
TYPE Review

PUBLISHED 26 July 2023

DOI 10.3389/frai.2023.1124553

OPEN ACCESS

EDITED BY

Enrique Herrera-viedma,

University of Granada, Spain

REVIEWED BY

Bernhard C. Geiger,

Know Center, Austria

Johannes Fürnkranz,

Johannes Kepler University of Linz, Austria

*CORRESPONDENCE

Hendrik Blockeel

hendrik.blockeel@kuleuven.be

RECEIVED 15 December 2022

ACCEPTED 10 July 2023

PUBLISHED 26 July 2023

CITATION

Blockeel H, Devos L, Frénay B, Nanfack G and

Nijssen S (2023) Decision trees: from e�cient

prediction to responsible AI.

Front. Artif. Intell. 6:1124553.

doi: 10.3389/frai.2023.1124553

COPYRIGHT

© 2023 Blockeel, Devos, Frénay, Nanfack and

Nijssen. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Decision trees: from e�cient
prediction to responsible AI

Hendrik Blockeel1,2*, Laurens Devos1,2, Benoît Frénay3,

Géraldin Nanfack3 and Siegfried Nijssen4

1Department of Computer Science, KU Leuven, Leuven, Belgium, 2Institute for Artificial Intelligence

(Leuven.AI), KU Leuven, Leuven, Belgium, 3Faculty of Computer Science, Université de Namur, Namur,

Belgium, 4ICTEAM, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium

This article provides a birds-eye view on the role of decision trees in machine

learning and data science over roughly four decades. It sketches the evolution

of decision tree research over the years, describes the broader context in which

the research is situated, and summarizes strengths and weaknesses of decision

trees in this context. The main goal of the article is to clarify the broad relevance

to machine learning and artificial intelligence, both practical and theoretical, that

decision trees still have today.

KEYWORDS

decision trees, ensembles, responsible AI, machine learning, learning under constraints,

explainable AI, combinatorial optimization

1. Introduction

Decision trees, and ensembles of them (forests), are among the best studied and most
widely used tools for machine learning and data science. In their basic form, they are covered
in just about every introductory course on these fields, and the extensive literature on them
is covered by many surveys. However, there is plenty of application potential for decision
trees beyond the commonly known uses. The existing surveys typically do not zoom in on
this, or when they do, they zoom in on one particular type of use.

The purpose of this review is to complement the literature by taking a step back and
providing a higher-level overview of decision tree technology and applicability, covering
the broad variation in it. The review focuses on answering questions such as: what types
of decision trees exist (beyond the well-known classification and regression trees), what can
they be used for, what roles can decision trees play in an age that is dominated by deep
learning? It describes the landscape and evolution of decision tree research in a way that is
roughly chronological, starting with the earlier research, which focused mostly on decision
trees as predictive models, and gradually moving toward more recent work on learning or
exploiting decision trees in the context of what is currently often referred to as responsible
AI: the study of AI systems that are fair, transparent, and safe.

The review does not aim at surveying the research field in the traditional sense. For
some topics, it points the reader to existing surveys; at other times, concrete publications
are referred to as illustrative examples of the topics being discussed. Nevertheless, in a few
cases, where we believe a subject is insufficiently covered by existing surveys, a more detailed
overview of work is given.

The review starts (Section 2) with an overview of the basics of decision trees:
classification and regression trees as they were originally envisioned, methods for learning
them, variants and ensembles. What connects all this work is that decision trees are seen as
predictive (and sometimes explanatory) models. However, decision trees can be used beyond
the classification and regression context: they can be used for multi-label learning, multi-
instance learning, (predictive) clustering, probability and density estimation, and other
purposes, both standalone and integrated in other methods. Section 3 covers such uses.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1124553
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1124553&domain=pdf&date_stamp=2023-07-26
mailto:hendrik.blockeel@kuleuven.be
https://doi.org/10.3389/frai.2023.1124553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1124553/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

Section 4 briefly discusses different algorithmic approaches to
learning decision trees: besides the standard heuristic approaches,
incremental and distributed variants have been proposed, as well
as approaches based on non-greedy optimization and continuous
parameter optimization. This section includes an extensive
discussion of exhaustive methods that search for optimal decision
trees (given some optimization criterion)—an NP-hard problem
that due to recent advances in solver technology has received
much interest. This discussion focuses on providing insight in the
different approaches and how they relate to each other.

Section 5 discusses how background knowledge in the form
of formal constraints can be incorporated in decision trees,
either by imposing the constraints on the model at learning
time, or by verifying given models. Learning models under
constraints is currently receiving increasing interest, partly because
constraints are useful to enforce other properties than accuracy and
interpretability, such as robustness and fairness, and partly because
the technology now allows it: the current state of the art in greedy
and exhaustive search methods facilitates the creation of methods
that take constraints into account.

In Section 6, we provide an overview of how decision tree based
methods play a role in the current research on Responsible AI,
with a specific focus on robustness, fairness, and explainability. This
section covers mostly recent work.

Section 7 offers a brief look forward, mentioning challenges and
perspectives, and Section 8 concludes.

2. Decision trees and forests: the
basics

This section discusses the basics of decision trees. It focuses
mostly on the area as it was seen by the end of the 20th
century, and is meant to set the background for the later
sections. We introduce the concept of decision trees, the
greedy learning methods that are most commonly used for
learning them, variants of trees and algorithms, and methods
for learning ensembles of trees. The section ends with an
overview of strengths and weaknesses of decision trees and
forests.

2.1. Decision trees

A decision tree represents a procedure for computing the
outcome of a function f (x). The procedure consist of repeatedly
performing tests on the input x, where the outcome of each test
determines the next test, until f (x) is knownwith certainty. Figure 1
shows a function in tabular format and two different decision trees
that represent it.

Decision tree learning refers to the task of constructing from
a set of (x, f (x)) pairs, a decision tree that represents f or a close
approximation of it. When the domain of x is finite, the set of
pairs can in principle be exhaustive, but more often, the set is a
sample from a (possibly infinite) domain X . In that case, rather
than finding a tree that approximates f on the data set, one may
try to find a tree that approximates f over the whole domain.

In a slightly generalized setting, the set of pairs may be of the
form (x, y) where y is determined only probabilistically by x; for
instance, y may depend also on unobserved variables, y = f ′(x, u).
The task is then to learn a tree that represents a function f (x) that
closely approximates f ′(x, u) for any choice of u (on average, in the
worst case, or using some other aggregation criterion).

Apart from finding a good approximation, additional criteria
may exist. For instance, the taskmay be to find the simplest decision
tree that represents the function. It is known that finding the
smallest decision tree (in terms of number of nodes) that perfectly
fits a given dataset is NP-hard (Hyafil and Rivest, 1976).

The output of a tree for a given x is often called its prediction
for x. Decision trees that predict nominal or numerical variables
are respectively called classification trees and regression trees. An
important property of decision trees, in the context of machine
learning, is that the prediction is the result of a simple and easy-
to-interpret computation (a relatively short series of tests). Because
of this, trees are said to be interpretable.

2.2. Recursive partitioning

Decision trees became prominent in machine learning and data
analysis around the 1980s, when popular decision tree learners
were developed more or less in parallel in the computer science
community (e.g., ID3 Quinlan, 1986 and its many subsequent
improvements) and in the statistics community (CART Breiman
et al., 1984). While differing in details, these learners all make use
of the same basic procedure, namely recursive partitioning (also
known as “top-down induction of decision trees”).

Recursive partitioning works as follows. Given a dataset D

containing pairs (x, y), a test that can be performed on individual
instances x is chosen, the dataset is partitioned according to the
outcome of this test, and this procedure is repeated for each
subset thus created. This continues until no further partitioning
is needed or possible. This procedure relies on two important
heuristic criteria: how to choose the test, and when to stop.

The chosen test is typically selected from a set of candidate tests,
and is that test that is deemed “most informative” with respect to
the value of y. A test is maximally informative when, given the
outcome of the test, the y value is known exactly. For numerical y,
the average variance of y within each subset of the partition is often
used as an indicator for the informativeness of the test. For nominal
y, measures based on information theory are sometimes used, such
as information gain (the difference between the entropy of y and its
average conditional entropy given the test outcome).

Using the “most informative” test is motivated by a preference
for finding short decision trees (which require few tests to come
to a decision), but there is no guarantee that any of the above
measures indeed lead to the shortest possible tree. From that point
of view, the procedure is heuristic. Early research on decision trees
has explored many different variants of the heuristics, without
unearthing a universally preferable one: see, e.g., Murthy (1998,
Section 3.1.1).

It is clear that a subset need not be partitioned further when
only one value for y remains, but it may be better to stop
splitting even earlier, as for small sets, further splitting may cause

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

FIGURE 1

The Boolean function Y = X1 ∧ X2 ∨ X3, and two decision trees representing it.

overfitting.1 Therefore, learning algorithms usually stop splitting
when a set is too small to carry any statistical significance.
Alternatively, an algorithm may keep splitting but prune the tree
afterwards. Again, many variants of stopping criteria and pruning
procedures have been explored, without any one consistently
outperforming the rest, though on individual datasets there may
be substantial differences in performance (Murthy, 1998).

For a more extensive discussion of the many variants of
decision tree learners that had been proposed by the end of the
20th century, we refer to the comprehensive survey by Murthy
(1998). A recent survey by Costa and Pedreira (2023) focuses on
progress after 2010. Observing that choosing the right variant can
sometimes make a difference, Barros et al. (2015) propose a method
for constructing tailor-made recursive partitioning algorithms that
chooses components optimally for a given dataset.

Recursive partitioning is probably the best known and most
often used method for learning decision trees, but it is not the only
one: Section 4 of this text discusses alternatives. Especially in recent
years, these alternative methods are gaining interest.

2.3. Variants of classification and regression
trees

Decision trees are often used with tabular data, where each
instance is described using the same set of input variables. Tests
are often univariate (based on a single variable), and in the case
of numerical inputs, based on a dichotomy (value above or below
some threshold). However, it is perfectly possible for learners to
considermultivariate tests. An example of this are so-called oblique
decision trees, which use a threshold on a linear combination of
input variables; this results in straight-line boundaries between the
subsets that are not necessarily axis-parallel (Murthy et al., 1994).

In the above, we assumed that decision trees make the same
prediction for all instances in a given leaf. However, variants exist
that store in a leaf a function, rather than a single value, for the
prediction.Model trees, for instance, store a linear model in a leaf,

1 E.g., when only three instances remain, any binary test that on the

population does not correlate with the class labels still has a probability of

1/4 of yielding a perfect split.

rather than a constant, so that the model represented by the tree
is piecewise linear, rather than piecewise constant. M5 (Quinlan,
1992) is a well-known example of such a system.

Trees can also be used with non-tabular data, such as graphs,
relational databases, or knowledge bases. The only requirement is
that tests can be defined on individual instances. This has led to
the development of relational (a.k.a. structural or first-order-logic)
decision trees (Kramer, 1996; Blockeel and De Raedt, 1998).

All the above variants of decision tree learning still fit under
the header of classification and regression trees. Section 3 will focus
on decision trees that serve other purposes, such as clustering or
density estimation.

2.4. Ensembles of trees: decision forests

Ensemble methods reduce the effect of random artifacts in the
training set or learning procedure by repeating the learning process
multiple times, and creating a meta-model that makes predictions
by aggregating the predictions of the individual learned models.
To construct multiple trees from a single data set, one can use
bootstrap aggregating, a.k.a. bagging: each individual tree is trained
on a random sample of |T| instances drawn with replacement
from the training set T, and the prediction of the ensemble is
the average (for regression) or mode (for classification) of the
individual predictions. Ensembles of decision trees constructed in
this way significantly outperform single decision trees in terms of
accuracy (Breiman, 1996). TheRandom Forestsmethod (Breiman,
2001) is a variant of this in which the test put in each node is the best
from a randomly chosen subset (rather than all) of the possible tests.
The additional randomness thus introduced typically increases
the performance of the ensemble as a whole. More recently,
gradient boosting (Friedman, 2001) have become increasingly
popular: here, additional trees are added to the ensemble in a
way that mimics gradient descent in the prediction space. At the
time of writing, an implementation of gradient boosting called
XGBoost (Chen and Guestrin, 2016) is widely considered2 to be
the method of choice when learning from tabular data: it is fast,
easy to use, and very often outperforms other methods in terms of

2 See, e.g., the Kaggle platform for machine learning competitions.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

predictive accuracy. Grinsztajn et al. (2022) confirm this by means
of thorough experimental verification.

The above are probably the best known types of ensemble
methods, but many other exist. Stacking (e.g., Ženko et al., 2001)
is a variant that learns to combine the votes of individual learners,
rather than using a fixed voting mechanism to combine them;
to this aim, a separate learner is stacked on top of the others.
Alternating decision trees (ADT) (Freund and Mason, 1999) are
trees that, besides the standard test nodes, contain “prediction
nodes”, which store numerical values and can have multiple test
nodes as children. Instances are sorted simultaneously to all
children of a prediction node, and the prediction is the sum of the
prediction nodes on all paths it follows. Thus, an ADT essentially
combines the predictions of a set of decision trees, and can be seen
as a compact representation of an ensemble.

Noteworthy overviews on tree ensembles include Zhou (2012)
(an insightful and at the time of writing quite comprehensive view
of the field); Criminisi and Shotton (2013) (which discusses a
broad variety of uses of decision forests in the context of image
processing); and recent surveys by Sagi and Rokach (2018) and
Dong et al. (2020), which provide an excellent overview of ensemble
methods (with a non-exclusive but substantial focus on decision
tree ensembles).

2.5. Predictive learning with decision trees:
pros and cons

Decision trees are very popular tools for predictive modeling
for the following reasons. They are very easy to use: they typically
require little or no tuning.3 They can be learned very fast: on the
assumption that relatively balanced trees are learned (which most
heuristics try to ensure), learning typically scales as O(mn log n)
with n the number of rows and m the number of columns in
the data table (i.e., only a factor O(log n) worse than scanning
the table once). Under the same assumption, prediction requires
O(log n) tests, which typically means a few dozen CPU instructions,
per instance. Ensembles typically multiply this by a single order
of magnitude, or less: e.g., Random Forests, by selecting a subset
of features for each test, substantially reduces the m factor,
which in high-dimensional domains may compensate for the extra
work of learning more trees. All this make decision trees and
their ensembles extremely fast and energy-efficient, which is a
major advantage when deploying models on small battery-powered
devices.

Early research mostly focused on making decision trees as
accurate as possible. Individual trees could never beat more
complex models such as neural networks in this respect, but it
is now generally acknowledged that forests can. Ensembles do
give up some interpretability for this. Still, it is important to
distinguish different forms of interpretability: (1) understanding
the full model; (2) understanding aspects of the full model, such
as which variables are important; (3) understanding a single
prediction; (4) understanding the reasoning process involved in a

3 Tuning may still be helpful, but using standard settings typically already

gives good results.

prediction. Random Forests, for instance, are highly interpretable
in the sense of 2 and 4.

Decision forests typically perform less well when learning from
raw data (such as images, sound, text), where the features relevant
for prediction have to be constructed and cannot be expressed as
logical combinations of relatively few input features. This type of
problems is what deep learning excels at.

3. Beyond classification and regression

Decision tree learning was originally proposed in the standard
predictive learning setting, where an output variable (nominal
or numerical) needs to be predicted from input variables. The
algorithm is sufficiently flexible, however, to generalize decision
tree learning to many other settings.

A first type of generalization ismulti-target prediction, where
a single tree predicts multiple output variables at the same
time (possibly a mix of numerical and nominal variables). This
setting includes prediction of set-valued variables, as inmulti-label

prediction, since sets are easily represented as binary vectors. This
generalization can be achieved by simply maintaining the variance
reduction heuristic from regression trees, now using variance in a
higher-dimensional space. Single multi-target trees have in some
contexts exhibited better performance than sets of single-target
trees (Vens et al., 2008). In a further generalization, Kocev et al.
(2013) studied decision tree ensembles for structured output

prediction.
A natural extension of multi-target trees are clustering trees,

which use variance in the input space as a heuristic, rather than
variance in the output space, to learn a hierarchical clustering where
each cluster is strictly characterized by a conjunction of selected
attribute values. This additionally makes it possible to naturally
interpolate between the predictive and clustering settings to obtain
so-called predictive clustering trees, which form coherent clusters
within which accurate prediction of the output variables is possible
(Blockeel et al., 1998).

Survival trees are regression trees used in the context of
survival analysis. The specific challenge in learning such trees is
that the survival data used for training is often censored: only lower
bounds are known for the labels (i.e., we do not know the exact
time of death, only that up till a certain moment in time a person
was still alive). Bou-Hamad et al. (2011) and Zhou and McArdle
(2015) survey algorithms for learning survival trees and forests.
These algorithms typically fit a hazard function to instances in a leaf
of the tree, and use heuristics that either maximize heterogeneity
among subsets after the split, or maximize homogeneity within
them (for some homogeneity criterion that suits the context of
survival analysis).

Decision trees have also been used for ranking and preference

learning. As noted by Fürnkranz and Hüllermeier (2010), ranking
is an umbrella term for a variety of tasks. For instance, given n

instances and m classes, one may predict a preference ordering
of classes for each instance (label ranking), or of instances for a
specific class (instance ranking; one typically ranks the instances
according to likelihood of belonging to the positive class, as in
finding the most relevant webpages for a query). Training examples
may be labeled with a single class (ordinal classification), a complete

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

label ranking, or a partial ranking (e.g., which of two labels or
instances is preferred over the other). Examples of decision tree
based approaches for label ranking are Todorovski et al. (2002)
and Yu et al. (2011); both learn from complete label rankings.
Instance ranking with decision trees, learning from binary labels,
was studied (among others) by Provost and Domingos (2003), who
use probability estimation trees for the task, and Clémençon et al.
(2011) who study ranking with decision trees as a task in itself.

The multi-instance learning setting is a binary classification
setting where labels are available at the level of groups of instances
rather than individual instances: a group is positive if it contains at
least one positive instance, and negative otherwise. Small changes
to the recursive partitioning algorithm suffice to make decision tree
learning successful inmulti-instance learning (Blockeel et al., 2005).

Decision trees have also been adapted for semi-supervised

learning (Levatić et al., 2017) and learning from positive and
unlabeled data (PU-learning) (Liang et al., 2012). In PU-learning,
they have also been used for estimating the labeling rate of positive
cases (Bekker and Davis, 2018), serving as an auxiliary method for
any kind of PU-learners.

In the context of anomaly detection, a tree-based approach
called Isolation Forests (Liu et al., 2008) is considered state-of-
the-art for a wide range of applications. The rationale behind
Isolation Forests is that with random splitting, anomalies tend
to get isolated into a singleton leaf early on, so the depth of a
singleton leaf is an indication of how anomalous the instance in that
leaf is.

Decision trees are useful also in probabilistic settings.
Probability estimation trees (PETs) are decision trees that predict
probabilities rather than just classifying instances; that is, given
x, they predict P(y|x) rather than just the y that maximizes it.
PET learning typically benefits from less aggressive pruning than
classification tree learning (Provost and Domingos, 2003; Fierens
et al., 2010). Density estimation trees (DETs) model a density
function over the input space (Ram and Gray, 2011). Both types of
models have been shown to be successful at modeling conditional
and joint probability densities.

PETs are particularly useful in the context of probabilistic
graphical models (PGMs). They can be used to model conditional
probability functions (instead of probability tables) (Friedman and
Goldszmidt, 1998) and can even help decide the PGM structure
as they naturally identify the parents of a node (Fierens et al.,
2007). Relational dependency networks (RDNs) are one example
of a PGM that explicitly relies on PETs (Neville and Jensen, 2007).

In the classical predictive learning setting, it is known at
the time of learning which are the input and output variables,
and models are constructed for this specific task. PGMs, in
contrast, can predict any variable from any other variable.
Motivated by this discrepancy, multi-directional ensembles

of regression and classification trees (MERCS) have been
proposed. Here, each individual tree predicts one or more
variables from the other variables, and in the ensemble as
a whole, every variable occurs as a target variable at least
once. Essentially a non-probabilistic variant of PGMs, MERCS
models have been shown to allow for much faster inference
than PGMs (Van Wolputte et al., 2018), and to be useful
also for missing value imputation (Van Wolputte and Blockeel,
2020).

Researchers on fuzzy logic have proposed fuzzy decision trees

as a way of dealing with uncertain or vague data. Multiple methods
for adapting decision trees to work in a fuzzy logic context
have been proposed; Olaru and Wehenkel (2003) provide a good
overview in their related work section. Hüllermeier and Vanderlooy
(2009) argue that fuzzy decision trees are particularly advantageous
for ranking, and relate this to their use of “soft” splits, where
instances can be partially assigned to multiple branches.

Johansson et al. (2014) study decision trees and forests in the
context of conformal prediction, a setting where instead of a single
value, a set of values is predicted: namely, the smallest possible
set for which there is a probabilistic guarantee that the true label
is in it.

The above is only a selection of uses of decision trees; it
is virtually impossible to be complete. While this text focuses
mostly on the fields of artificial intelligence and machine learning,
conceptual development of tree-based methods has happened in
parallel in many different fields, including statistics and application
domains such as computer vision, bioinformatics, and medical
informatics; some examples are Hothorn and Lausen (2003), Strobl
et al. (2007), and Criminisi et al. (2012).

4. Beyond recursive partitioning

Recursive partitioning is very fast, can easily be adapted to
different settings (as illustrated above), and generally yields good
results. Yet, other algorithms for learning decision trees have
been proposed, with quite different properties. Below, we first
describe adaptations of recursive partitioning to incremental and
distributed learning contexts. Next, we look at how more advanced
methods for searching discrete and continuous spaces have
been used in decision tree learning: advanced combinatorial
problem solvers, gradient descent based methods, and
evolutionary algorithms.

4.1. Incremental learners

Incremental learners do not assume that all data is available
from the beginning, but keep a preliminary model that they update
when new data comes in. Such learners often use a variant of
recursive partitioning that either restructures the tree when earlier
choices turn out suboptimal [e.g., Utgoff (1989)], or proceeds
more cautiously and splits a node only when enough data has
become available in that node to be reasonably sure that this split
is indeed the best choice. An example of a cautious system is VFDT
(Domingos and Hulten, 2000), which uses Hoeffding bounds to
guarantee with high probability that the chosen split is identical
to the one that would be chosen if the whole population were
looked at. The term “Hoeffding trees” is often used for trees learned
this way, and there has been a wide range of follow-up work on
it; see Garcia-Martin et al. (2022) for a recent contribution that
includes further pointers. Also ensemble learning has been adapted
to this setting; e.g., Gomes et al. (2017) learn random forests from
streaming data under concept drift (where the target model may
evolve over time).

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

4.2. Parallelization and distribution

By nature, decision tree computations are easy to parallelize
or decentralize. This can boost runtime efficiency4 but also help
address privacy and security concerns.

Early work on distributed learning focused on handling large,
externally stored datasets; well-known examples are SLIQ (Mehta
et al., 1996), SPRINT (Shafer et al., 1996), and RainForest (Gehrke
et al., 2000). Later work focused on reducing communication
cost in distributed implementations (e.g., Tyree et al., 2011;
Meng et al., 2016a) and exploiting standard frameworks such as
MapReduce (e.g., Wu et al., 2009) or Apache Spark (e.g., Meng
et al., 2016b). SPDT (Ben-Haim and Tom-Tov, 2010) learns from
streams in a distributed manner. Rokach (2016, Section 6.10)
provides an overview with more examples.

Modern learners exploit specialized hardware, e.g., SIMD
(Devos et al., 2020; Shi et al., 2022), GP-GPUs (Sharp, 2008; Wen
et al., 2018), and FPGAs (Van Essen et al., 2012). Modern boosting
systems such as XGBoost and LightGBM (Ke et al., 2017) all
have performant GP-GPU implementations (Mitchell and Frank,
2017; Zhang et al., 2017). Not only learning, but also storage
and use of decision trees is optimized, for instance using bit-level
data structures, to allow deployment on edge devices with limited
resources (Lucchese et al., 2017; Ye et al., 2018; Koschel et al., 2023).

Federated learning tackles the challenge of learning with data
distributed among several clients. These clients collaboratively
train a model under server management while keeping data
decentralized (Kairouz et al., 2021), to prevent leakage of private or
confidential information (Xu et al., 2021). Methods for federated
learning of tree-based models rely on a variety of techniques.
For instance, CryptoBoost (Jin et al., 2022) and SecureBoost (Xie
et al., 2022) use homomorphic encryption, where data or data
statistics are encrypted to allow particular computations, e.g.,
addition and multiplication. More generally, secure aggregation

refers to operations and protocols that preserve information before
computing impurity measures. For example, Du and Zhan (2002)
proposes a scalar product protocol to compute a dot product
without sharing information. Differential privacy provides a formal
framework for privacy-preserving learning without focusing on the
side of computer security. Fletcher and Islam (2019) survey and
analyze differential privacy algorithms for tree-based methods.

4.3. Combinatorial optimization and
constraint solvers

Recursive partitioning uses heuristics. Hence, it does not
guarantee any kind of optimality of the resulting tree, such as being
the smallest tree that perfectly fits the training data, or minimizing
some loss function under a constraint on the complexity of the
model. This weakness motivates the development of alternative
search strategies that can provide such guarantees.

4 In this text, the term e�ciency typically refers to computational

e�ciency; we explicitly write runtime e�ciency and memory e�ciency in

other cases.

Early algorithms for finding optimal decision trees performed
an exhaustive enumeration of the space of decision trees (Esmeir
and Markovitch, 2007). An interesting feature of the approach of
Esmeir and Markovitch (2007) is its any-time behavior: it orders
the enumeration such that promising trees are enumerated first,
allowing it to provide good trees if terminated early.

To obtain better run times, a number of different ideas have
been explored.

An early approach was DL8 (Nijssen and Fromont, 2007),
which uses results from itemset mining to construct provably
optimal trees. At the basis of DL8 is that a branch in a decision
tree can be seen as a Boolean item, and a path as a set of items.
For optimization criteria such as error the optimal tree below a
given path depends only on the training examples that end up at
the end of the path. This makes it possible to develop algorithms
that use a form of dynamic programming in which partial solutions
are associated to item sets and can be reused.

To avoid finding trees that are too complex, regularizing
trees can be important. The idea of regularizing the complexity
of optimal decision trees, in combination with some form of
dynamic programming, can also be found in OSDT (Optimal
Sparse Decision Trees), proposed by Hu et al. (2019), of which
an optimized version, GOSDT (Generalized and Scalable Optimal
Sparse Decision Trees) was proposed by Lin et al. (2020).

Another class of methods is based on the use of mixed integer
linear programming (MILP), and was pioneered by Bertsimas and
Dunn (2017). Mixed Integer Linear Programming is a generic
approach for solving combinatorial problems by expressing them
using linear constraints over integer variables. This approach is
extensible: constraints can easily be added if they can be expressed
in a linear form. Follow-up work includes, for instance, an
adaptation of the approach for survival trees (Bertsimas et al.,
2022). While a more efficient MILP approach, BinOCT, has
been proposed (Verwer and Zhang, 2019), compared to DL8 a
disadvantage is that the run time performance of MILP-based
approaches is not as good.

Another generic approach is based on the use of SAT solvers
and Constraint Programming solvers. The use of SAT solvers was
studied by Bessiere et al. (2009) and Narodytska et al. (2018), for
determining whether or not for a given training data set a decision
tree exists that makes no error on this training data, under a
constraint on either size or depth. Avellaneda (2020) built on this
approach to build an algorithm that can find the smallest depth of
a consistent tree, as well as the smallest consist tree under a depth
constraint.

While these SAT-based approaches focused on trees that are
consistent with all training examples, on many data sets one can
accept trees that make a small amount of error. Hu et al. (2020)
showed that by using MaxSAT solvers instead of SAT solvers,
it becomes feasible to find trees that minimize error. Constraint
Programming (CP) solvers have similar benefits. The use of CP
was studied by Verhaeghe et al. (2020); in this work it was shown
that a DL8-style algorithm can be combined with Constraint
Programming.

Aglin et al. proposed an optimized version of DL8, called
DL8.5, by adding the use of branch and bound to this search
algorithm (Aglin et al., 2020a) and showed how to apply this to
find sparse decision trees or regression trees (Aglin et al., 2020b).

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

Similarly, GOSDT supports other optimization criteria as well (Lin
et al., 2020).

Improved bounds and data structures for DL8-style approaches
were subsequently proposed by Demirovic et al. (2022). These
authors report speed-ups of 1,000 and more compared to MILP-
based approaches, and speed-ups of 500 and more compared to
GOSDT. A shared weakness of the DL8-style algorithms is the
need to store large numbers of itemsets. This weakness was studied
by Aglin et al. (2022), who propose to sacrifice a certain degree of
run time performance to limit memory consumption. Kiossou et al.
(2022) showed how any-time behavior can be improved.

Given that most search algorithms allow for some freedom in
the definition of constraints and optimization criteria, a number of
them have been tuned for specific settings; these will be discussed
in Section 6.

Combinations of heuristic and optimal algorithms are
developed, hoping to combine the best of both worlds. The
any-time algorithm of Esmeir and Markovitch (2007) is an early
example of this. Another such approach was proposed by , who
observe that some optimal decision tree learning algorithms
require a discretization of the data and the specification of a depth
constraint; they propose to learn an ensemble first using traditional
greedy algorithms, and to subsequently use this ensemble to guide
the choices for how to discretize the data and choose the depth
constraint.

4.4. Gradient-based approaches

Several approaches have been proposed to learn decision trees
(and forests) using gradient based approaches. The majority of
these focus on oblique decision trees (where splits are based
on linear combinations of input features). The key idea is to
encapsulate, in a differentiable objective function, paths of instances
along nodes and how the parameters (e.g., weights for the linear
combination of features) affect these. Some approaches use hard
(or discrete) paths computed with a threshold split at each internal
node; other approaches use soft paths computed with cumulative
distribution functions such as sigmoid, leading to trees called soft

decision trees.
For the case of hard paths, one direction used by Norouzi et al.

(2015) is to explicitly model them with discrete latent variables
over internal nodes of trees, then an alternative minimization
algorithm can be employed to infer paths and learn parameters of
nodes using their gradients. In another direction, remarking that
oblique decision trees define constant regions linearly separated
in the input space, Lee and Jaakkola (2020) introduce the locally

constant networks that are provably equivalent to oblique decision
trees and are defined with derivatives of ReLU networks. Using
locally constant networks, it is therefore possible to learn equivalent
oblique decision trees with a global and differentiable objective
function.

Differently from the above, in soft decision trees, instances are
routed to each child node with a probability (Irsoy et al., 2012).
Using a differentiable function such as sigmoid to compute this
probability allows expressing a differentiable objective function.
Examples of work that focuses on decision trees include the work

of Frosst and Hinton (2018). Thanks to the success of learning
soft decision trees with gradient descent, several extensions
have been made for random forests. For example, the neural

decision forest (NDF) proposed by Rota Bulo and Kontschieder
(2014) is an ensemble of decision trees where split functions are
randomizedmulti-layer perceptrons (MLPs) that are learned locally
(in each decision node) using gradient descent. Another example
of extension to forests is the deep neural decision forest (dNDF)
(Kontschieder et al., 2015), which is similar to NDF except two
aspects. First, a dNDFmay use inside decision nodes, sigmoid units
on top of deep convolutional neural networks. Second, a dNDF
supports end-to-end training via gradient descent. The training of
dNDF can also be sped up using dedicated activation functions
(Hazimeh et al., 2020) instead of the sigmoid.

Many gradient-based approaches to tree learning assume a
fixed tree structure, but some infer the tree structure as part of the
learning process. This can be done by modeling the possibility for a
node to be either a leaf node or a decision node, allowing therefore
pruning during learning. Examples of these improvements include
the budding tree (Irsoy et al., 2014), the one-stage tree (Xu et al.,
2022) and the quadratic program of Zantedeschi et al. (2021).

The majority of gradient-based approaches focus on trees with
multivariate or more complex splits (e.g., involving MLPs). This
stands in contrast to the combinatorial search based methods of the
previous section, which typically learn trees with univariate tests.

4.5. Evolutionary algorithms

Given the broad applicability of evolutionary algorithms for
search, it is not surprising that such algorithms have also been
used to search the space of all decision trees to find trees that fit
the data well. Evolutionary search is naturally positioned between
greedy search, which is fast but prone to suboptimal decisions,
and exhaustive search, which gives a provably optimal solution
at a high cost. Barros et al. (2012) survey the area of evolution-
based decision tree learning. Among other things, they conclude
that evolutionary search does frequently lead to trees with better
predictive performance, which is an indication that recursive
partitioning’s bias toward short trees is not always advantageous.
The survey also launches the idea of an evolutionary search for
decision tree algorithms (rather than the tree themselves), which
was followed up on in later work (Barros et al., 2015). An interesting
question is how evolutionary algorithms (or evolutionarily-
optimized greedy algorithms) compare to the solver-basedmethods
mentioned before. To our knowledge, no systematic comparisons
between evolutionary search and solver-based methods has been
made.

5. Integrating constraints

An aspect of learning that has received increasing attention in
recent years is how background knowledge in the use of constraints
can be used in the learning process. For instance, a bank might
require that its model for credit approval is monotonic in the
“income” attribute: all else being equal, a client with a higher
income should not get a worse score. Can we verify that a given

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

model does not violate this constraint, or even better: can we ensure
that the learner only returns models that do not violate it? We refer
to the latter as imposing constraints, and to the former as model
verification. There has been a substantial amount of work on both
fronts, in the context of decision trees.

5.1. Imposing constraints on decision trees

The use of constraints is ubiquitous in machine learning
due to two principal reasons. First, model regularization via
constraints is a standard way to overcome the overfitting problem
in several machine learning models. Second, due to the deep
impact on machine learning in our society, in several critical
domains (e.g., health, finance) machine learning models do
not only need to provide best performance, they also need
to meet several requirements such as fairness, privacy-related
restrictions, consistency with prior domain knowledge, and so on.
In both scenarios, constraint enforcement represents a principled
framework to provide a better control of learned machine models
such that these models eventually meet societal, ethical and
practical goals (Cotter et al., 2019). Several works have therefore
been proposed to enforce constraints on decision trees. The survey
of Nanfack et al. (2021) highlights structure-level constraints,
feature-level and instance-level constraints on decision trees.

Methods imposing structure-level constraints aim to learn
decision trees under constraints over the structure of the tree
(e.g., the size, depth). These methods may employ pruning
(e.g., learn an overfitted tree through recursive partitioning and
then prune this tree to reduce its size). These methods include
work such as Garofalakis et al. (2003) and Struyf and Džeroski
(2006). Thanks to the discrete nature of decision trees, other
methods imposing structure-level constraints may also leverage
combinatorial optimization to find the best accurate decision tree
that satisfy the depth or size constraint (see Section 4).

Methods imposing feature-level constraints aim to learn
decision trees under feature-related constraints such as
monotonicity, fairness, ordering and hierarchy over selected
features on the tree, and privacy. The majority of these methods
use a recursive partitioning method along with constraint-aware
heuristics, which help in choosing the most informative split
that does not violate too much the constraint. Examples of these
constraint-aware heuristics include the total ambiguity score of
Ben-David (1995) for monotonicity constraints [see also the survey
by Potharst and Feelders (2002)], the information cost function of
Núñez (1991) for hierarchy constraints, the fair information gain of
Zhang and Ntoutsi (2019) for fairness constraints, and the adapted
exponential mechanism of Li et al. (2020) for privacy constraints.
Besides, there are methods such as Aghaei et al. (2019) that use
combinatorial optimization to learn decision trees under fairness
constraints.

Finally, methods imposing instance-level constraints focus
either on robustness constraints or on must-link and cannot-
link constraints on clustering trees. Robustness is discussed in
Section 6.2. Examples of works aiming to integrate must-link and
cannot-link constraints include the work of Struyf and Džeroski
(2006), which uses a penalized heuristic composed by two terms:

the first one is the average variance instances over leaf nodes
normalized by the total variance and the second one is the
percentage of violated constraints.

5.2. Verification of decision tree ensembles

Model verification is used to assess the quality of a
learned model. As such, it complements evaluating the model’s
performance on an unseen test set, i.e., regular model testing. In
contrast to model testing, which by definition only considers the
behavior of the model for the examples in the test set, verification
considers the full domain and image of the learned function. In
sensitive application domains like healthcare and air traffic control,
this rigorous model evaluation is required.

Similar to formal verification of software systems, verification
of machine learned models reasons about all possible inputs and
their corresponding outputs, and verifies whether these input-
output pairs satisfy the prescribed constraints. In practice, this
typically happens by negating the given constraints, and trying to
find instances that satisfy this negation. If successful, this disproves
the claim that the model satisfies the prescribed constraints (and
provides a counterexample); otherwise, it proves the claim.

Verification of learned models is challenging: e.g., Kantchelian
et al. (2016) show that verification of tree ensembles in general is
NP-hard. Despite this, there is substantial interest in it because it is
widely applicable and can be used to validate a variety of questions
and constraints. Some examples, each with a notable paper that has
focused on this problem (not exhaustive):

• Adversarial example generation: can we slightly perturb
example x so that the predicted label for this modified
x is different? In practice, it is often the case that small
imperceptible changes can be found that fool the model
(Kantchelian et al., 2016).

• Robustness checking: does an adversarial example exist in a
small neighborhood surrounding an example x (Chen et al.,
2019b)?

• Counterfactual example generation: what attribute value
needs to change in order to get the desired model outcome?
This is similar to adversarial example generation, but usually
also requires actionability and plausibility (Parmentier and
Vidal, 2021).

• Attribute importance: can a change in one or a small set of
attributes wildly affect the output of the model (Devos et al.,
2021a)?

• Fairness: is a loan approval probability affected by race (Grari
et al., 2019)?

• Domain-specific questions: when predicting the risk of
stroke: can a person aged between 40 and 50 with a BMI less
than 20 have a risk greater than 5% (Devos et al., 2021b)?

• Safety: are there conditions under which the model deviates
more than some threshold t from some safe reference model?
(Wei et al., 2022).

As is clear from the examples above, verification is applicable
to a wide range of problems. However, ever since it was shown

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

that neural networks (Szegedy et al., 2013) and later decision trees
(Kantchelian et al., 2016) are susceptible to adversarial examples,
most research has focused on adversarial example generation
and robustness checking. In Section 6, we will focus on these
applications in detail.

6. Decision trees for responsible AI

With AI increasingly affecting the lives of billions of people,
there is an increased societal and academic interest in Responsible
AI, by which is meant: giving due care and consideration to
the consequences of using AI in certain contexts. Responsible AI
implies taking measures to ensure that AI systems behave in a
way that is considered fair, safe, transparent, and generally respects
human rights. For machine-learned models, this often translates
to ensuring that the learned models fulfill certain constraints that
imply fairness, robustness, and explainability. Below, we consider
each of these in turn, and discuss work in the context of decision
trees.

6.1. Fairness

Often, a desirable characteristic of classification models is to
not discriminate: given a labeled dataset and a Boolean attribute
B, the model should not treat instances with property B different
from the overall population. For instance, if B represents whether
or not a person identifies as female, we may find it undesirable that
the classifier is less likely to assign a positive label to this person.

Unfortunately, highly accurate predictive models may display
such unfair behavior, as discrimination may be present in training
data. This form of discrimination can not be avoided by simply
removing attribute B from training data; other features may
correlate with B in unexpected and complex ways. This has led
to a number of different approaches that aim to balance two
requirements at the same time: accuracy and group fairness, in
which a group with a specific characteristic should be treated
equally to an overall group of individuals.

The so-called “preprocessing” approaches modify the training
data before the data is fed into a machine learning algorithm;
these approaches can also be applied when the learning algorithm
is a decision tree learning algorithm. Here, we focus on the “in-
processing” approaches, that is, approaches that take into account
fairness while learning a model.

A first approach was proposed by Kamiran et al. (2010). In
this work, a decision tree is first learned using a heuristic that
takes into account both discrimination and fairness. Subsequently,
a post-processing step is used to relabel leaves to further improve
a fairness score. This approach was adapted to the incremental
learning setting by Zhang and Ntoutsi (2019).

While these approaches aim to find trees that represent a good
trade-off between two criteria, they do not provide guarantees.
Algorithms for learning optimal decision trees have been modified
to provide such guarantees. Aghaei et al. (2019) adapted the MILP-
solver based approach to take into account two forms of fairness;
the approach optimizes a weighted sum of accuracy and fairness.
Similarly, van der Linden et al. (2022) adapted the DL8-style

approach such that an upper- or lower-bound on fairness can be
ensured, where the fairness score proposed by Kamiran et al. (2010)
is used to evaluate the fairness of a model.

Given the high predictive performance of boosted decision
trees, ensuring fairness has also been studied for ensembles of
decision trees. A first approach was proposed by Grari et al. (2019),
in which a gradient boosting algorithm has beenmodified to change
the gradient for instances based on the ability of an adversarial
model to predict the sensitive feature from the class predicted by
the ensemble model.

6.2. Robustness against adversarial
examples

Since the discovery that tree ensembles, just like neural
networks, are susceptible to adversarial examples (Kantchelian
et al., 2016), much research has been devoted to the detection of
robustness issues and ways to mitigate them. Before surveying it in
more detail, we introduce some terminology.

For a classification problem, x′ is an adversarial example of a
regular example xwhen it is “close to” x, i.e., in some neighborhood
N(x) of x, and f (x) 6= f (x′), with f (x) the predicted label for x.
Generally, the assumption is made that f classifies x correctly, and
that there is truth proximity, i.e., examples in N(x) are assumed to
have the same true label (Diochnos et al., 2018). N(x) is called the
attack model. It can be defined using a simple norm and radius
ǫ, e.g. Nǫ(x) = {x′ | ‖x− x′‖∞ < ǫ}, but more intricate attack
models also exist.5

Adversarial example generation is a direct application of the
verification framework (see Section 5.2): given a regular example
x, a verification tool is asked to construct an x′ ∈ N(x) with
f (x′) 6= f (x). If it fails, this proves the model robust with respect
to N(x).

When N(x) is defined by an lp norm, the smallest distance ǫ
∗

for which an adversarial example exists:

ǫ
∗ = min

x′∈N(x)
‖x− x′‖p such that f (x) 6= f (x′).

can be seen as a measure for how difficult it is to attack an ensemble
(Calzavara et al., 2020b).

6.2.1. Verifying robustness
Various different approaches have been proposed for tree

ensemble verification, varying in tooling, problem focus, and
precision. Table 1 provides an overview.

A first set of approaches translate the model to a mathematical
formulation and use off-the-shelf solvers. Kantchelian et al. (2016)
propose a mixed-integer linear programming (MILP) solution

5 E.g., some papers use asymmetric attack models where di�erent

perturbation sizes are used in either direction (Törnblom and Nadjm-Tehrani,

2020; Devos et al., 2021b; Vos and Verwer, 2021). Others add a maximum

budget (Devos et al., 2021a) and others again use rewriting rules, which

corresponds to a conditional asymmetric model with a maximum budget

(Calzavara et al., 2020b).

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

TABLE 1 Overview of methods for adversarial example generation (adv) and robustness checking (rob) for tree ensembles.

Method Focus Exact? Anytime? Generate
examples?

Code
available?

Supported
norms

Exact (MILP, Kantchelian et al., 2016) rob y na y yb lp

Symbolic prediction (Kantchelian et al., 2016) rob y n y n l0

VeriGB (SMT, Einziger et al., 2019) adv y n y n l∞
c

Cube attack (Andriushchenko and Hein, 2019) adv n n y y l∞

Merge (Chen et al., 2019b) rob n yd n y l∞

Merge+ (Wang et al., 2020) rob n yd n y lp

VoTE (Törnblom and Nadjm-Tehrani, 2020) rob y n y y lp

RF-ILP (ILP, Zhang et al., 2020b) adv y n y n l0

LT-attack (Zhang et al., 2020a) adv n n y y lp

Silva (Ranzato and Zanella, 2020) rob y n y y l∞

TreeCert (Calzavara et al., 2020a) rob n n y n lp
f

Tree-ck (SMT, Devos et al., 2021a) adv y n y y lp
f

Veritas (Devos et al., 2021b) both ye y y y l∞

The exact column indicates whether the returned results is guaranteed to be optimal. The anytime methods can be stopped at any time and will always produce bounds on the result. The

supported attack model is provided in the supported norms column.
aAMILP solver like Gurobi [Gurobi Optimization, LLC (2022)] is anytime, but the approximate bounds are not tight enough for practical use (Devos et al., 2021b).
bNot by the original authors, but Devos et al. (2021b) and Vos and Verwer (2021) provide implementations.
cAuthors claim the method works for any p-norm, but only evaluate l∞ .
dThe method is technically anytime as each level produces a new bound. However, the number of levels L is at most log2(M), withM the number of trees, and is set to 2 or 3 in the experiments.
eWhen the method is run to completion, the solution is exact.
fThese systems allow a generic formulation of the attack model. For TreeCert, the attacker is extremely flexible and is modeled as a C program.

that can deal with any lp norm. This was later specialized to
a pure integer linear program (ILP) for binary input attributes
and the l0 norm (Zhang et al., 2020b). Other have used
satisfiability modulo theory (SMT): the approaches by Einziger
et al. (2019), Sato et al. (2020), and Devos et al. (2021a) are
similar and differ only in focus and implementation details.
Calzavara et al. (2020a) and Ranzato and Zanella (2020) take
inspiration from the software verification field and use abstract

interpretation, commonly used for static program analysis, for
formal verification of tree ensembles. Calzavara et al. (2022)
propose a solution that verifies resilience, a generalization over
robustness which considers all possible test sets that could
be sampled.

A second set of approaches use techniques tailored to tree
ensembles, rather than off–the-shelf solvers. These tend to be
more efficient, but approximate. Chen et al. (2019b) reformulate
the verification task as a maximum-clique problem in an M-
partite graph, with M the number of trees. Wang et al. (2020)
extend Chen et al. (2019b), which only supports the l∞ norm,
to any lp norm, p ∈ [0,∞]. These two approaches are fast, but
only produce a coarse lower bound on the robustness value, and
do not generate adversarial examples. These issues are resolved
by Devos et al. (2021b), who propose a heuristic search in the
same graph representation that can generate concrete examples
and produces anytime lower and upper bounds on the ensemble’s
output. Zhang et al. (2020a) use the concept of neighboring
cliques (they call it leaf tuples) in an efficient greedy search
procedure that only changes one component of the clique per
step. They focus on adversarial example generation instead of
robustness checking.

The MILP approach by Kantchelian et al. (2016) is the
most frequently used baseline and evaluation tool for robust tree
methods in the literature (see Section 6.2.2). It produces exact
results within a reasonable time frame. The other exact approaches
using SMT are less efficient. It is unclear how well the methods
based on abstract interpretation perform in practice, as they are
only evaluated on smaller datasets. The same is true for the method
of Törnblom and Nadjm-Tehrani (2020).

In the authors’ experience, Zhang et al. (2020a) and Devos
et al. (2021b) offer the best tradeoff between accuracy and efficiency
for adversarial example generation, whereas for robustness
checking, Kantchelian et al. (2016) and Devos et al. (2021b) are
recommended.

6.2.2. Improving robustness
From the multitude of papers and methods in the previous

section, it is clear that decision tree ensembles are not robust.
Hence, researchers have investigated making decision trees and
their ensembles more robust. Table 2 gives an overview of the
available methods [extends the overviews by Vos and Verwer
(2021) and Guo et al. (2022)].

In general, robust training can be formulated as the following
min-max problem (Madry et al., 2018), with attackmodelN(x), loss
function l, training examples (xi, yi), and ensemble f :

f ∗ = argmin
f

{

N
∑

i=1

max
x′∈N(xi)

l(f (x′), yi)

}

(1)

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

The outer minimization is the usual learning optimization problem
minimizing the loss function. The inner maximization models the
worst-case scenario where an adversary attempts to maximize the
loss of the model (e.g., flip the label) in the neighborhood of a
training example x.

The problem is tackled from multiple different angles.
Kantchelian et al. (2016) propose enriching the training data with
adversarial examples, as has been done before for neural networks
(Szegedy et al., 2013). Vos and Verwer (2022) use the ideas from
optimal trees (see Section 4) to learn robust trees. Ranzato and
Zanella (2021) use a genetic algorithm to learn robust trees. A
number of papers change the splitting procedure used during
the construction of the trees. The main idea is to avoid splitting
thresholds that lie in dense areas; examples with values close to
those thresholds can easily jump to the other side with a small
perturbation. Others look at the global loss, assume a tree structure
or a specific loss function, and rewrite Equation 1 to simplify the
problem. Lastly, there are two approaches that are orthogonal to
the previous methods. The first is a pre-processing procedure that
partitions the features between the trees in the ensemble in such a
way that it becomes impossible to ever trick themajority of the trees
(Calzavara et al., 2021). The second is a post-processing procedure
that relabels the leaves of the ensemble to make it more difficult
to find neighboring leaves that predict different classes (Vos and
Verwer, 2023).

Chen et al. (2019a), Vos and Verwer (2021), and Chen et al.
(2021) propose changes to the splitting procedure. Chen et al.
(2019a) consider the ambiguity set of examples that can flip sides
with an ǫ perturbation, and propose a combinatorial optimization
problem that finds the configuration of the examples in the
ambiguity set that maximally worsens the loss (the maximization
in Equation 1). This combinatorial problem cannot be practically
solved, so both Chen et al. (2019a) and Chen et al. (2021)
introduce approximations. Vos and Verwer (2021) improve upon
this work by proposing an exact analytical solution for the Gini
impurity. The result is a scalable, robust decision tree learner called
GROOT. The method proposed by Calzavara et al. (2020b) is
similar, but solves the combinatorial problem as a convex numerical
optimization problem. Additionally, they assure global robustness
by introducing the attack invariance property, which keeps track of
the attack surface across different leaves in the tree.

Andriushchenko and Hein (2019) and Guo et al. (2022) look
at the global loss of Equation 1. Andriushchenko and Hein (2019)
limits the weak learners to decision stumps (trees with a single
split at the root and two leaves). This allows them to split up the
problem into one independent problem per attribute. Guo et al.
(2022) consider the 0/1 loss and realize that this loss can be used
directly to evaluate split candidates in constant time. Ranzato and
Zanella (2021), Vos and Verwer (2022), and Guo et al. (2022) all use
variants of robust 0/1 loss, where an example x is only considered
correctly classified when all instances inN(x) receive the same label.

6.3. Explainability

In critical domains such as finance and health, the adoption
of machine learning models may require trustworthy guarantees

such as transparency.6 In addition to giving accurate predictions,
machine learning models then must provide explanations for
their predictions in human-understandable terms (Ribeiro et al.,
2016a; Doshi-Velez and Kim, 2017). This motivates the research
area called eXplainable Artificial Intelligence (XAI). In XAI,
there are several types of explanations, including decision
rules, visualization, variable importance, and counterfactual
explanations. Below, we describe how decision trees can play a role
in this.

6.3.1. Decision tree explanations
By nature, decision trees can explain their predictions using

decision rules of the form “decision D was made because condition
C was fulfilled”. The explanatory power of decision tree models can
be further improved by constraining its complexity (e.g., find the
maximally accurate tree of depth at most d, see also Section 4) or
by explicating relevant properties, such as which features are most
important and how features interact (e.g., Lundberg et al., 2019).

Given these desirable properties, methods have been designed
to approximate black-box models (or parts of them) with decision
trees, so that they inherit to some extent these properties.

The most classical approach where decision trees are used is
knowledge distillation. In knowledge distillation, decision trees f
are trained to approximate the black-box model g either locally, in
the neighborhood of an instance x (minf ,x′∈N(x) d

(

f (x′), g(x′)
)

+

�(f)), or globally (minf d
(

f , g
)

+ �(f)), where �(f) is the
complexity of the decision tree f . For local explainability,
a well-known method is LIME (Ribeiro et al., 2016b). In
LIME, decision trees can be used as the interpretable model
that locally approximates the black-box model. For global
explainability, examples of methods that use decision trees include
TREPAN (Craven and Shavlik, 1995), its improved version
TREPAN Reloaded (Confalonieri et al., 2020) and the soft
distilled decision tree of Frosst and Hinton (2018). In knowledge
distillation, the standard setup is to use the empirical distribution
to approximate the black-box model. However, for a better
approximation, the work of Bastani et al. (2017) distills random
forests on a decision tree using samples from a fitted mixture of
truncated normal distributions.

Methods using the knowledge distillation approach may not
work well with high-dimensional data such as image and text
data because interpretable univariate trees may not be suitable
for this type of data. That is why several methods have been
proposed to design new models using or having decision trees
as interpretable components. For example, Wu et al. (2018)
and Okajima and Sadamasa (2019) respectively use decision trees
and extracted decision rules to constrain deep neural networks
for improved interpretability. Other methods such as the neural
prototype trees (ProtoTrees) (Nauta et al., 2021) and recurrent
decision tree models (Alaniz et al., 2021) integrate decision trees
in fully differentiable models with convolutional neural networks
and recurrent neural networks, respectively. Besides this, there is
a considerable literature on neural tree approaches (see the dNDF

6 Communication from the Commission of 8 April 2019, Ethics Guidelines

for Trustworthy AI, COM (2019).

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

TABLE 2 Overview of methods for robust decision tree learning.

Method Ensemble Complexity Norm Guarantees? Code available?

Adversarial boosting (Kantchelian et al., 2016) GB n log(n) l0 n n

RobustTrees (Chen et al., 2019a) RF+GB n log(n) l∞ n y

RobustStumps (Andriushchenko and Hein, 2019) GB n2 l∞ y y

TREANT (Calzavara et al., 2020b) RF n2 lp
a y yb

MetaSilvae (Ranzato and Zanella, 2021) RF ?c l∞ n y

Feat. Part. Forests (Calzavara et al., 2021) RF n log(n) l0 y n

GROOT (Vos and Verwer, 2021) RF n log(n) l∞ n y

CostAwareRobust (Chen et al., 2021) RF+GB n log(n) l∞
d n y

ROCT (Vos and Verwer, 2022) Single exp(n) l∞
d y y

Relabeling (Vos and Verwer, 2023) RF+GB n2.5 l∞
e y y

FPRDT (Guo et al., 2022) Single n log(n) l∞ y n

PRAdaBoost (Guo et al., 2022) Ada n log(n) l∞ y n

Some methods robustify a single tree (Single), and others are used in ensembles: random forest (RF), gradient boosting (GB) or AdaBoost (Ada). This is indicated in the Ensemble column. The

Complexity column shows the complexity of the learning algorithm in number of examples n. The number of features and the size of the models is ignored. The Norm column lists the attack

model that is considered by the method. The Guarantees column has a yes (y) value when the learned models are guaranteed to be robust.
aTREANT has a flexible attack model in the form of rewriting rules, allowing asymmetric perturbations (e.g. only positive), and a maximum budget (e.g. an l1-norm).
bVos and Verwer (2021) provide an alternative implementation.
cThe paper includes experiments that show that the genetic algorithm converges in 50-70 iterations for the tested datasets.
dAn asymmetric attack model is supported, i.e., it is possible to allow larger positive than negative perturbations, but it is still a box constraint.
eOther norms are possible, but this is not evaluated.

in Section 4.4) where the goal is to combine neural networks and
decision trees models with the ambition to get the advantages of
the two models: interpretability without sacrificing accuracy. The
recent survey of Li et al. (2022) analyses the majority of this work.

6.3.2. Counterfactual explanations of decision
trees and forests

In the previous section, through decision rule explanations,
decision trees were mainly described to provide explanations of
black-box models. This section focuses on a different type of
explanations, counterfactual explanations, which may be used to
locally explain soft decision trees and tree ensembles.

Counterfactual explanations aim to provide an answer to
questions of the type “what should I have done differently to
get a different outcome?”. They provide minimal changes that
can be performed on input features of an instance x to change
its prediction f (x). More formally, in the simplest setting, a
counterfactual explanation is an instance x′ such that (1) the
prediction of x′ differs from f (x), i.e., f (x′) 6= f (x), (2) x and
x′ are close under a metric, (3) x′ is a plausible input (Albini
et al., 2022), where plausible may mean a realistic instance that lies
in the data manifold. Apart from the requirement of plausibility,
counterfactual explanations are closely related to adversarial
examples (described in Section 5.2) and their generation can be
framed as a constrained optimization problem. Since univariate
decision trees are interpretable by design (through decision rules),
there is little interest to provide counterfactual explanations on
them. However, there is a growing interest in designing methods
that are able to provide this type of explanations for oblique
decision trees and tree ensembles.

Although there exist several agnostic (that do not depend on
the model class) methods to generate counterfactual explanations
[see the recent survey of Guidotti (2022)], few of them apply
to (oblique) decision trees because of the non-differentiability.
This motivated Carreira-Perpiñán and Hada (2021) to propose
a closed-form solution (resp. quadratic program) for univariate
decision trees (resp. oblique decision trees) to find counterfactual
explanations.

On tree ensemble models, Cui et al. (2015) showed that the
constrained optimization problem of generating counterfactual
explanations is NP-hard. Therefore, through the lens of
optimization, there are heuristic based approaches and optimal
based approaches to generate counterfactual explanations for tree
ensemble models.

Tolomei et al. (2017) propose a heuristic method that
breaks the computational complexity by searching counterfactual
explanations on only at least half of decision trees (in the ensemble)
that give the desired outcome.

The majority of optimality based approaches leverage MILP
solvers to model the generation of optimal counterfactual
explanations for a tree ensemble. Among the earliest work in this
direction is the work of Cui et al. (2015). While their framework
was general enough to cope with all lp norms, Cui et al. (2015)
eventually consider only the Mahalanobis distance and use a
discretization in the input space to permit a modeling (of the MILP
problem) with only integer variables. Still using integer variables,
this framework has been recently improved by Kanamori et al.
(2021), extending it to an l1 norm. Remarking that integer variables
usually slow down the optimization done by the MILP solver
(due to their implication in the branch and bound), Parmentier
and Vidal (2021) recently introduce a new MILP formulation
that significantly reduces the number of integer variables. As a

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

result, their formulation allows to generate optimal counterfactual
explanations in seconds for moderated-size problems (hundreds of
trees and over fifty features).

The different types of approaches among tree learners (see
Section 4) are reflected also here; for instance, Lucic et al. (2022)
show how methods originally proposed for differentiable models
can be used with tree ensembles.

A significant issue with counterfactual examples for trees and
ensembles is their robustness to changes in the model: an example
that is counterfactual for a model may no longer be if the model is
retrained on slightly different data. Dutta et al. (2022) study how to
generate robust counterfactual examples.

7. Challenges and perspectives

It stands out from the preceding sections that there is a recent
resurgence in the use of decision trees. Their discrete nature readily
allows (1) the extraction of human-readable decision rules and (2)
the full verification of the input-output mapping defined by the
trees. This stands in stark contrast to (deep) neural networks.While
the performance of deep learning is unchallenged on many tasks,
extracting human-interpretable information about the network is
much more challenging and, as it stands now, verification of neural
networks seems to be more difficult to scale to realistic problem
scenarios than verification of tree ensembles. For an overview of
verification in deep neural networks, see Liu et al. (2021).

The aforementioned reasons explain why many approaches
are again considering decision trees, either by themselves, or
as surrogate models. For example, decision trees are often the
target models in knowledge distillation for interpretability and
explanations (Ribeiro et al., 2016b; Confalonieri et al., 2020) (see
Section 6.3), and they are used in reinforcement learning for policy
verification (Bastani et al., 2018; Milani et al., 2022). While neural
networks are particularly well-suited to reinforcement learning
given their natural ability to continuously update the weights, we
see that decision trees are used again purely for their interpretability
and ease of verification, even when that means giving up some
performance.

As discussed in Section 6.2, robustness is a major open
challenge in decision tree ensembles, and the field of robust
trees is growing rapidly, with multiple dimensions being explored
simultaneously. A first important issue arises because most tree
ensembles are non-continuous, non-smooth step functions, which
means it is not straightforward to reason about the smoothness of
the function. Coincidentally, robustness and smoothness are linked
(Yang et al., 2020): a model that is non-robust for an instance
x, i.e., a perturbed example x′ close to x exists with a different
prediction, must inevitable have a large rate of change in output
between x and x′. Tree ensembles predict constant values for
discrete subsections of the input space. There is no smoothness
constraint between values predicted for neighboring subsections.
Contrast this to smooth continuous functions where assumptions
can be made about the rate of change between close points in the
input space. A second important issue is due to the fact that the
number of attributes tested to reach a leaf is limited to the depth
of the leaf in the tree. Assuming that the number of attributes in
the data is relatively large, many of the attributes are unconstrained

given the prediction of a particular tree. In an ensemble, the next
tree is likely going to pick different attributes. Correlations exist
in the data distribution, but the trees do not strictly enforce them.
After all, a split on a strongly correlated feature is unlikely to yield
a better partitioning of the data. An attacker can exploit this as
follows. Making small perturbations in one attribute might flip a
split in one tree, but will not affect another tree that happened to
split on a correlated attribute. An attack can use this to carefully
select the branches in the trees to attain a desired outcome.

Section 6 showed challenges tackled with tree-based models
in the context of responsible AI. These issues, which include
fairness, robustness and explainability, are mainly addressed in

isolation in the literature, although they are clearly related (see, e.g.,
the analogy between counterfactual explanations and adversarial
example generation in Sections 5.2 and 6.3.2). There are very few
studies that link all these components in a single framework or
that thoroughly investigate the possible (in)compatibility of the
requirements of responsible and trustworthy AI. It is expected that
future studies will fill this gap, in particular for tree-based methods.

8. Concluding remarks

Decision trees have been a cornerstone of machine learning
from its very beginning, and will likely remain so for decades to
come. Some reasons for this are:

1. Predictive performance: Tree ensembles have unrivaled
predictive accuracy when learning from tabular data.

2. Efficiency: Trees can be learned from relatively small amounts
of data. Learning is very fast, prediction extremely fast; this is
useful especially when deploying models on mobile devices.

3. Ease of use: Good results can often be obtained without
hyperparameter tuning (though tuning may further improve
them).

4. Interpretability: Individual predictions are easy to interpret.
5. Flexibility: Tree learning algorithms are easily adapted for tasks

beyond the usual classification and regression.
6. Versatility: Decision trees can be used for a wide variety of tasks,

ranging well beyond classification and regression.
7. Suitability for auxiliary use: Decision trees are often useful as

auxiliary models, and are easily integrated in other systems.
8. Verifiability: The structure of trees and forests are such that they

can be subject to formal verification.
9. Constrainability: Structural and semantic constraints can be

imposed on trees and ensembles.

Properties 1–4 explain the continued popularity of decision
trees for predictive modeling. Properties 5–9 make decision trees
and forests very useful in the context of responsible AI: they
facilitate the development of AI systems that are accurate, robust,
fair, and transparent. It seems likely that decision tree based models
will continue to be useful when other challenges arise in AI, and
that research on decision trees (both how to learn them, and how
to use them) will remain relevant in the future.

Research directions hitherto little explored include: (a)
extending the “optimal tree learning” methods to dynamic settings
(incremental learning, concept drift), ensembles, and variants of
decision trees (oblique trees, multi-target trees, ranking, predictive

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

clustering trees, etc.); (b) imposing and/or verifying a broader
variety of constraints on trees and ensembles; (c) exploiting
the commonalities between domains currently mostly studied in
isolation, such as robust and explanatory AI; (d) cross-comparing
methods from different paradigms (such as combinatorial solvers
versus evolutionary approaches). Further developments in the area
of responsible AI will likely keep exploiting existing decision tree
technologies as well as motivate new research.

Author contributions

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

Funding

This work was supported by the Research Foundation–Flanders
and the Fonds de la Recherche Scientifique–FNRS under EOS
No. 30992574 (VeriLearn) and by the Flemish Government (AI
Research Program).

Acknowledgments

We thank the reviewers for their extensive constructive
comments, which helped improve this article.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aghaei, S., Azizi, M. J., and Vayanos, P. (2019). “Learning optimal and fair decision
trees for non-discriminative decision-making,” in Proceedings of the 33rd AAAI
Conference on Artificial Intelligence 1418–1426. doi: 10.1609/aaai.v33i01.33011418

Aglin, G., Nijssen, S., and Schaus, P. (2020a). “Learning optimal decision trees using
caching branch-and-bound search,” in Proceedings of the 34th AAAI Conference on
Artificial Intelligence 3146–3153. doi: 10.1609/aaai.v34i04.5711

Aglin, G., Nijssen, S., and Schaus, P. (2020b). “Pydl8.5: a library for learning optimal
decision trees,” in Proceedings of the 29th International Joint Conference on Artificial
Intelligence 5222–5224. doi: 10.24963/ijcai.2020/750

Aglin, G., Nijssen, S., and Schaus, P. (2022). “Learning optimal decision trees under
memory constraints,” in Machine Learning and Knowledge Discovery in Databases
(ECMLPKDD 2022), Part V 393–409. doi: 10.1007/978-3-031-26419-1_24

Alaniz, S., Marcos, D., Schiele, B., and Akata, Z. (2021). “Learning decision
trees recurrently through communication,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition 13518–13527.
doi: 10.1109/CVPR46437.2021.01331

Albini, E., Long, J., Dervovic, D., and Magazzeni, D. (2022). “Counterfactual
shapley additive explanations,” in 2022 ACM Conference on Fairness, Accountability,
and Transparency 1054–1070. doi: 10.1145/3531146.3533168

Andriushchenko, M., and Hein, M. (2019). “Provably robust boosted decision
stumps and trees against adversarial attacks,” in Advances in Neural Information
Processing Systems 12997–13008.

Avellaneda, F. (2020). “Efficient inference of optimal decision trees,” in
Proceedings of the 34th AAAI Conference on Artificial Intelligence 3195–3202.
doi: 10.1609/aaai.v34i04.5717

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2012).
A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man,
Cyber. 42, 291–312. doi: 10.1109/TSMCC.2011.2157494

Barros, R. C., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2015).Automatic Design
of Decision-Tree Induction Algorithms. New York: Springer Briefs in Computer Science.
doi: 10.1007/978-3-319-14231-9

Bastani, O., Kim, C., and Bastani, H. (2017). Interpretability via model extraction.
arXiv:1706.09773.

Bastani, O., Pu, Y., and Solar-Lezama, A. (2018). “Verifiable reinforcement learning
via policy extraction,” inAdvances in Neural Information Processing Systems 2499–2509.

Bekker, J., and Davis, J. (2018). “Estimating the class prior in positive and unlabeled
data through decision tree induction,” in Proceedings of the 32nd AAAI Conference on
Artificial Intelligence 2712–2719. doi: 10.1609/aaai.v32i1.11715

Ben-David, A. (1995). Monotonicity maintenance in information-theoretic
machine learning algorithms.Mach. Learn. 19, 29–43. doi: 10.1007/BF00994659

Ben-Haim, Y., and Tom-Tov, E. (2010). A streaming parallel decision tree
algorithm. J. Mach. Lear. Res. 11, 849–872.

Bertsimas, D., and Dunn, J. (2017). Optimal classification trees. Mach. Lear. 106,
1039–1082. doi: 10.1007/s10994-017-5633-9

Bertsimas, D., Dunn, J., Gibson, E., and Orfanoudaki, A. (2022). Optimal survival
trees.Mach. Lear. 111, 2951–3023. doi: 10.1007/s10994-021-06117-0

Bessiere, C., Hebrard, E., and O’Sullivan, B. (2009). “Minimising decision tree size
as combinatorial optimisation,” in Principles and Practice of Constraint Programming -
CP 2009 173–187. doi: 10.1007/978-3-642-04244-7_16

Blockeel, H., and De Raedt, L. (1998). Top-down induction of first-order logical
decision trees. Artif. Intell. 101, 285–297. doi: 10.1016/S0004-3702(98)00034-4

Blockeel, H., Page, D., and Srinivasan, A. (2005). “Multi-instance tree learning,”
in Proceedings of the 22nd International Conference on Machine Learning 57–64.
doi: 10.1145/1102351.1102359

Blockeel, H., Raedt, L. D., and Ramon, J. (1998). “Top-down induction of clustering
trees,” in Proceedings of the 15th International Conference on Machine Learning 55–63.

Bou-Hamad, I., Larocque, D., and Ben-Ameur, H. (2011). A review of survival trees.
Stat. Surv. 5, 44–71. doi: 10.1214/09-SS047

Breiman, L. (1996). Bagging predictors. Mach. Lear. 24, 123–140.
doi: 10.1007/BF00058655

Breiman, L. (2001). Random forests. Mach. Lear. 45, 5–32.
doi: 10.1023/A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and Regression Trees. Washington, DC: Wadsworth.

Calzavara, S., Cazzaro, L., Lucchese, C., Marcuzzi, F., and Orlando, S. (2022).
Beyond robustness: Resilience verification of tree-based classifiers. Comput. Secur. 121,
102843. doi: 10.1016/j.cose.2022.102843

Calzavara, S., Ferrara, P., and Lucchese, C. (2020a). “Certifying decision trees
against evasion attacks by program analysis,” in Computer Security-ESORICS
2020: 25th European Symposium on Research in Computer Security 421–438.
doi: 10.1007/978-3-030-59013-0_21

Calzavara, S., Lucchese, C., Marcuzzi, F., and Orlando, S. (2021). Feature
partitioning for robust tree ensembles and their certification in adversarial
scenarios. EURASIP J. Inform. Secur. 2021, 1–17. doi: 10.1186/s13635-021-0
0127-0

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v34i04.5711
https://doi.org/10.24963/ijcai.2020/750
https://doi.org/10.1007/978-3-031-26419-1_24
https://doi.org/10.1109/CVPR46437.2021.01331
https://doi.org/10.1145/3531146.3533168
https://doi.org/10.1609/aaai.v34i04.5717
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1007/978-3-319-14231-9
https://doi.org/10.1609/aaai.v32i1.11715
https://doi.org/10.1007/BF00994659
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-021-06117-0
https://doi.org/10.1007/978-3-642-04244-7_16
https://doi.org/10.1016/S0004-3702(98)00034-4
https://doi.org/10.1145/1102351.1102359
https://doi.org/10.1214/09-SS047
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.cose.2022.102843
https://doi.org/10.1007/978-3-030-59013-0_21
https://doi.org/10.1186/s13635-021-00127-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S. A., and Orlando, S. (2020b).
Treant: training evasion-aware decision trees. Data Mining Knowl. Discov.34,
1390–1420. doi: 10.1007/s10618-020-00694-9

Carreira-Perpi nán, M., Á., and Hada, S. S. (2021). “Counterfactual explanations
for oblique decision trees: Exact, efficient algorithms,” in Proceedings of the 35th AAAI
Conference on Artificial Intelligence 6903–6911. doi: 10.1609/aaai.v35i8.16851

Chen, H., Zhang, H., Boning, D., and Hsieh, C.-J. (2019a). “Robust decision trees
against adversarial examples,” in Proceedings of the 36th International Conference on
Machine Learning 1122–1131.

Chen, H., Zhang, H., Si, S., Li, Y., Boning, D., and Hsieh, C.-J. (2019b). “Robustness
verification of tree-based models,” in Advances in Neural Information Processing
Systems 12317–12328.

Chen, T., and Guestrin, C. (2016). “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 785–794. doi: 10.1145/2939672.2939785

Chen, Y.,Wang, S., Jiang,W., Cidon, A., and Jana, S. (2021). “Cost-aware robust tree
ensembles for security applications,” in 30th USENIX Security Symposium (USENIX
Security 21) 2291–2308.

Clémençon, S., Depecker, M., and Vayatis, N. (2011). Adaptive partitioning schemes
for bipartite ranking.Mach. Lear. 83, 31–69. doi: 10.1007/s10994-010-5190-y

Confalonieri, R., Weyde, T., Besold, T. R., and del Prado Martín, F. M. (2020).
“Trepan reloaded: A knowledge-driven approach to explaining artificial neural
networks,” in 24th European Conference on Artificial Intelligence 2457–2464.

Costa, V., and Pedreira, C. (2023). Recent advances in decision trees: an updated
survey. Artif. Intell. Rev. 56, 4765–4800. doi: 10.1007/s10462-022-10275-5

Cotter, A., Jiang, H., Gupta, M. R., Wang, S., Narayan, T., You, S., et al. (2019).
Optimization with non-differentiable constraints with applications to fairness, recall,
churn, and other goals. J. Mach. Lear. Res. 20, 1–59.

Craven, M. W., and Shavlik, J. W. (1995). “Extracting tree-structured
representations of trained networks,” in Proceedings of the 8th International Conference
on Neural Information Processing Systems 24–30.

Criminisi, A., and Shotton, J. (2013). Decision Forests for Computer Vision
and Medical Image Analysis. Berlin: Springer Publishing Company, Incorporated.
doi: 10.1007/978-1-4471-4929-3

Criminisi, A., Shotton, J., and Konukoglu, E. (2012). Decision forests: A
unified framework for classification, regression, density estimation, manifold learning
and semi-supervised learning. Found. Trends Comput. Graph. Vision 7, 81–227.
doi: 10.1561/0600000035

Cui, Z., Chen, W., He, Y., and Chen, Y. (2015). “Optimal action extraction
for random forests and boosted trees,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 179–188.
doi: 10.1145/2783258.2783281

Demirovic, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., et al. (2022).
Murtree: Optimal decision trees via dynamic programming and search. J. Mach. Lear.
Res. 23, 1–26.

Devos, L., Meert, W., and Davis, J. (2020). “Fast gradient boosting decision trees
with bit-level data structures,” in Machine Learning and Knowledge Discovery in
Databases (ECMLPKDD 2019), Part I 590–606. doi: 10.1007/978-3-030-46150-8_35

Devos, L., Meert, W., and Davis, J. (2021a). “Verifying tree ensembles by reasoning
about potential instances,” in Proceedings of the 2021 SIAM International Conference on
Data Mining 450–458. doi: 10.1137/1.9781611976700.51

Devos, L.,Meert,W., andDavis, J. (2021b). “Versatile verification of tree ensembles,”
in Proceedings of the 38th International Conference on Machine Learning 2654–2664.

Diochnos, D., Mahloujifar, S., and Mahmoody, M. (2018). “Adversarial risk and
robustness: General definitions and implications for the uniform distribution,” in
Advances in Neural Information Processing Systems 10380–10389.

Domingos, P. M., and Hulten, G. (2000). “Mining high-speed data streams,” in
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 71–80. doi: 10.1145/347090.347107

Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. (2020). A survey on ensemble
learning. Front Comput. Sci. 14, 241–258. doi: 10.1007/s11704-019-8208-z

Doshi-Velez, F., and Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv:1702.08608.

Du, W., and Zhan, Z. (2002). “Building decision tree classifier on private data,” in
Proceedings of the 14th IEEE International Conference on Privacy, Security and Data
Mining 1–8.

Dutta, S., Long, J., Mishra, S., Tilli, C., and Magazzeni, D. (2022). “Robust
counterfactual explanations for tree-based ensembles,” in Proceedings of the 39th
International Conference on Machine Learning 5742–5756.

Einziger, G., Goldstein, M., Sa’ar, Y., and Segall, I. (2019). “Verifying robustness
of gradient boosted models,” in Proceedings of the 33rd AAAI Conference on Artificial
Intelligence 2446–2453. doi: 10.1609/aaai.v33i01.33012446

Esmeir, S., and Markovitch, S. (2007). Anytime learning of decision trees. J. Mach.
Lear. Res. 8, 891–933.

Fierens, D., Ramon, J., Blockeel, H., and Bruynooghe, M. (2010). A
comparison of pruning criteria for probability trees. Mach. Lear. 78, 251–285.
doi: 10.1007/s10994-009-5147-1

Fierens, D., Ramon, J., Bruynooghe, M., and Blockeel, H. (2007). “Learning
directed probabilistic logical models: Ordering-search versus structure-search,” in
Proceedings of the 18th European Conference on Machine Learning 567–574.
doi: 10.1007/978-3-540-74958-5_54

Fletcher, S., and Islam, M. Z. (2019). Decision tree classification with differential
privacy: A survey. ACM Comput. Surv. 52, 1–33. doi: 10.1145/3337064

Freund, Y., andMason, L. (1999). “The alternating decision tree learning algorithm,”
in Proceedings of the 16th International Conference on Machine Learning 124–133.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Friedman, N., and Goldszmidt, M. (1998). “Learning bayesian networks
with local structure,” in Learning in Graphical Models (Springer) 421–459.
doi: 10.1007/978-94-011-5014-9_15

Frosst, N., and Hinton, G. (2018). “Distilling a neural network into a soft decision
tree,” in Proceedings of the First International Workshop on Comprehensibility and
Explanation in AI and ML.

Fürnkranz, J., and Hüllermeier, E. (2010). Preference Learning. Berlin: Springer.

Garcia-Martin, E., Bifet, A., Lavesson, N., König, R., and Linusson, H. (2022). Green
accelerated Hoeffding tree. arXiv:2205.03184.

Garofalakis, M., Hyun, D., Rastogi, R., and Shim, K. (2003). Building decision trees
with constraints. Data Min. Knowl. Disc. 7, 187–214. doi: 10.1023/A:1022445500761

Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). Rainforest-a framework for
fast decision tree construction of large datasets. Data Min. Knowl. Disc. 4, 127–162.
doi: 10.1023/A:1009839829793

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., et al.
(2017). Adaptive random forests for evolving data stream classification. Mach. Lear.
106, 1469–1495. doi: 10.1007/s10994-017-5642-8

Grari, V., Ruf, B., Lamprier, S., and Detyniecki, M. (2019). “Fair adversarial gradient
tree boosting,” in Proceedings of the 2019 IEEE International Conference on DataMining
1060–1065. doi: 10.1109/ICDM.2019.00124

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). “Why do tree-based models
still outperform deep learning on typical tabular data?” in NeurIPS 2022 Datasets and
Benchmarks.

Guidotti, R. (2022). Counterfactual explanations and how to find them:
literature review and benchmarking. Data Min. Knowl. Disc. 3, 1–55.
doi: 10.1007/s10618-022-00831-6

Guo, J.-Q., Teng, M.-Z., Gao, W., and Zhou, Z.-H. (2022). “Fast provably robust
decision trees and boosting,” in Proceedings of the 39th International Conference on
Machine Learning 8127–8144.

Gurobi Optimization, L. L. C. (2022). Gurobi Optimizer Reference Manual.

Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., andMazumder, R. (2020). “The tree
ensemble layer: Differentiability meets conditional computation,” in Proceedings of the
37th International Conference on Machine Learning 4138–4148.

Hothorn, T., and Lausen, B. (2003). Bagging tree classifiers for laser scanning
images: a data- and simulation-based strategy. Artif. Intell. Med. 27, 65–79.
doi: 10.1016/S0933-3657(02)00085-4

Hu, H., Siala, M., Hebrard, E., and Huguet, M.-J. (2020). “Learning optimal
decision trees with maxsat and its integration in adaboost,” in Proceedings
of the 29th International Joint Conference on Artificial Intelligence 1170–1176.
doi: 10.24963/ijcai.2020/163

Hu, X., Rudin, C., and Seltzer, M. I. (2019). “Optimal sparse decision trees,” in
Advances in Neural Information Processing Systems 7265–7273.

Hüllermeier, E., and Vanderlooy, S. (2009). Why fuzzy decision trees are good
rankers. IEEE Trans. Fuzzy Syst. 17, 1233–1244. doi: 10.1109/TFUZZ.2009.2026640

Hyafil, L., and Rivest, R. (1976). Constructing optimal binary decision trees is
np-complete. Inform. Proces. Lett. 5, 15–17. doi: 10.1016/0020-0190(76)90095-8

Irsoy, O., Yıldız, O. T., and Alpaydın, E. (2012). “Soft decision trees,” in Proceedings
of the 21st International Conference on Pattern Recognition 1819–1822.

Irsoy, O., Yildiz, O. T., and Alpaydin, E. (2014). “Budding trees,” in
Proceedings of the 22nd International Conference on Pattern Recognition 3582–3587.
doi: 10.1109/ICPR.2014.616

Jin, C., Wang, J., Teo, S. G., Zhang, L., Chan, C., Hou, Q., et al. (2022). “Towards
end-to-end secure and efficient federated learning for xgboost,” in Proceedings of
the AAAI International Workshop on Trustable, Verifiable and Auditable Federated
Learning.

Johansson, U., Boström, H., Löfström, T., and Linusson, H. (2014).
Regression conformal prediction with random forests. Mach. Lear. 97, 155–176.
doi: 10.1007/s10994-014-5453-0

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Nitin
Bhagoji, A., et al. (2021). Advances and open problems in federated

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://doi.org/10.1007/s10618-020-00694-9
https://doi.org/10.1609/aaai.v35i8.16851
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10994-010-5190-y
https://doi.org/10.1007/s10462-022-10275-5
https://doi.org/10.1007/978-1-4471-4929-3
https://doi.org/10.1561/0600000035
https://doi.org/10.1145/2783258.2783281
https://doi.org/10.1007/978-3-030-46150-8_35
https://doi.org/10.1137/1.9781611976700.51
https://doi.org/10.1145/347090.347107
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1609/aaai.v33i01.33012446
https://doi.org/10.1007/s10994-009-5147-1
https://doi.org/10.1007/978-3-540-74958-5_54
https://doi.org/10.1145/3337064
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/978-94-011-5014-9_15
https://doi.org/10.1023/A:1022445500761
https://doi.org/10.1023/A:1009839829793
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1109/ICDM.2019.00124
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1016/S0933-3657(02)00085-4
https://doi.org/10.24963/ijcai.2020/163
https://doi.org/10.1109/TFUZZ.2009.2026640
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1109/ICPR.2014.616
https://doi.org/10.1007/s10994-014-5453-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

learning. Found. Trends Mach. Learn. 14, 1–210. doi: 10.1561/22000
00083

Kamiran, F., Calders, T., and Pechenizkiy, M. (2010). “Discrimination aware
decision tree learning,” in Proceedings of the 10th IEEE International Conference on
Data Mining 869–874. doi: 10.1109/ICDM.2010.50

Kanamori, K., Takagi, T., Kobayashi, K., and Arimura, H. (2021). “Dace:
distribution-aware counterfactual explanation by mixed-integer linear optimization,”
in Proceedings of the 29th International Joint Conference on Artificial Intelligence
2855–2862. doi: 10.24963/ijcai.2020/395

Kantchelian, A., Tygar, J. D., and Joseph, A. (2016). “Evasion and hardening of tree
ensemble classifiers,” in Proceedings of the 33rd International Conference on Machine
Learning 2387–2396.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). “LightGBM:
A highly efficient gradient boosting decision tree,” in Advances in Neural Information
Processing Systems 3149–3157.

Kiossou, H., Nijssen, S., Schaus, P., and Houndji, R. (2022). “Time constrained dl8.5
using limited discrepancy search,” in Machine Learning and Knowledge Discovery in
Databases (ECMLPKDD 2022), Part V 443–459. doi: 10.1007/978-3-031-26419-1_27

Kocev, D., Vens, C., Struyf, J., and Dzeroski, S. (2013). Tree ensembles for predicting
structured output. Patt. Recogn. 46, 817–833. doi: 10.1016/j.patcog.2012.09.023

Kontschieder, P., Fiterau, M., Criminisi, A., and Bulo, S. R. (2015). “Deep neural
decision forests,” in Proceedings of the IEEE International Conference on Computer
Vision 1467–1475. doi: 10.1109/ICCV.2015.172

Koschel, S., Buschjäger, S., Lucchese, C., and Morik, K. (2023). Fast inference of tree
ensembles on arm devices. arXiv:2305.08579.

Kramer, S. (1996). “Structural regression trees,” in Proceedings of the 13th National
Conference on Artificial Intelligence 812–819.

Lee, G.-H., and Jaakkola, T. S. (2020). “Oblique decision trees from derivatives of
ReLU networks,” in International Conference on Learning Representations.

Levatić, J., Ceci, M., Kocev, D., and Džeroski, S. (2017). Semi-supervised
classification trees. J. Intell. Inform. Syst. 49, 461–486. doi: 10.1007/s10844-017-0457-4

Li, H., Song, J., Xue, M., Zhang, H., Ye, J., Cheng, L., et al. (2022). A survey of neural
trees. arXiv:2209.03415.

Li, Q., Wu, Z., Wen, Z., and He, B. (2020). “Privacy-preserving gradient boosting
decision trees,” in Proceedings of the 34th AAAI Conference on Artificial Intelligence
784–791. doi: 10.1609/aaai.v34i01.5422

Liang, C., Zhang, Y., Shi, P., and Hu, Z. (2012). Learning very fast decision tree from
uncertain data streams with positive and unlabeled samples. Inform. Sci. 213, 50–67.
doi: 10.1016/j.ins.2012.05.023

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. (2020). Generalized and scalable
optimal sparse decision trees,” in Proceedings of the 37th International Conference on
Machine Learning 6150–6160.

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., and Kochenderfer, M. J.
(2021). Algorithms for verifying deep neural networks. Found. Trends? Optimiz. 4,
244–404. doi: 10.1561/2400000035

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). “Isolation forest,” in
Proceedings of the 8th IEEE International Conference on Data Mining 413–422.
doi: 10.1109/ICDM.2008.17

Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., Tonellotto, N., and Venturini,
R. (2017). “Quickscorer: Efficient traversal of large ensembles of decision trees,” in
Machine Learning and Knowledge Discovery in Databases (ECMLPKDD 2017), Part III
383–387. doi: 10.1007/978-3-319-71273-4_36

Lucic, A., Oosterhuis, H., Haned, H., and de Rijke, M. (2022). “Focus: Flexible
optimizable counterfactual explanations for tree ensembles,” in Proceedings of the 36th
AAAI Conference on Artificial Intelligence 5313–5322. doi: 10.1609/aaai.v36i5.20468

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al.
(2019). Explainable ai for trees: From local explanations to global understanding.
arXiv:1905.04610.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). “Towards
deep learning models resistant to adversarial attacks,” in Proceedings of the 6th
International Conference on Learning Representations.

McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C.,
et al. (2022). “Fast sparse decision tree optimization via reference ensembles,”
in Proceedings of the 36th AAAI Conference on Artificial Intelligence 9604–9613.
doi: 10.1609/aaai.v36i9.21194

Mehta, M., Agrawal, R., and Rissanen, J. (1996). “Sliq: A fast scalable classifier
for data mining,” in Advances in Database Technology-EDBT’96: 5th International
Conference on Extending Database Technology 18–32. doi: 10.1007/BFb0014141

Meng, Q., Ke, G., Wang, T., Chen, W., Ye, Q., Ma, Z.-M., et al. (2016a). A
communication-efficient parallel algorithm for decision tree. Adv. Neural Infor. Proc.
Syst. 29, 1271–1279.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., et al. (2016b).
MLlib:Machine Learning in Apache Spark. J. Mach. Learn. Res. 17, 1235–1241.

Milani, S., Zhang, Z., Topin, N., Shi, Z. R., Kamhoua, C., Papalexakis, E. E.,
et al. (2022). “Maviper: Learning decision tree policies for interpretable multi-agent
reinforcement learning,” in Machine Learning and Knowledge Discovery in Databases
(ECMLPKDD 2022), Part IV 251–266. doi: 10.1007/978-3-031-26412-2_16

Mitchell, R., and Frank, E. (2017). Accelerating the XGBoost algorithm using GPU
computing. PeerJ Comput. Sci. 3, e127. doi: 10.7717/peerj-cs.127

Murthy, S. K. (1998). Automatic construction of decision trees from
data: A multi-disciplinary survey. Data Mining Knowl. Disc. 2, 345–389.
doi: 10.1023/A:1009744630224

Murthy, S. K., Kasif, S., and Salzberg, S. (1994). A system for induction of oblique
decision trees. J. Artif. Intell. Res. 2, 1–32. doi: 10.1613/jair.63

Nanfack, G., Temple, P., and Frénay, B. (2021). Constraint enforcement on decision
trees: A survey. ACM Comput. Surv. 54, 1–36. doi: 10.1145/3506734

Narodytska, N., Ignatiev, A., Pereira, F., and Marques-Silva, J. (2018). “Learning
optimal decision trees with SAT,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence 1362–1368. doi: 10.24963/ijcai.2018/189

Nauta, M., van Bree, R., and Seifert, C. (2021). “Neural prototype trees
for interpretable fine-grained image recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition 14933–14943.
doi: 10.1109/CVPR46437.2021.01469

Neville, J., and Jensen, D. D. (2007). Relational dependency networks. J. Mach. Lear.
Res. 8, 653–692.

Nijssen, S., and Fromont, É. (2007). “Mining optimal decision trees from itemset
lattices,” in Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 530–539. doi: 10.1145/1281192.1281250

Norouzi, M., Collins, M. D., Johnson, M., Fleet, D. J., and Kohli, P. (2015). “Efficient
non-greedy optimization of decision trees,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems 1729–1737.

Núñez, M. (1991). The use of background knowledge in decision tree induction.
Mach. Lear. 6, 231–250. doi: 10.1007/BF00114778

Okajima, Y., and Sadamasa, K. (2019). “Deep neural networks constrained by
decision rules,” in Proceedings of the 33th AAAI Conference on Artificial Intelligence
2496–2505. doi: 10.1609/aaai.v33i01.33012496

Olaru, C., andWehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy
Sets Syst. 138, 221–254. doi: 10.1016/S0165-0114(03)00089-7

Parmentier, A., and Vidal, T. (2021). “Optimal counterfactual explanations in tree
ensembles,” in Proceedings of the 38th International Conference on Machine Learning
8422–8431.

Potharst, R., and Feelders, A. J. (2002). Classification trees for problems with
monotonicity constraints. SIGKDD Explor. 4, 1–10. doi: 10.1145/568574.568577

Provost, F. J., and Domingos, P. M. (2003). Tree induction for probability-based
ranking.Mach. Lear. 52, 199–215. doi: 10.1023/A:1024099825458

Quinlan, J. R. (1986). Induction of decision trees. Mach. Lear. 1, 81–106.
doi: 10.1007/BF00116251

Quinlan, J. R. (1992). “Learning with continuous classes,” in Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence 343–348.

Ram, P., and Gray, A. G. (2011). “Density estimation trees,” in Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 627–635. doi: 10.1145/2020408.2020507

Ranzato, F., and Zanella, M. (2020). “Abstract interpretation of decision tree
ensemble classifiers,” in Proceedings of the AAAI Conference on Artificial Intelligence
5478–5486. doi: 10.1609/aaai.v34i04.5998

Ranzato, F., and Zanella, M. (2021). “Genetic adversarial training of decision trees,”
in Proceedings of the 2021 Genetic and Evolutionary Computation Conference 358–367.
doi: 10.1145/3449639.3459286

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). “Model-agnostic interpretability
of machine learning,” in ICML Workshop on Human Interpretability in Machine
Learning, WHI ’16 (Stockholm, Sweden).

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). “‘Why should I trust you?’:
Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 1135–1144.
doi: 10.1145/2939672.2939778

Rokach, L. (2016). Decision forest: Twenty years of research. Inf. Fusion 27,
111–125. doi: 10.1016/j.inffus.2015.06.005

Rota Bulo, S., and Kontschieder, P. (2014). “Neural decision forests for semantic
image labelling,” in Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition 81–88. doi: 10.1109/CVPR.2014.18

Sagi, O., and Rokach, L. (2018). Ensemble learning: A survey. WIREs Data Min.
Knowl. Disc. 8, e1249. doi: 10.1002/widm.1249

Sato, N., Kuruma, H., Nakagawa, Y., and Ogawa, H. (2020). Formal verification of
a decision-tree ensemble model and detection of its violation ranges. IEICE Trans. Inf.
Syst. E103, 363–378. doi: 10.1587/transinf.2019EDP7120

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://doi.org/10.1561/2200000083
https://doi.org/10.1109/ICDM.2010.50
https://doi.org/10.24963/ijcai.2020/395
https://doi.org/10.1007/978-3-031-26419-1_27
https://doi.org/10.1016/j.patcog.2012.09.023
https://doi.org/10.1109/ICCV.2015.172
https://doi.org/10.1007/s10844-017-0457-4
https://doi.org/10.1609/aaai.v34i01.5422
https://doi.org/10.1016/j.ins.2012.05.023
https://doi.org/10.1561/2400000035
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1007/978-3-319-71273-4_36
https://doi.org/10.1609/aaai.v36i5.20468
https://doi.org/10.1609/aaai.v36i9.21194
https://doi.org/10.1007/BFb0014141
https://doi.org/10.1007/978-3-031-26412-2_16
https://doi.org/10.7717/peerj-cs.127
https://doi.org/10.1023/A:1009744630224
https://doi.org/10.1613/jair.63
https://doi.org/10.1145/3506734
https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.1109/CVPR46437.2021.01469
https://doi.org/10.1145/1281192.1281250
https://doi.org/10.1007/BF00114778
https://doi.org/10.1609/aaai.v33i01.33012496
https://doi.org/10.1016/S0165-0114(03)00089-7
https://doi.org/10.1145/568574.568577
https://doi.org/10.1023/A:1024099825458
https://doi.org/10.1007/BF00116251
https://doi.org/10.1145/2020408.2020507
https://doi.org/10.1609/aaai.v34i04.5998
https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.inffus.2015.06.005
https://doi.org/10.1109/CVPR.2014.18
https://doi.org/10.1002/widm.1249
https://doi.org/10.1587/transinf.2019EDP7120
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Blockeel et al. 10.3389/frai.2023.1124553

Shafer, J. C., Agrawal, R., andMehta, M. (1996). “Sprint: A scalable parallel classifier
for datamining,” in Proceedings of the 22th International Conference on Very Large Data
Bases 544–555.

Sharp, T. (2008). “Implementing decision trees and forests on a gpu,” in Computer
Vision-ECCV 2008, Part IV, Lecture Notes in Computer Science (Springer) 595–608.
doi: 10.1007/978-3-540-88693-8_44

Shi, Y., Ke, G., Chen, Z., Zheng, S., and Liu, T.-Y. (2022). “Quantized training of
gradient boosting decision trees,” inAdvances in Neural Information Processing Systems
35.

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random
forest variable importance measures: Illustrations, sources and a solution. BMC
Bioinform. 8, 25. doi: 10.1186/1471-2105-8-25

Struyf, J., and Džeroski, S. (2006). “Constraint based induction of multi-objective
regression trees,” in Proceedings of the 4th International Conference on Knowledge
Discovery in Inductive Databases, KDID’05 222–233. doi: 10.1007/11733492_13

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et al.
(2013). Intriguing properties of neural networks. arXiv:1312.6199.

Todorovski, L., Blockeel, H., and Džeroski, S. (2002). “Ranking with predictive
clustering trees,” in Proceedings of the 13th European Conference on Machine Learning
444–455. doi: 10.1007/3-540-36755-1_37

Tolomei, G., Silvestri, F., Haines, A., and Lalmas, M. (2017). “Interpretable
predictions of tree-based ensembles via actionable feature tweaking,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining 465–474. doi: 10.1145/3097983.3098039

Törnblom, J., and Nadjm-Tehrani, S. (2020). Formal verification of input-
output mappings of tree ensembles. Sci. Comput. Program. 194, 102450.
doi: 10.1016/j.scico.2020.102450

Tyree, S., Weinberger, K. Q., Agrawal, K., and Paykin, J. (2011). “Parallel boosted
regression trees for web search ranking,” in Proceedings of the 20th international
conference on World Wide Web 387–396. doi: 10.1145/1963405.1963461

Utgoff, P. E. (1989). Incremental induction of decision trees.Mach. Lear. 4, 161–186.
doi: 10.1023/A:1022699900025

van der Linden, J. G., Weerdt, M., and Demirović, E. (2022). “Fair and optimal
decision trees: A dynamic programming approach,” in Advances in Neural Information
Processing Systems 35.

Van Essen, B., Macaraeg, C., Gokhale, M., and Prenger, R. (2012). “Accelerating
a random forest classifier: Multi-Core, GP-GPU, or FPGA?” in 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines
232–239. doi: 10.1109/FCCM.2012.47

VanWolputte, E., and Blockeel, H. (2020). “Missing value imputation with MERCS:
A faster alternative to missforest,” in Proceedings of the 23rd International Conference,
on Discovery Science 502–516. doi: 10.1007/978-3-030-61527-7_33

VanWolputte, E., Korneva, E., and Blockeel, H. (2018). “MERCS: multi-directional
ensembles of regression and classification trees,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence 4276–4283. doi: 10.1609/aaai.v32i1.11735

Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., and Blockeel, H. (2008).
Decision trees for hierarchical multi-label classification. Mach. Lear. 73, 185–214.
doi: 10.1007/s10994-008-5077-3

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., and Schaus, P. (2020). Learning
optimal decision trees using constraint programming. Constr. Int. J. 25, 226–250.
doi: 10.1007/s10601-020-09312-3

Verwer, S., and Zhang, Y. (2019). “Learning optimal classification trees using a
binary linear program formulation,” in Proceedings of the 33rd AAAI Conference on
Artificial Intelligence 1625–1632. doi: 10.1609/aaai.v33i01.33011624

Vos, D., and Verwer, S. (2021). “Efficient training of robust decision trees against
adversarial examples,” in Proceedings of the 38th International Conference on Machine
Learning 10586–10595.

Vos, D., and Verwer, S. (2022). “Robust optimal classification
trees against adversarial examples,” in Proceedings of the 36th AAAI

Conference on Artificial Intelligence 8520–8528. doi: 10.1609/aaai.v36i8.
20829

Vos, D., and Verwer, S. (2023). “Adversarially robust decision tree relabeling,” in
Machine Learning and Knowledge Discovery in Databases (ECMLPKDD 2022), Part III
203–218. doi: 10.1007/978-3-031-26409-2_13

Wang, Y., Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. (2020). “On Lp-
norm robustness of ensemble decision stumps and trees,” in Proceedings of the 37th
International Conference on Machine Learning 10104–10114.

Wei, D., Nair, R., Dhurandhar, A., Varshney, K. R., Daly, E.M., and Singh,M. (2022).
“On the safety of interpretable machine learning: A maximum deviation approach,” in
Advances in Neural Information Processing Systems 35.

Wen, Z., He, B., Kotagiri, R., Lu, S., and Shi, J. (2018). “Efficient gradient boosted
decision tree training on GPUs,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) 234–243. doi: 10.1109/IPDPS.2018.00033

Wu, G., Li, H., Hu, X., Bi, Y., Zhang, J., andWu, X. (2009). “Mrec4.5: C4.5 ensemble
classification with mapreduce,” in 2009 Fourth ChinaGrid Annual Conference 249–255.

Wu, M., Hughes, M., Parbhoo, S., Zazzi, M., Roth, V., and Doshi-
Velez, F. (2018). “Beyond sparsity: Tree regularization of deep models for
interpretability,” in Proceedings of the AAAI conference on artificial intelligence
32. doi: 10.1609/aaai.v32i1.11501

Xie, L., Liu, J., Lu, S., Chang, T.-H., and Shi, Q. (2022). An efficient learning
framework for federated XGBoost using secret sharing and distributed optimization.
ACM Trans. Intell. Syst. Technol. 13, 1–28. doi: 10.1145/3523061

Xu, R., Baracaldo, N., and Joshi, J. (2021). Privacy-preserving machine learning:
Methods, challenges and directions. arXiv:2108.04417.

Xu, Z., Zhu, G., Yuan, C., and Huang, Y. (2022). One-stage tree: end-to-end tree
builder and pruner.Mach. Lear. 111, 1959–1985. doi: 10.1007/s10994-021-06094-4

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R. R., and Chaudhuri, K.
(2020). “A closer look at accuracy vs. robustness,” in Advances in Neural Information
Processing Systems 8588–8601.

Ye, T., Zhou, H., Zou, W. Y., Gao, B., and Zhang, R. (2018). “Rapidscorer: Fast
tree ensemble evaluation by maximizing compactness in data level parallelization,” in
Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery
Data Mining 941–950.

Yu, P. L. H., Wan, W. M., and Lee, P. H. (2011). Preference Learning,
chapter Decision Tree Modeling for Ranking Data. (Berlin: Springer) 83–106.
doi: 10.1007/978-3-642-14125-6_5

Zantedeschi, V., Kusner, M., and Niculae, V. (2021). “Learning binary decision
trees by argmin differentiation,” in Proceedings of the 38th International Conference on
Machine Learning 12298–12309.

Ženko, B., Todorovski, L., and Džeroski, S. (2001). “A comparison of stacking
with meta decision trees to bagging, boosting, and stacking with other methods,” in
Proceedings of the 2001 IEEE International Conference on Data Mining 669–670.

Zhang, C., Zhang, H., and Hsieh, C.-J. (2020a). “An efficient adversarial attack for
tree ensembles,” in Advances in Neural Information Processing Systems 16165–16176.

Zhang, F., Wang, Y., Liu, S., and Wang, H. (2020b). Decision-based
evasion attacks on tree ensemble classifiers. World Wide Web 23, 2957–2977.
doi: 10.1007/s11280-020-00813-y

Zhang, H., Si, S., and Hsieh, C.-J. (2017). Gpu-acceleration for large-scale tree
boosting. arXiv:1706.08359.

Zhang, W., and Ntoutsi, E. (2019). “FAHT: an adaptive fairness-aware decision
tree classifier,” in Proceedings of the 28th International Joint Conference on Artificial
Intelligence 1480–1486. doi: 10.24963/ijcai.2019/205

Zhou, Y., and McArdle, J. J. (2015). Rationale and applications of
survival tree and survival ensemble methods. Psychometrika 3, 811–833.
doi: 10.1007/s11336-014-9413-1

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and
Algorithms. 1st edition. London: Chapman Hall/CRC. doi: 10.1201/b
12207

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2023.1124553
https://doi.org/10.1007/978-3-540-88693-8_44
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1007/11733492_13
https://doi.org/10.1007/3-540-36755-1_37
https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1016/j.scico.2020.102450
https://doi.org/10.1145/1963405.1963461
https://doi.org/10.1023/A:1022699900025
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1007/978-3-030-61527-7_33
https://doi.org/10.1609/aaai.v32i1.11735
https://doi.org/10.1007/s10994-008-5077-3
https://doi.org/10.1007/s10601-020-09312-3
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1609/aaai.v36i8.20829
https://doi.org/10.1007/978-3-031-26409-2_13
https://doi.org/10.1109/IPDPS.2018.00033
https://doi.org/10.1609/aaai.v32i1.11501
https://doi.org/10.1145/3523061
https://doi.org/10.1007/s10994-021-06094-4
https://doi.org/10.1007/978-3-642-14125-6_5
https://doi.org/10.1007/s11280-020-00813-y
https://doi.org/10.24963/ijcai.2019/205
https://doi.org/10.1007/s11336-014-9413-1
https://doi.org/10.1201/b12207
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Decision trees: from efficient prediction to responsible AI
	1. Introduction
	2. Decision trees and forests: the basics
	2.1. Decision trees
	2.2. Recursive partitioning
	2.3. Variants of classification and regression trees
	2.4. Ensembles of trees: decision forests
	2.5. Predictive learning with decision trees: pros and cons

	3. Beyond classification and regression
	4. Beyond recursive partitioning
	4.1. Incremental learners
	4.2. Parallelization and distribution
	4.3. Combinatorial optimization and constraint solvers
	4.4. Gradient-based approaches
	4.5. Evolutionary algorithms

	5. Integrating constraints
	5.1. Imposing constraints on decision trees
	5.2. Verification of decision tree ensembles

	6. Decision trees for responsible AI
	6.1. Fairness
	6.2. Robustness against adversarial examples
	6.2.1. Verifying robustness
	6.2.2. Improving robustness

	6.3. Explainability
	6.3.1. Decision tree explanations
	6.3.2. Counterfactual explanations of decision trees and forests

	7. Challenges and perspectives
	8. Concluding remarks
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

