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There is growing expectation that artificial intelligence (AI) developers foresee and

mitigate harms thatmight result from their creations; however, this is exceptionally

di�cult given the prevalence of emergent behaviors that occurwhen integrating AI

into complex sociotechnical systems. We argue that Naturalistic Decision Making

(NDM) principles, models, and tools are well-suited to tackling this challenge.

Already applied in high-consequence domains, NDM tools such as the premortem,

and others, have been shown to uncover a reasonable set of risks of underlying

factors that would lead to ethical harms. Such NDM tools have already been used

to develop AI that is more trustworthy and resilient, and can help avoid unintended

consequences of AI built with noble intentions. We present predictive policing

algorithms as a use case, highlighting various factors that led to ethical harms and

how NDM tools could help foresee and mitigate such harms.
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1. Introduction: ethical AI, policy, and the need for
crystal balls

Few topics have received as much attention in the last several years as the development

of ethical artificial intelligence (AI). There has been an overwhelming development of

frameworks and principles-based guidance toward developing ethical AI, although different

frameworks use different terms such as ethical, assured, or trustworthy interchangeably

(Blasch et al., 2021; Munn, 2022). Such guidance has been developed by government

agencies, non-profits, and private companies with the goal of reducing or eliminating

ethical harms associated with development and adoption of AI technologies (Hallamaa and

Kolliokoski, 2022).

Despite the proliferation of frameworks and guidelines, they can be difficult to put

into practice (Munn, 2022). One outcome of this lack of pragmatism in AI ethics is a

phenomenon called ethical debt (Heimo and Holvitie, 2020; Petrozzino, 2021). Ethical debt

is analogous to technical debt, where AI tools are developed under the presumption that

the AI solution itself is ethical. For the sake of development efficiency and lack of concrete

means to address ethical consequences, such consequences often go ignored or unmitigated

until ethical harms become manifest. A key aspect of ethical AI that we focus on for the

remainder of this manuscript is the responsibility of AI developers to foresee and mitigate

harms. This concept is epitomized by the Ad Hoc Committee on Responsible Computing’s

first rule of responsible computing (Miller, 2011, p. 58):

“The people who design, develop, or deploy a computing artifact are morally

responsible for that artifact, and for the foreseeable effects of that artifact. This

responsibility is shared with other people who design, develop, deploy or knowingly use

the artifact as part of a sociotechnical system.”
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This need to foresee and mitigate harms is being codified in

part via new legislation, mostly in Europe, that makes it easier

for individuals to sue AI developers for harms (Hacker, 2022)

or requires AI-driven social platforms to manage harms or face

various fines and penalties (Husovec and Laguna, 2022). The

United States has echoed these sentiments in the new “AI Bill

of Rights,” although there are already criticisms of this policy’s

limitations (Hine and Floridi, 2023).

Despite the legal incentives, foreseeing and mitigating AI-

driven harms is easier said than done given the prevalence of

emergent behaviors when AI is integrated into sociotechnical

systems. Emergent behaviors or properties can be defined as those

arising from interactions among components in a sociotechnical

system, that are otherwise not observable when investigating any

one component (Carayon et al., 2015). Such behaviors exist at

the individual level, where introducing AI into a workflow can

increase human complacency (Ezer et al., 2019), or drive workflow

adaptations based on changes in trust with the AI over time

(Dorton et al., 2022). There is also the issue of complexity at

the higher, sociotechnical system level. We have long known

that sociotechnical systems will stretch when novel technology is

introduced, altering the types of work performed (Woods, 2006;

Sheridan, 2008). For example, introducing AI into the domain of

intelligence analysis raises questions about the nature of analysts’

work changing to focus on inspecting AI outputs vs. conducting

analysis, as well as other changes to the nature of workforce

collaboration and management (Vogel et al., 2021).

In the AI ethics community, Mittelstadt et al. (2016) have

discussed examples of transformative effects where introduction

of AI drives humans to re-envision their world, classifying more

nuanced phenomena discretely. AI ethicists have acknowledged the

need for taking a more holistic view (e.g., Asaro, 2019), arguing

for a need to frame ethical discourse on human-AI teams rather

than individual agents in simple “trolley problems” that neglect

emergent behaviors in complex systems (Borenstein et al., 2019;

Cañas, 2022).

These difficulties are echoed in the legal community, where

there are concerns about the adequacy of tort, liability, and

negligence law to cope with novel AI technology (e.g., see Sullivan

and Schweikart, 2019; Selbst, 2020; Stein, 2022). A key issue is that

these legal doctrines rely on a reasonable expectation of an entity

to foresee harms in order to be held liable for them. That is, if

one can argue that an AI developer could not reasonably have

been expected to foresee an emergent harm, then there is no legal

recourse for those harmed by the AI—effectively nullifying new

policies to hold AI developers accountable. Hacker et al. (2020)

argue that explainability will be required to overcome such issues.

We believe explainability alone is insufficient as it does not address

the underlying issue of emergence in sociotechnical systems. Along

these lines, Selbst (2020) asserts that individuals cannot reasonably

be expected to have the capacity to understand AI, regardless of

how explainable or interpretable it is. More directly, Cofone (2018)

proposes characterizing AI systems by their level of emergence, or

degree to which there is predictability of the AI interacting with

the environment.

In summary, new regulatory policies increasing liability for AI

developers have merit in theory but may be difficult to exercise

in practice. They will provide incentive for AI developers to more

carefully consider the ethical harms their technologies might cause,

changing the calculus of accruing ethical debt for the better.

However, the relevant legal constructs to enforce this feedback

loop are based on the concept of what harms one may reasonably

expect the developer to foresee. Not only is this difficult in practice

because of emergent behaviors associated with AI, but it is reactive,

requiring harms to occur before the developer is held accountable.

Therefore, a major objective going forward should be to increase

foresight of ethical harms created by adding AI into complex

sociotechnical systems.

2. Increasing understanding and
foresight

2.1. Understanding: naturalistic decision
making

Naturalistic decision making (NDM) is the research tradition

that studies decision making processes under realistic conditions

(Klein et al., 1993; Klein, 2022). NDM focuses on the sensemaking

and decision making processes of experienced people in work

environments characterized by complexity, uncertainty, and time

pressure. NDM has been contrasted to microcognitive judgement

and decision paradigms based on giving naïve participants artificial

tasks in controlled laboratory environments, which are not

representative of the operational settings in which findings would

be applied (Klein et al., 1993). NDM research has shown that

experienced decision makers do not simply choose from a set

of options, but instead recognize cues and patterns, diagnose

situations as anomalous, and evaluate their options by mental

simulation in highly novel situations. NDM accounts for the

adaptive and integrative relationships among sensemaking and

decision making processes (e.g., Ward et al., 2018), and has proven

useful where systems developed based on laboratory decision

paradigms have failed (Nemeth and Klein, 2010).

NDM encourages a macrocognitive perspective by applying

naturalistic inquiry methods to study and support cognitive

functions (e.g., sensemaking, planning, and coordinating) and

processes (e.g., detecting problems and maintaining common

ground), as well as the development of expertise (Hoffman et al.,

2014; Naturalistic Decision Making Association (NDMA), n.d.).

Given these various aims, NDM is regularly applied to a variety

of complex and high-consequence work domains, such as aviation,

healthcare, firefighting, intelligence analysis, and military decision

making (see Klein and Wright, 2016). Of particular interest here

is that the holistic view of macrocognition enables the study of

emergent phenomena in sociotechnical systems, such as feedback

loops, equilibrium, and self-organization, etc. (Klein et al., 2003).

Employment of this macrocognitive perspective has resulted in the

development of several tools and methods for improving decisions.

2.2. Foresight: the premortem and other
NDM tools

A premortem—the opposite of a postmortem—is a lightweight

method that has been applied in various high-consequence
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domains both inside and outside of the NDM community to

proactively determine why a project or plan has hypothetically

failed (Klein, 2007, 2022; Veinott et al., 2010; Eckert, 2015). To

begin a premortem, team members are given two minutes to

brainstorm reasons for failure (i.e., project risks). A facilitator then

asks each person to share a reason from their list, alternating

between participants until all unique reasons have been recorded

(Klein, 2007). There are some methodological variants that include

generating mitigations for the identified risks (Veinott et al.,

2010; Klein, 2022), or a more formal elicitation process aimed at

uncovering potential root causes of failure (Eckert, 2015).

A key benefit of the premortem lies not in the proactive

enumeration of risks, but in the types of risks that are typically

identified. With a diverse group of participants, premortems can

uncover creative and novel risks that span multiple areas of

expertise. Such risks could not be identified by project managers

alone (Klein, 2007; Bettin et al., 2022). Further, premortems

identify risks at the intersection of humans and technology,

which require an interdisciplinary lens to uncover. Bettin et al.

(2022) describes how the non-constrained thinking inherent

in premortems results in the identification of risks within

sociotechnical systems that are often overlooked as they are outside

of immediate control, including risks associated with hypothetical

user behavior patterns, and those related to broader longitudinal

cultural, affective, or motivational factors. This resonates with

other work demonstrating that premortems can identify other

risks that may not be immediately obvious to a single leader

or analyst, including a broad array of personnel- and policy-

based risks (Klein, 2007), risks stemming from programmatics

and team interactions (Eckert, 2015), and risks stemming from

operational, organizational, technical, and business factors (Gallop

et al., 2016). These outcomes position the premortem as a

potentially invaluable method for predicting ethical harms (i.e.

manifestations of risks) resulting from introducing AI into complex

sociotechnical systems.

While the premortem is a sound candidate for the challenge

that we present, it should be noted that it is not the only

NDM approach that could be employed to identify AI-driven

harms. Recent work has shown that analytic wargames involving

experienced players in naturalistic settings can be used to test

disruptive technologies and uncover emergent behaviors (de Rosa

and De Gloria, 2021), and to explore how the work system may

stretch with the introduction of new technologies (Dorton et al.,

2020). Other approaches have included the use of naturalistic

methods such as the critical incident technique to develop

evidence-based checklists for AI developers (e.g., Dorton, 2022).

Further still, new methods based on naturalistic inquiry such as

Systematic Contributors and Adaptation Diagramming (SCAD;

Jefferies et al., 2022) and Joint Activity Monitoring (JAM; Morey

et al., 2022) have been developed to attempt to identify issues in

work systems more proactively.

2.3. Predictive policing as a use case

“Predictive policing” typically refers to the application of

quantitative techniques to direct police intervention to prevent

TABLE 1 Factors driving ethical harms vs. risks foreseen via NDM tools.

Factors driving
ethical harms

Relevant risks foreseen via NDM
tools

Police were not skilled in

data entry and

processing

Premortems (Bettin et al., 2022) have foreseen risks

with assumptions of user skills. NDM research-driven

AI checklists (e.g., Dorton, 2022) have also

highlighted this issue

Data were intentionally

manipulated to suppress

crime rates

Premortems have foreseen risks from bad faith actors

(e.g., Veinott et al., 2010) and from the influence of

leadership on policies and practices (e.g., Klein, 2007)

False veneer of

objectivism provided to

biased data created a

self-fulfilling prediction

Wargames (e.g., Dorton et al., 2020) would identify

such risks by nature of gameplay

No guidance on how to

operationalize system

outcomes

Premortems (Bettin et al., 2022) have foreseen risks of

users being unfamiliar with systems and not

following protocols. Wargames (e.g., Dorton et al.,

2020) would identify such risks by nature of gameplay

crimes by predicting one or both of the following: Places and

times of crimes, and people who are likely to commit crimes

(Degeling and Berendt, 2018; Coeckelbergh, 2020; Miró-Llinares,

2020). Such technologies were developed with noble intentions to

reduce crime and increase the objectivity and efficiency of policing.

However, there is a growing consensus that AI-driven predictive

policing technologies are not only of dubious efficacy but also result

in numerous ethical harms such as disproportionate surveillance

and targeting of specific socioeconomic or racial groups, and

threatening privacy and civil liberties (Degeling and Berendt, 2018;

Asaro, 2019; Richardson et al., 2019; Coeckelbergh, 2020; Miró-

Llinares, 2020). This example may prompt the questions, “How did

this go wrong?” and “Why didn’t we see this coming?”

The left column in Table 1 provides a non-exhaustive list of

various contributing factors to ethical harms in predictive policing

(Degeling and Berendt, 2018; Asaro, 2019; Richardson et al., 2019;

Miró-Llinares, 2020; Alikhademi et al., 2021). First, police are not

trained data scientists, so data may not be correctly and consistently

annotated (e.g., approximate or inaccurate time stamps in their

reports make models heavily dependent on temporal relationships

less reliable). Second, data have been intentionally manipulated

in some instances (e.g., asking people not to press charges) to

create the appearance of reduced crime rates. Third, AI was

fed data that were systematically biased (e.g., from jurisdictions

under consent decrees for discriminatory practices), resulting

in crime location predictions that simply reflect biases and the

deference of judgement to faulty model predictions. Finally, police

were not informed about what to do with AI outputs, resulting

in inconsistent practices when patrolling AI-designated “high

risk” areas.

The right column of Table 1 shows how just a few NDM

tools have been shown to proactively identify such risk factors in

comparable systems. Of particular interest is that the premortem

technique addresses three of the four enumerated (or analogous)

factors in this use case, despite there being a relatively sparse

body of extant literature on the premortem from which to draw.

Therefore, we argue that premortems can proactively identify

ethical harms from, or failures of, AI. It seemsmore likely, however,

that premortems and other NDM tools will help AI developers
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foresee the underlying factors that contribute to ethical harms, as

shown in this predictive policing example.

3. Discussion

Overcoming ethical debt in AI development is a substantial

challenge. More specifically, foreseeing and mitigating ethical

harms is exceptionally difficult given the prevalence of emergent

behaviors that occur when integrating AI into sociotechnical

systems. We have argued that the NDM community (as a

personification of its people, principles, and tools) is well-suited to

tackling this challenge. However, we do caution that the AI ethics

community should not view NDM or macrocognitive approaches

as a panacea: that is, adding an NDM practitioner to your team or

using an NDM method does not guarantee success in foreseeing

and mitigating harms.

Premortems do not guarantee an exhaustive set of risks will be

identified (Bettin et al., 2022). Similarly, methods such as analytic

games (e.g., de Rosa and De Gloria, 2021) and other checklists

based on naturalistic inquiry (e.g., Dorton, 2022) are bounded in

scope by not only the scenarios and injects examined, but also the

expertise of the participants involved in their application. More

generally, there is a long-standing challenge of developing tools for

an envisioned world with technological change (e.g., Woods and

Dekker, 2010). Even newer tools focused on proactive identification

of risks such as SCAD (Jefferies et al., 2022) and JAM (Morey

et al., 2022) rely on collecting data from existing sociotechnical

systems, making them insufficient to truly provide foresight before

integrating new AI into work systems. Thus, future methodological

research is needed to develop and refine methods to enable greater

foresight of ethical harms. For example, could a premortem be

scoped or targeted to foresee ethical harms vs. more general

project risks?

While we have provided an argument for how NDM tools can

increase foresight (i.e., proactively identifying emergent risks), we

have not addressed problem solving (i.e., what to do with identified

risks). While anecdotal evidence has shown that the outputs of

NDM tools such as the premortem can inform requirements,

designs, and test and evaluation activities, additional work is

needed to more concretely map the outputs of NDM tools like the

premortem into the AI development process.

Acknowledging these limitations, we maintain that the use of

NDM principles and tools has obvious value to AI developers.

This value extends beyond developing ethical AI. NDM approaches

have been used to glean insights on developing trustworthy AI

(e.g., Dorton and Harper, 2022 and Dorton, 2022) and resilient

AI technologies (e.g., Neville et al., 2022). In summary, we have

attempted to craft our argument while providing different messages

to two different audiences. To the AI ethics community: While

NDM is not a panacea, the NDM community has a considerable

head start addressing the aforementioned challenges. To the NDM

community: There is an opportunity to refine our models and tools

to improve foresight and reduce ethical debt in AI. So, can NDM

tools uncover an exhaustive set of emergent harms for a given AI

technology? No. It would be naive to think so. Can NDM tools

uncover a reasonable set of emergent harms? We believe so.
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