second level of the three-level

meta-analytic model accounts for sampling covariation (Van den

Noortgate et al., 2013). Also, the three-level approach allows for

examining differences in outcomes within studies (i.e., within-

study heterogeneity) as well as differences between studies (i.e.,

between-study heterogeneity). If a study reported multiple effect

sizes from the same sample that could not be treated as independent

from each other, we accounted for this non-independence by

using the cluster-robust inference method (also called robust

variance estimation; RVE; Sidik and Jonkman, 2006; Hedges

et al., 2010; Tipton and Pustejovsky, 2015). This estimation

allows for the integration of statistically dependent effect sizes

within a meta-analysis without the need for knowledge of the

covariance structure among the effect sizes. Furthermore, we

conducted moderator analyses to test variables that may reduce

within-study or between-study heterogeneity. For these analyses,

the three-level random effects model can easily be extended by

study and effect size characteristics into a three-level mixed-

effects model.

The amount of heterogeneity (i.e., τ 2), was estimated

using the restricted maximum-likelihood estimator (Viechtbauer,

2005). In addition to the estimate of τ 2, the Q-test for

heterogeneity (Cochran, 1954) and the τ 2 statistic (Higgins

and Thompson, 2002) are reported. In case any amount of

heterogeneity is detected (i.e., τ 2 > 0, regardless of the

results of the Q-test), a prediction interval for the true effect

is provided (Riley et al., 2011). The regression test (Sterne

and Egger, 2005), using the standard error of the observed

outcomes as a predictor, is used to check for funnel plot

asymmetry. The analysis was carried out using R (version 4.1.2;

R Core Team, 2021) and the metafor package (Viechtbauer,

2010) to perform the meta-analyses. In addition, we used the

clubSandwich package (Pustejovsky, 2022) to perform the cluster-

robust inference method.

4.5. Moderation analyses

In combination with the consideration of heterogeneity in our

data and calculated effect sizes, we performed several moderator

analyses. Moderator variables can be used to provide a more

meaningful interpretation of the data and reduce the heterogeneity

of the overall effect. First, we identified possiblemoderator variables

from the full texts of the primary studies: sample characteristics

(educational level and language status); Intervention characteristics

(treatment duration and type of control condition); outcomes

characteristics (time of measurement, type of outcome, and

outcome level). Second, the n = 20 studies included in the meta-

analysis were coded by two authors of this study. Third, based on

the final codes, the primary studies were divided into subgroups

or factors that potentially explain the variance of the observed

overall effect. In the following, the coded variables are explained

in more detail.

4.5.1. Sample characteristics
4.5.1.1. Educational level

Studies that examined the effect of individual AWE feedback

in high school (secondary level) were separated from studies that

investigated higher education (tertiary level) students.

4.5.1.2. Language status

As a sample characteristic, we coded language status into L1

for first or majority language contexts and L2 for second or foreign

language contexts.

4.5.2. Intervention characteristics
4.5.2.1. Treatment duration

Interventions differed greatly in their duration, ranging from

50min to one semester. Thus, we categorized intervention duration

into short (one or two sessions) and long (more than two sessions).

4.5.2.2. Type of control condition

The studies differed in their design with respect to the control

group. In some studies, the control condition received no feedback

of any kind on their writing; in other studies, the control condition

received a different kind of feedback than the intervention group,

such as teacher feedback, peer feedback, or a less extensive form of

AWE feedback.

4.5.3. Outcome characteristics
4.5.3.1. Time of measurement

The reported effects were classified as either post-test

performance (directly after the intervention) or follow-up

performance (time gap between intervention and test.

4.5.3.2. Type of outcome

Most studies on AWE feedback consider either the

performance on a text revision or the performance on a different

writing task. These outcomes differ in their conceptualization, as a

successful revision can be considered performance improvement

and a successful transfer to a new task can be considered learning.
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TABLE 1 Overall average e�ect size and heterogeneity test results including pre-test values.

Weighted ES 95% CI Heterogeneity

k g SE Lower Upper Q df p I2level3 I2level2 I2level1

84 0.55 0.17 0.19 0.91 285.89 83 <0.001 81.37% 3.85% 14.78%

ES, effect size; CI, confident interval; k, number of effect sizes; g, Hedges’ g standardized mean differences; SE, standard error.

TABLE 2 Overall average e�ect size and heterogeneity test results without pre-test values.

Weighted ES 95% CI Heterogeneity

k g SE Lower Upper Q df p I2level3 I2level2 I2level1

84 0.77 0.20 0.35 1.18 985.01 83 <0.000 85,55% 9.71% 4.74%

ES, effect size; CI, confident interval; k, number of effect sizes; g, Hedges’ g standardized mean differences; SE, standard error.

4.5.3.3. Outcome level

Furthermore, outcomes were categorized according to the

level of detail. Outcomes were considered holistic when the effect

referred to a total score or grade for the whole text. Analytic

outcomes were further differentiated for effects concerning

language aspects (e.g., grammar and mechanics) or content aspects

(e.g., unity and number of subthemes) of the text.

5. Results

5.1. Overall e�ect of AWE feedback

A total of k = 84 effect sizes involving N = 2,828 learners

from 20 studies were included in the analysis. The observed

effects ranged from −1.73 to 2.99, with the majority of estimates

being positive (70.24%). The estimated average effect size based

on the three-level model with random effects was g = 0.55

(SE = 0.17) and differed significantly from zero (z = 3.18, p

< 0.001). The comparison of the three-level model with the

conventionally two-level model showed a significantly better

fit for the three-level model, based on the likelihood ratio

test (X2 = 150.36; p < 0.001). Therefore, the application of

the three-level model would better explain the between-group

comparison data.

According to the Q-test, the effect showed significant

heterogeneity (see Table 1). The estimated variance values were τ 2

for level 3 = 0.51 and τ 2 for level 2 = 0.02. A 95% prediction

interval for the estimated effect is given by −1.02 to 2.12. Hence,

although the average effect is estimated to be positive, in some

studies, the true effect may, in fact, be negative.

As a further analysis, we examined whether the overall effect

sizes differ when we ignore pre-test values from primary studies

that provided them and calculated the effect sizes based only on

the post-test values from the studies in concern (see Table 2).

We observed an estimated average effect of g = 0.77 (SE =

0.20). The observed effects ranged from −1.14 to 3.61, with

the majority of estimates being positive (70.24%). Therefore,

the average effect differed significantly from zero (z = 3.87,

p < 0.001). However, a Wald test showed that both effect

sizes did not significantly differ from each other (Q = 0.67,

p= 0.414).

FIGURE 2

Funnel plot of all study e�ects.

5.2. Publication bias

To examine a publication bias, we used a funnel plot to see

whether there is a symmetry of effect sizes, as they should be evenly

distributed on both sides of the centered line, which represents

the overall average effect sizes across all unique samples (Figure 2).

In addition, we ran an Egger’s test to evaluate the statistical

significance of the asymmetry of the funnel plot by using the

squared standard errors of the effect size estimates as a predictor

in the meta-regression (Sterne and Egger, 2005). The results of the

test confirmed that our funnel plot asymmetry is not different from

zero (b = −0.76, SE = 0.69, z = −1.09, p = 0.27, 95% CI [−2.12 -

0.60]), indicating that there are no conspicuous data characteristics,

producing an asymmetric inverted funnel plot. Therefore, we can

assume the absence of a significant publication bias.

5.3. Moderation analysis

To test our hypotheses, we computed a random effects

model with subgroup and regression effects of our coded

moderator variables (see Table 3). For verbal classification,

we used the 33rd percentile (g = 0.23) and the 67th

percentile (g = 0.60) of the absolute values of the effects.

Thus, effects below g = 0.23 were classified as “small,”
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TABLE 3 Moderation e�ects with z-tests against zero.

Moderator k g SE z df p 95% CI

Sample characteristics

Educational level

Secondary 23 0.50 0.16 3.13 4.95 0.03 [0.089; 0.921]

Tertiary 61 0.58 0.25 2.33 12.62 0.04 [0.039; 1.114]

Language status

L1 58 0.40 0.12 3.28 8.86 0.01 [0.124; 0.676]

L2 26 0.72 0.35 2.08 8.71 0.07 [−0.066; 1.506]

Intervention characteristics

Treatment duration

Long 47 0.66 0.22 3.04 14.54 0.01 [0.196; 1.117]

Short 37 0.18 0.11 1.65 3.00 0.20 [−0.163; 0.514]

Type of control condition

No feedback 68 0.59 0.15 3.84 14.70 0.00 [0.261; 0.912]

Other feedback 16 0.40 0.71 0.57 2.85 0.61 [−1.925; 2.73]

Outcome characteristics

Time of measurement

Post 66 0.57 0.17 3.44 18.43 0.00 [0.224; 0.926]

Follow-up 18 0.27 0.27 0.97 5.64 0.37 [−0.415; 0.947]

Type of outcome

Performance 40 0.27 0.18 1.49 4.54 0.20 [−0.211; 0.755]

Learning 44 0.65 0.21 3.12 13.75 0.01 [0.203; 1.101]

Outcome level

Holistic 29 0.50 0.22 2.30 16.91 0.04 [0.04; 0.965]

Content 25 0.57 0.18 3.20 13.84 0.01 [0.188; 0.952]

Language 30 0.61 0.17 3.61 12.00 0.00 [0.241; 0.975]

effects between g = 0.23 and g = 0.60 were classified as

“medium,” and effects above g = 0.60 were classified as

“large.” The moderators were grouped into three categories:

sample characteristics, intervention characteristics, and

outcome characteristics.

5.3.1. Sample characteristics
5.3.1.1. Educational level

We found medium effects for both secondary level (0.50) and

tertiary level (0.58) that were both significantly different from

zero. The difference between the two effects was not statistically

significant (Q= 0.03, p= 0.854).

5.3.1.2. Language status

For samples with the target language as L1, we found a medium

effect (0.40); for those with an L2 background, the effect can be

categorized as large (0.72). Both effects significantly differed from

zero. The effects did not significantly differ from each other (Q =

0.82, p= 0.365).

5.3.2. Intervention characteristics
5.3.2.1. Treatment duration

Long interventions of more than two sessions showed a large

significant effect (0.66), whereas short interventions of one or two

sessions showed a small non-significant effect (0.18). However, the

difference between the two effects was not statistically significant (Q

= 1.32, p= 0.250).

5.3.2.2. Type of control condition

For those Intervention groups that were compared to a control

condition without any kind of feedback, the effect was significant

and of medium size (0.59). When compared to a group with

a different kind of feedback, the medium effect (0.40) was not

significantly different from zero. However, the difference between

effects was not statistically significant (Q= 0.16, p= 0.684).

5.3.3. Outcome characteristics
5.3.3.1. Time of measurement

For both post-test performance (0.57) and follow-up

performance (0.27), we found effects that fall in the medium
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category. However, the follow-up effect did not significantly differ

from zero, whereas the effect on post-test performance did. The

difference between the effects was marginally significant on the

10%-level (Q= 2.71, p= 0.099).

5.3.3.2. Type of outcome

The medium effect (0.27) for revision tasks as the outcome

(performance) was not significantly different from zero. For

transfer tasks (learning), the effect was large and significant (0.65).

Again, the difference between effects was not statistically significant

(Q= 1.75, p= 0.186).

5.3.3.3. Outcome level

The effects of the three outcomes were all of medium-large

size (holistic: 0.50; content: 0.57; language: 0.61), and they were

all significantly different from zero. The three effects did not

significantly differ from each other (Q= 0.51, p= 0.773).

6. Discussion

In the following, we discuss the central findings of this meta-

analysis. Before we provide insight into automated feedback use in

educational practice and give recommendations for future research,

we briefly summarize our findings regarding the overall effect of

AWE feedback and the moderator analyses.

6.1. Summary

This meta-analysis examined the overall effect of AWE

feedback on writing performance by collecting 84 effect sizes from

20 primary studies with a total of 2,828 participants. A medium

effect size of g = 0.55 was obtained using a three-level random-

effects model. The findings support the use of AWE feedback to

facilitate students’ writing development.

The effect size is in line with prior meta-analytic research

by Ngo et al. (2022), who found an overall between-group

effect of g = 0.59. However, it is considerably smaller than

the effect of g = 0.86 found by Zhai and Ma (2022). This

variance in effect sizes may be due to the fact that the latter

meta-analysis did not use a three-level model for their data

analysis. Thus, they did not account for the dependence of effects

reported within one study. They also did not include pre-test

performance in their model; however, neither did Ngo et al.

(2022).

Our robustness check showed that neglecting the pre-test

performance in this research area could lead to an overestimation

of the overall effect size (g = 0.77). However, this effect—although

verbally classified as a large effect—did not significantly differ from

the medium effect found in the original analysis.

Since the data showed significant heterogeneity, we

investigated the impact of several potential moderators, including

characteristics of the sample, the intervention, and the outcome.

Even though for some of the moderators, we found substantial

differences in effect sizes, none of the subgroup comparisons

were statistically significant. This should be kept in mind when

verbally classifying the effect sizes. In the following, we interpret

our findings in light of previous research, especially the two recent

meta-analyses by Ngo et al. (2022) and Zhai and Ma (2022).

Sample characteristics included the educational level and the

language context.We differentiated for secondary and tertiary level,

finding similar effects of medium size for both. This is contrary

to the findings by Ngo et al. (2022) and Zhai and Ma (2022), who

both found larger effects for post-secondary learners compared to

learners at secondary level. However, both previous meta-analyses

only included a very limited number of primary studies drawing on

secondary-level samples (k= 3 resp. k= 6). Thus, it can be assumed

that AWE feedback is similarly effective in both contexts. In terms

of language context, the effect was large for L2 and medium for

L1 contexts. Zhai and Ma (2022) reported a similar finding when

comparing learners of English as a second or foreign language with

native English speakers.

We found a large effect for long-termAWE feedback treatments

but only a small effect for short interventions. This is in line with

Ngo et al. (2022), who even found a small negative effect for short

durations (≤2 weeks). The difference between medium and long

intervention durations in Zhai and Ma (2022), however, was also

not statistically significant. Zhai and Ma (2022) did also not find

a significant effect for feedback combination (AWE only vs. AWE

+ teacher vs. AWE + peer). We took a slightly different approach

and investigated different control conditions, some of which did

not receive any feedback treatment and some of which received

a different feedback treatment (e.g., teacher or peer feedback).

Contrary to expectations, the medium-size effects did not differ

significantly for the two types of control conditions.

Even though many studies in this field report post-test as well

as follow-up outcomes, neither of the two prior meta-analyses

investigated this as a moderator. We found the overall effect on

post-test performance to be of medium size and not significantly

different from zero; the effect on follow-up performance was

small and did not significantly differ from zero. Again, in direct

comparison, the difference between effects did not reach statistical

significance. Neither of the previous meta-analyses looked into

the type of outcome (i.e., performance vs. learning), even though

this is a striking difference between studies that could explain

the heterogeneity. To our surprise, the effect for revision tasks

(performance improvement) was small, whereas the effect for

transfer tasks (learning) was large. Only the latter differed

significantly from zero. This indicates that AWE feedback does

have an impact on learning to write rather than on situational

performance enhancement. Unfortunately, the number of studies

available does not suffice to investigate interactions of type of

outcome with other moderator variables. Zhai and Ma (2022)

only investigate holistic text quality as an outcome. Ngo et al.

(2022) investigated outcome measure as a moderator with seven

categories, finding effect sizes that ranged from g = 0.27 (Grammar

and Mechanics) to g = 0.83 (Vocabulary). However, the effect sizes

did not significantly differ from each other, probably due to small

subgroup sizes. In our analysis of holistic and analytic (content,

language) outcomes, we found very similar effects of medium

size. More research on outcome measures as moderators of AWE

feedback effectiveness is needed to investigate differential effects

more closely.
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6.1.1. Limitations and directions for future
research

Even though effects differed in size for some of the moderators,

these differences were not statistically significant. Thus, the

detected heterogeneity may be explained by variables other than

the ones that we attended to in our moderator analyses. Thus, in

future research, additional moderators need to be investigated. In

other learning contexts, the type of feedback has been shown to

moderate effectiveness (Van der Kleij et al., 2015; Wisniewski et al.,

2020; Mertens et al., 2022). In the context of AWE feedback, we

needmore primary studies that compare different types of feedback

or at least provide sufficient information on the details of their

feedback intervention. Moreover, the design and presentation of

automated feedback have rarely been investigated (for an exception,

see Burkhart et al., 2020).

The potential to identify publication bias in a certain area

of research is one of the strengths of meta-analytic research. We

assessed publication bias by testing the asymmetry of the funnel

plot, finding no indicator for bias. However, a more thorough

analysis of publication bias is needed. In order to find out

whether non-significant or small effects of AWE feedback tend to

remain unpublished, the respective meta-analysis should include

unpublished or non-peer-reviewed primary studies.

The variance in estimated effect sizes across AWE feedback

meta-analyses calls for a second-order meta-analysis. The purpose

of a second-order meta-analysis is to estimate the proportion of

the variance in meta-analytic effect sizes across multiple first-order

meta-analyses attributable to second-order sampling error and to

use this information to improve the accuracy of estimation for

each first-order meta-analytic estimate (Schmidt and Oh, 2013).

Thus, a second-order meta-analysis would inform AWE feedback

research and provide a more comprehensive understanding of

factors influencing AWE feedback effectiveness.

6.2. Practical implications

This meta-analysis showed that AWE feedback has a medium

positive effect on students’ writing performance in educational

contexts. However, the heterogeneity in the data suggests that

automated feedback should not be seen as a one-size-fits-all

solution, and its impact may vary based on factors such as context

and learner characteristics, the feedback intervention itself, and

outcome measures.

For teachers and school administrators, this implies that AWE

feedback can be a useful tool to support students’ writing in

educational contexts, but its use should be carefully considered and

integrated into a comprehensive approach to writing instruction.

The use of automated feedback should be combined with other

forms of support, such as teacher feedback and individualized

learning opportunities, to ensure its effectiveness.

Furthermore, the heterogeneity in the results suggests that

automated feedback may not have the same impact on all students.

Teachers and administrators should consider the individual needs

and characteristics of their students when deciding whether

and how to implement automated feedback. Further research

is needed to determine the most effective use of automated

feedback in different educational contexts and with different

populations. Teachers and administrators should keep up to date

with developments in the field and use evidence-based practices to

inform their decisions.
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