
TYPE Review

PUBLISHED 09 February 2023

DOI 10.3389/frai.2023.1098308

OPEN ACCESS

EDITED BY

Thomas Hartung,

Johns Hopkins University, United States

REVIEWED BY

Alexandra Maertens,

Johns Hopkins University, United States

Shailesh Tripathi,

Tampere University of Technology, Finland

*CORRESPONDENCE

Lisa M. Bramer

lisa.bramer@pnnl.gov

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 14 November 2022

ACCEPTED 23 January 2023

PUBLISHED 09 February 2023

CITATION

Flores JE, Claborne DM, Weller ZD,

Webb-Robertson B-JM, Waters KM and

Bramer LM (2023) Missing data in multi-omics

integration: Recent advances through artificial

intelligence. Front. Artif. Intell. 6:1098308.

doi: 10.3389/frai.2023.1098308

COPYRIGHT

© 2023 Flores, Claborne, Weller,

Webb-Robertson, Waters and Bramer. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Missing data in multi-omics
integration: Recent advances
through artificial intelligence

Javier E. Flores1, Daniel M. Claborne2, Zachary D. Weller2,

Bobbie-Jo M. Webb-Robertson1, Katrina M. Waters1 and

Lisa M. Bramer1*

1Pacific Northwest National Laboratory, Biological Sciences Division, Earth and Biological Sciences

Directorate, Richland, WA, United States, 2Pacific Northwest National Laboratory, Artificial Intelligence and

Data Analytics Division, National Security Directorate, Richland, WA, United States

Biological systems function through complex interactions between various ‘omics

(biomolecules), and a more complete understanding of these systems is only possible

through an integrated, multi-omic perspective. This has presented the need for the

development of integration approaches that are able to capture the complex, often

non-linear, interactions that define these biological systems and are adapted to

the challenges of combining the heterogenous data across ‘omic views. A principal

challenge to multi-omic integration is missing data because all biomolecules are

not measured in all samples. Due to either cost, instrument sensitivity, or other

experimental factors, data for a biological sample may be missing for one or more

‘omic techologies. Recent methodological developments in artificial intelligence and

statistical learning have greatly facilitated the analyses of multi-omics data, however

many of these techniques assume access to completely observed data. A subset

of these methods incorporate mechanisms for handling partially observed samples,

and these methods are the focus of this review. We describe recently developed

approaches, noting their primary use cases and highlighting each method’s approach

to handling missing data. We additionally provide an overview of the more traditional

missing data workflows and their limitations; and we discuss potential avenues for

further developments as well as how the missing data issue and its current solutions

may generalize beyond the multi-omics context.
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Introduction

In recent years, advances in technology and decreased costs have resulted in an increase

in the availability of high-throughput biological instrumentation to researchers. As a result,

in the biological sciences, data are being generated at an unprecedented rate. The generation

of multiple ‘omics data types on the same set of samples is more commonly referred to as

multi-omics. Motivated by the hope for a more holistic understanding of a biological system,

researchers now regularly conduct multi-omics research generating multiple ‘omics data types

(e.g., transcriptomics, proteomics, etc.) for the same study for numerous research areas such

as biomedicine, soil science, microbiology, and plant science. Each distinct ‘omics data type

provides unique information about a specific level of the biological system’s process. For

example, transcriptomics technologies can measure ribonucleic acid (RNA) molecules in an

organism and gives researchers a picture of which genes are being expressed (Liang, 2013).

Proteomics instrumentation can measure the relative abundance of proteins that are produced

from gene expression and transcript translation (Graves and Haystead, 2002).
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Although the generation of multi-omics data is becoming

commonplace, many challenges remain in the analysis of multi-

omics data. The analyses of individual ‘omics datasets continues

to be challenging for computational scientists due to the size and

complexity of the individual datasets and continued introduction of

new technologies and instrumentation. However, data integration is

one of the primary barriers to effective multi-omics research and

reaching the desired holistic view of the biological system being

studied (Misra et al., 2019). This has resulted in a large body of

literature and reviews dedicated to multi-omics data integration

in the last 10 years. Several of these review articles have focused

specifically on the availability of software tools and discussions of

preprocessing considerations (e.g., Arakawa and Tomita, 2013; Misra

et al., 2019), or on providing perspective on challenges inmulti-omics

integration (e.g., Gomez-Cabrero et al., 2014). Some reviews focus

on differentiating general data-driven integration approaches from a

mathematical perspective (e.g., Ritchie et al., 2015; Bersanelli et al.,

2016; Noor et al., 2019), focus on a particular type of method, such

as dimension reduction (Meng et al., 2016), or compare data-driven

models against biologically-informed models for a particular model

type, such as networkmodels (Wanichthanarak et al., 2015) with little

attention on particular ‘omics data types. On the other hand, many of

these articles focus on integration for specific ‘omics data types, such

as single cell ‘omics (Ma et al., 2020) or specific application areas,

such as plant biology (Rajasundaram and Selbig, 2016), microbial

communities (Fondi and Liò, 2015; Franzosa et al., 2015), cancer

(Buescher and Driggers, 2016), and others (e.g., Subramanian et al.,

2020).

Hinderances to effective integration methods include, but are

not limited to, the heterogeneous nature of data and distributional

properties across multi-omics datasets, the typically large difference

in the number of measured biomolecules compared to number of

samples or replicates, and the complex and often noisy nature of

biological data. Machine learning (ML) and artificial intelligence (AI)

have shown promise in overcoming some of these hindrances (e.g.,

Mirza et al., 2019; Zhu, 2020) and have gained popularity in recent

years. Consequently, further review articles have been written placing

emphasis on ML and AI for multi-omics data integration. Included

in these are articles discussing examples of method application (e.g.,

Holzinger et al., 2019; Li et al., 2021) and challenges in applying

AI and ML techniques to multi-omics data (e.g., Kang et al., 2021;

Termine et al., 2021). Many are focused on specific application

domains such asmetabolic engineering (Helmy et al., 2020), precision

medicine (Hamamoto et al., 2019), amongst others (e.g., Mann et al.,

2021; Lin et al., 2022; Zhou et al., 2022) and a majority focused on

cancer research (e.g., Wang and Gu, 2016; Biswas and Chakrabarti,

2020; Nicora et al., 2020; Cai et al., 2022). Finally, a handful of

reviews are dedicated to discussion of subsets of general AI and

ML approaches to multi-omics data integration (e.g., Li et al., 2016;

Huang et al., 2017; Kim and Tagkopoulos, 2018; Picard et al., 2021;

Reel et al., 2021; Lee and Kim, 2022) with some attention given to

limitations of methods, such as interpretability of models.

One limitation of AI andMLmodels is that a majority of methods

require complete data with no missing observations, requiring a user

to discard data for any biomolecule with a missing value, remove

samples with any missing values, or impute missing values, either

before input into themodel or implicitly done by themodel’s software

implementation, or some combination of these options. Discarding

data is typically not the preferable option for multi-omics data

analysis, due to data types with high amounts of missing data or

complex mechanisms behind missing observations. For example, the

human proteome project reports that an estimated ∼20% of genes

yield protein products that are not detected by mass spectrometry,

an analytic platform for protein quantification (Paik et al., 2012;

Baker et al., 2017). Furthermore, additional complexities including

protein isolation and solubilization, sequence ambiguity, and a

lack of standards in statistical thresholds and algorithms result in

inconsistent detection of large proportions of protein products that

are detected, thus limiting the reproducibility of data collection

and analysis (Goh and Wong, 2017). In metabolomics, limited

coverage of the known metabolome increases the risk of overlooking

the metabolomic response of interest in targeted metabolomic

analyses. Non-targeted analyses offer the potential to determine novel

biomarkers, but these analyses are inherently biased as an analyst’s

selection of specific instrumental parameters (e.g., stationary phase

and ionization mode) induces increased instrumental sensitivity

toward some substances and reductions toward others (Ribbenstedt

et al., 2018).

Given the prevalence of missing data across different ‘omics,

the approach that ML and AI models use in handling missing

observations is of great importance when considering multi-omics

integration methods. Despite the importance of considering methods

for handling missing observations, this topic is either not addressed

or is only briefly mentioned in existing multi-omics data integration

review articles. In this review, we describe recently developed

integration approaches with specific attention on each method’s

approach to handling missing data. We additionally provide an

overview of the more traditional missing data workflows and their

limitations. Finally, we discuss potential avenues for further method

development as well as how the missing data issue and its current

solutions may generalize beyond the multi-omics context.

Background

Missing data and imputation

Missing data are common in ‘omics data and can arise due to

a variety of reasons, such as poor tissue quality, insufficient sample

volume, measurement system limitations, budget restrictions, or

subject dropout. Taking proteomics as a specific example, peptide

identification is done within the context of a mass spectrometry

run, and the peptides observed and identified vary from run to

run. Peptides may be missing from one or more samples due to

a variety of underlying mechanisms (Daly et al., 2008; Karpievitch

et al., 2009), which can result in non-trivial amounts of potential

observations being missing. It is not uncommon to have 20–50%

of the possible peptide values that are not quantified (Webb-

Robertson et al., 2015; Brenes et al., 2019). It has been shown that

missing values in large-scale ‘omics data can hinder downstream

analyses (Ouyang et al., 2004; Jörnsten et al., 2005). As a result, the

handling of missing data is a regular challenge in the integration and

analysis of multi-omics data. For data integration, missing data is

especially challenging because the set of observations with missing

data and the proportion of missingness can vary among the different

‘omics datasets.

There are three classifications that are typically used to describe

the mechanisms generating missing values (Rubin, 1976), and it
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is common practice to assume that one of these classifications

characterize the missing data of a given sample. Missing data

may be classified as missing not at random (MNAR), missing

at random (MAR), or missing completely at random (MCAR).

MCAR is a special case of MAR and occurs when the missingness

does not depend on other variables and can be considered purely

stochastic (Wei et al., 2018). An assumption of MCAR implies

an equal probability of missingness for all observations and that

this probability does not depend on observable or unobservable

features. Missing values that are MAR are those with missingness

that is stochastically independent of the measurand and depends

only on other observed variables (van den Boogart and Tolosana-

Delgado, 2013). When an assumption of MCAR or MAR is used, the

missingness is said to be ignorable and methods designed to handle

missing values are applied to both cases (Gelman and Hill, 2006;

Fang et al., 2018; Wei et al., 2018). MNAR broadly describes when

an assumption of MAR is violated. It can occur when missing values

depend on other unobserved variables or when the missingness

depends on the value itself. For example, data that are missing due to

the limit of detection or quantification (LOD/LOQ) and not through

the influence of other measured variables in the data are considered

MNAR. In ‘omics studies, data are more commonly MNAR or MAR,

considering that instruments are known to have certain detection

thresholds (MNAR) and that biochemical dependencies exist between

different biomolecules (MAR).

Complete case and available case methods are among the simplest

approaches for dealing with missing data. Within a multi-omics

context, a complete case analysis considers only the set of subjects

with completely observed features across all measured ‘omics. This

approach, while convenient, results in a decrease in sample size,

throws away useful data, is only valid under the MCAR assumption

and can otherwise lead to biased estimates (Fang et al., 2018;

Hawinkel et al., 2020). An available case analysis uses different,

complete subsets of the data to answer various research questions

(Gelman and Hill, 2006). While more robust than a complete case

analysis since less data are dropped, an available case analysis is still

only valid under the MCAR assumption and generates conclusions

based on different parts of the data, potentially leading to biased or

conflicting inference.

Imputation approaches offer an alternative route for handling

missing data that circumvents the complete and available case

analysis issues of utilizing only subsets of the full dataset. These

approaches impute, or fill in, missing values based on values of the

observed data. Mean imputation, for example, replaces each missing

value by the mean of the observed data in its corresponding feature.

While this simple approach preserves featuremeans and grants access

to the use of more data, it does not preserve relationships among

variables and may lead to an underestimate of variability (Gelman

and Hill, 2006). Other simple approaches include zero-value or LOD

imputation, both of which are often applied when data are missing

at random or censored. However, like mean imputation, imputed

values from these approaches may distort feature distributions and

lead to biased parameter and variability estimates (Lubin et al., 2004;

Succop et al., 2004; Webb-Robertson et al., 2015; Lazar et al., 2016;

Bramer et al., 2020). These tradeoffs are characteristic of most of these

more naïve imputation methods– one avoids the pitfalls of complete

case analyses at the expense of introducing potential biases in the

imputed data.

The broader research community has thus introduced more

sophisticated imputation approaches that mitigate the drawbacks

of more naïve methods (Enders, 2010). Examples include linear

regression models that have been utilized to reflect the relationship

between observed variables and those with missing entries to inform

imputation (Hair et al., 2010; van Buuren and Groothuis-Oudshoorn,

2011). Matching approaches, like hot deck or cold deck imputation,

can be used to find observations that are like those with missing

values. Missing values may then be imputed with the values from the

most similar observations. Along these lines, the K-nearest-neighbors

(KNN) imputation approach, which may be viewed as a hybrid of

the regression and matching approach (Gelman and Hill, 2006),

identifies an observation’s k closest neighbors, and uses the mean

of these neighbors to fill in the missing value. KNN imputation

has been shown to work well for numerical imputation on single

datasets (Jadhav et al., 2019), but the algorithm is sensitive to the

choice of the number of nearest neighbors (k) and is limited in

that it does not utilize the potential structure across the entire

set of observations. Other common imputation approaches include

random forest imputation (Pantanowitz and Marwala, 2009) and

expectation maximization (Dempster et al., 1977). Discussions of

approaches well-suited for single ‘omics imputation are provided by

Webb-Robertson et al. (2015) and Bramer et al. (2020).

Each of the previously described imputation methods have

generally been developed within the context of a single dataset,

however multi-omics data are uniquely characterized by several

separate, yet related, datasets. This aspect of multi-omics has

therefore motivated the development of several newer approaches

that leverage information across different ‘omics datasets to inform

imputations. One example, TDImpute (Zhou et al., 2020), provides a

transfer-learning approach for the imputation of gene expression data

from DNA methylation data. In this method, the weights of a fully

connected neural network trained on the publicly available Cancer

Genome Atlas (TCGA) dataset are fine-tuned through additional

training on a target dataset. Then, predictions generated by this fine-

tuned model are used to impute missing values in the target dataset.

Peacock et al. (2022) generalize this approach, using the TCGA

dataset to train networks for the imputation of DNAmethylation data

from gene expression data, micro RNA data from gene expression

data, and gene expression data from methylation data. Howey et al.

(2021) develop a different solution, proposing a modified nearest-

neighbors algorithm based on Bayesian multi-omics networks. For

single-cell multi-omics imputation, Eltager et al. (2022) introduce

yet another variation on the KNN method by imputing single-

cell transposase accessibility chromatin (scATAC-seq) data based

on nearest neighbors identified with corresponding single-cell

transcriptomics (scRNA-seq) data. Trans-Omics Block Missing Data

Imputation (TOBMI; Dong et al., 2018) proposes a similar method,

but imputed values are generated based on a weighted average of

neighbors, with closer neighbors having greater weights. Last, Ni

et al. (2022) introduce scLRTD, an imputation approach based on

approximating a third-order tensor representation of the multi-

omics dataset with a low-rank approximation. For a more thorough

review of recent imputation approaches as they relate to multi-omic

analyses, we refer the reader to Song et al., 2020.

Given the ubiquity of partially observed cases in multi-omics

datasets—and that most integrative multi-omics methods are not

inherently compatible with partially observed data—imputation
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methods are often incorporated as a data pre-processing step within

the multi-omics analytic pipeline, or alternatively, partially observed

samples are dropped and a complete case analysis is performed. The

smaller subset of integrative approaches that are compatible with,

and have mechanisms for handling, missing data are the focus of the

present review. Prior to our discussion of these missing-data-robust

methods, we first describe the more general class of multi-omics

integrative methods and highlight a few representative approaches

that are not necessarily attuned to the missing data problem.

Multi-omics integration

A wide variety of techniques are available that leverage the

information contained in the relationships between ‘omics types.

Development of these methods have been driven by different

applications (i.e., pathway analysis vs. drug response prediction)

and the various challenges specific to multi-omics data analysis

such as inter-omic data heterogeneity (e.g., imbalanced number

of features, different distributions/missingness patterns) and high-

dimensionality. Despite the multitude of approaches, there are

enough commonalities to motivate a rough framework for their

categorization into broader methodological groups.

Integration techniques generally assume measurements from

the same samples on several markers, or features, from several

‘omics-data types, which are more generally referred to as data

“views”. These markers may include gene, protein, and metabolite

expression levels that measure the presences and relative abundance

of these biomolecules within a sample. The techniques that perform

integration can be roughly organized by how they combine each view.

A sensible partition is of early, middle, and late integrative methods,

alternatively denoted as concatenation, transformation-based, or

model-based integration, respectively (Ritchie et al., 2015). Early

integration is primarily characterized by an initial concatenation of

the features across all measured ‘omics, followed by application of

methods appropriate for analyzing the resulting high-dimensional

dataset. Middle integration applies some transformation to represent

a complex combination of the datasets before applying downstream

analyses. Late integration analyzes each dataset separately and

introduces a model or algorithm that combines the outputs of each

individual analysis. Reviews of ‘omics integration methods (Nicora

et al., 2020; Picard et al., 2021) attempt to categorize the various

approaches by more specific characteristics or techniques, including

feature selection, feature extraction or latent representations, kernel

learning, matrix factorization, graph/network representations, and

deep learning. Picard et al. (2021) further separate the early-

middle-late categorization into early, mixed, late, intermediate, and

hierarchical. These categorizations are not mutually exclusive, and a

givenmethodmay be difficult to classify, but we briefly describe some

examples that illustrate various distinctions and, for each example,

mention possible weaknesses to the missing data problem.

Xie et al. (2019) use deep learning to perform survival analysis,

which involves feature selection by removing observations with high

missingness, early concatenation of raw features to form the input

to their model, and implicit feature extraction using deep neural

networks, as the value at each hidden layer possibly forms a useful

representation. This approach can be distinguished from “middle” or

mixed integration by noting that the model immediately considers

all features. For contrast, another deep learning-based method (Xu

et al., 2019) trains separate networks that see only the data from a

particular view and then fuses the hidden representations at some

intermediate layer. Both these methods require complete input, and

initial imputation is performed in both cases to accommodate. Given

the tendency of neural networks to overfit to the training data, it is

possible that any bias in the imputation of the training data—which

is likely due to the common violation of MAR in ‘omics data—will be

erroneously exploited by the network.

The method introduced by Koh et al. (2019) discovers

interactions between biomarkers by representing them as nodes

in a graph, with edges representing some notion of similarity

or interaction between them. They perform a form of feature

selection by extracting sub-graphs that are useful for predicting

phenotype. This is an example of middle integration due to

the transformation of the raw input into an intermediate graph

representation before analysis. Another graph method, netDx (Pai

et al., 2019), represents patients as nodes and constructs a separate

graph among the patients for each biomarker or group of biomarkers.

These graphs are scored according to their ability to correctly classify

patients and those passing a certain score threshold are selected

for downstream analysis. The separate construction of graphs for

disjoint sets of features suggests categorization as amiddle integration

method. Similarly, kernel-based methods often construct kernel

representations of each dataset separately as pairwise relationships

between samples or biomarkers.Middle integration can be performed

through combining the kernels as in Mariette and Villa-Vialaneix

(2018) and Gönen and Alpaydin (2011). These methods rely on

an imputation pre-processing step, which could possibly negatively

affect the downstream analyses, as the relationships between

nodes/samples/biomarkers may be biased toward similarities in

imputation. If an entire view is missing for one or more samples and

must be imputed, any level of similarity specific to that view may

be lost.

There is a large class of algorithms that Picard et al. (2021)

categorize as intermediate methods. These generally form view-

specific representations and assume a common latent space among

views (Yang and Michailidis, 2015; Chalise and Fridley, 2017) or

maximize some measure among the view-specific representations

(Tenenhaus and Tenenhaus, 2011;Meng et al., 2014; Tenenhaus et al.,

2017; Singh et al., 2019). Picard et al. (2021) state that these methods

often require robust preprocessing to reduce heterogeneity between

datasets, suggesting careful selection of imputation techniques that

do not introduce view-specific bias. Though not unique to these

methods, some (Tenenhaus and Tenenhaus, 2011; Singh et al., 2019)

employ the technique of user-specified connections (or lack of)

between variables. A similar approach can be seen in the Bayesian

network method of Howey et al. (2021). This approach introduces

prior knowledge about the relationships between biomarkers,

allowing for the construction of a hierarchical organization of

relationships between layers of the biological system.

Late integration examples include the method introduced by

Sun et al. (2019) that processes each ‘omic type separately through

a deep neural network (DNN) and then performs score fusion on

the predictions. The introduced framework is such that the DNN

for each view could be replaced by any one of several algorithms.

Another example, MOLI (Sharifi-Noghabi et al., 2019), similarly

processes each view separately through a DNN and concatenates
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TABLE 1 Integrative approaches for partially observed multi-omics data.

Integration
approach

Missing data
approach

Method Compatible omics
platforms

Primary use case Application dataset Software availability

Early Integration Joint-Imputation FBM Gene expression and methylation data Feature selection and Prediction of

clinical outcomes (regression)

Children asthma data: 460 samples,

>2,000 features across DNA

methylation and RNA-Seq gene

expression data

R scripts available here: https://github.

com/CHPGenetics/FBM

iMODA Any, provided compatibility with their

proposed causal structure

Identification of phenotypic

associations across multi-omics

(regression)

SPIROMICS and COPDGene data

(includes proteomic and genomic data):

2,974 samples, 600,000+ features

Custom software downloadable here:

https://dlin.web.unc.edu/software/

iMODA/

Optimization-

Masking

TiMEG Genotype, gene expression, and

methylation data

Identification of disease-associated

biomarkers (regression)

Dataset on Tuberous Sclerosis Complex

patients: 8,036 gene expression data on

34 samples, 481,470 methylation

features on 29 samples, and 1,298,477

genotype features for 45 samples

R scripts available here: https://github.

com/sarmistha123/TiMEG

Middle Integration Joint-Imputation MOFA/MOFA+ Any Dimension reduction (clustering) (MOFA) CLL data (includes somatic

mutation status, transcriptome

profiling, and DNA methylation data):

200 samples, 9,000+ features (MOFA)

Mouse single-cell data (includes DNA

methylation and transcriptome data): 87

samples, 9,000+ features (MOFA+)

single-cell datasets (includes DNA

methylation, gene expression, and

chromatin accessibility data): sample

sizes range from 2,000 to 16,152

samples, 9,000+ features

Python package (mofapy2) and R

package (MOFA2) available. Installation

instructions found here: https://biofam.

github.io/MOFA2/installation.html

BIDIFAC+ Any Bi-dimensional integration and

matrix factorization for dimension

reduction

TCGA dataset: 6,973 samples, 1,000

mRNA expression features, 732 miRNA

expression features, 1,000 methylation

features, and 198 proteomic features

R scripts available here: https://github.

com/lockEF/bidifac

Optimization-

Masking

COMBI Any Dimension reduction (clustering) HMP2 data (includes proteome and

microbiome data): 132 samples, feature

count not specified Zhang data

(includes microbiome and

immunological data): sample size or

feature count not specified Gavin data

(includes microbiome and human and

microbial proteome data): 55 samples,

number of features not specified

R package (combi). Installation

instructions found here: https://github.

com/CenterForStatistics-UGent/combi

MVAE Any Generative model training for

multi-modal inference

Four image datasets (MINST,

FashionMNIST, MultiMNIST, CelebA):

number of sample and features not

specified

None
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TABLE 1 (Continued)

Integration
approach

Missing data
approach

Method Compatible omics
platforms

Primary use case Application dataset Software availability

DeepMF Any Cancer subtype detection

(clustering)

Medulloblastoma dataset (includes

mRNA data): 34 samples, number of

features not specified Leukemia data set

(includes mRNA data): 38 samples,

number of features not specified TCGA

BRCA dataset (includes mRNA,

miRNA, and protein data): 150 samples,

number of features not specified SRBCT

dataset (includes mRNA data): 63

samples, number of features

not specified.

Python scripts available here: https://

github.com/paprikachan/DeepMF

MvNE Any Dimension reduction (clustering) TCGA datasets (includes gene

expression, miRNA expression, and

DNA methylation data): sample sizes

ranging from 200 to 600; over 25,000

features across three omics

None

DeepIMV Any Dimension reduction for

classification or prediction

TCGA dataset (includes mRNA

expression, DNA methylation, miRNA

expression, and protein data): 7,295

samples, number of features

not specified CCLE dataset (includes

DNA copy number, DNA methylation,

mRNA expression, miRNA expression,

protein, and metabolite data): 504

samples, number of features

not specified

Python scripts available here: https://

github.com/chl8856/DeepIMV

JACA Continuous omics data; sample labels

are additionally required

Identification of associations

between views (e.g., omics) that are

pertinent to their classifications

A TCGA dataset: 282 samples, 1,572

RNAseq features and 375 miRNA

features

R package (JACA). Installation

instructions found here: https://github.

com/Pennisetum/JACA

SUMO Any, but benchmarked using

continuous genomic data types

Molecular subtype detection

(clustering)

The Cancer Genome Atlas (TCGA)

datasets: sample sizes ranging from 200

to 600; over 25,000 features across

several omics (methylation, gene

expression, and miRNA expression)

Command-line tool (requires Python

3.6+). Installation instructions found

here: https://github.com/ratan-lab/

sumo

Late Integration Optimization-

Masking

NEMO Any Cancer subtype detection

(clustering)

Digits dataset: 500 samples, <1,000

features across several data views TCGA

datasets: sample sizes ranging from 2,00

to 600; over 25,000 features across

several omics (mRNA expression, DNA

methylation, and miRNA expression)

R scripts available here: https://github.

com/Shamir-Lab/NEMO
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the multiple latent representations before sending them through a

classifier network.

The vast majority of these integration approaches require

completely observed data for their implementation. When faced with

missing data, these methods thus require a complete case analysis

or the implementation of separate imputation steps beforehand.

Missing samples in multi-omics data are rarely MCAR, and thus

inference based on a complete case analysis is likely to be biased.

A separate imputation procedure—particularly those that are more

computationally sophisticated—is also suboptimal from an efficiency

standpoint. More ideal would be those approaches that explicitly

address the missing data problem within their methodology, being

able to utilize partially observed cases and incorporate mechanisms

that remove the need for imputative pre-processing steps. Recent

examples of such approaches are the focus of this review and are

described in the next section.

Integrative approaches for partially
observed multi-omics

Broadly speaking, integrative approaches that explicitly address

the missing data problem do so in one of two ways. Missing data

are either jointly imputed within the specified modeling framework

or algorithm, or a flexible optimization routine is implemented

such that the missing components of partially observed samples are

masked while their observed components are still able to contribute

to parameter estimation. We refer to the former as joint-imputation

approaches, and the latter as optimization-masking approaches. In

the following subsections, we describe recently developed joint-

imputation and optimization-masking approaches, grouping each

under integrative approach classifications consistent with those

defined by Ritchie et al. (2015). For reader convenience, Table 1

provides a more concise summary of each described method,

where the integration and missing data approach categorizations,

compatible ‘omics data types, primary use case, application

data sample characteristics, and software availability information

are listed.

Early integration

The methods described in this section are those that are

concatenation-based. Therefore, their implementation assumes that

the separate ‘omics datasets collected for a set of samples are

concatenated into a single, high-dimensional matrix.

Joint-imputation
The full Bayesian model with missingness (FBM; Fang et al.,

2018) extends the iBAG model (Wang et al., 2012) that was

introduced for modeling associations between gene expression,

methylation, and a clinical response. The iBAG model is a two-layer

hierarchical Bayesian model whose first layer (i.e., the “mechanistic

model”) assesses the effect of methylation on gene expression

and whose second layer (i.e., the “clinical model”) models the

relationship between the clinical outcome, gene expression, and

other clinical factors (e.g., age and gender). The iBAG approach

assumes completely observed data, and to remedy this, the FBM
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approach introduces a third, imputation layer that models missing

gene expression and methylation data through multivariate normal

distributions. The FBM model uses a Gibbs sampling algorithm

for simultaneous model parameter estimation and missing value

imputation, where missing values are imputed as draws from

estimated posterior distributions. Simulation studies performed in

the original publication indicate increases in the root mean squared

error of prediction with increases in missing data percentage. This

effect was observed to be most prominent when both gene expression

and methylation data were characterized by high percentages of

missingness (i.e., 30%). However, the observed decreases in predictive

performance were observed to be mitigated as the sample size

was increased. Also worth noting is that the FBM model assumes

gene-gene and methylation-methylation independence and imputed

values reflect this assumption accordingly. However the authors note

that models incorporating gene-gene and methylation-methylation

correlations were additionally considered, but these models were

associated with a higher computational cost without indicating

substantive gains in performance relative to models based on the

independence assumption.

Emphasizing analyses more consistent with a causal framework,

iMODA (Lin et al., 2020) proposes a hierarchical regression

framework for quantifying (i) the effects of genotypes on quantitative

‘omics, (ii) the effects of quantitative ‘omics on response phenotypes

of interest, and (iii) the direct and indirect effects of genotypes

on these response phenotypes. The indirect effect of genotype

on phenotype refers to the effect mediated by ‘omic expression,

whereas the direct effect refers to the genotype effect with indirect

effects removed. The proposed framework is aligned with the

known causal hierarchy across these biomolecules, i.e., genotype

affects ‘omic expression which influences phenotype. Missing ‘omics

data are accommodated through an expectation-maximization

(EM) approach (Dempster et al., 1977) for parameter estimation.

Implementation of the EM algorithm involves iterating between an

expectation step, where missing values are imputed based on the

parameter estimates of a previous iteration, and a maximization

step, where parameter estimates are updated based on the imputed

data, until parameter estimates converge. The power of the iMODA

framework to detect the effects of interest has been reported to vary

according to the proportion of data that are missing. The authors

considered cases where 50% and 30% of data were missing, finding

that power decreases with increased missingness.

Optimization-masking
Introduced by Das and Mukhopadhyay (2021), TiMEG (Tool

for integrating Methylation, gene Expression and Genotype) is

a supervised learning approach for the identification of disease-

associated biomarkers in case-control multi-omics studies. TiMEG

utilizes a hierarchical logistic regression modeling framework to

relate a binary response (e.g., disease status) to a linear combination

of different ‘omic predictors. Different layers of TiMEG’s hierarchical

framework are specified to model known biological relationships

between these different ‘omics. For example, gene expression is

known to be affected by changes to the DNA sequence. To

account for this, TiMEG includes a layer that regresses gene

expression level on genotype and methylation, factors that both

reflect DNA sequence alterations. The TiMEGmodel is fitted through

maximum likelihood estimation, and to accommodate any partially

observed data, approximations are used when constructing themodel

likelihood. More specifically, TiMEG’s robustness to missing data is

primarily enabled by an approximation that involves representing the

logistic component of the likelihood by the cumulative distribution

function of a normally distributed random variable. This allows for

cancellations within the joint-likelihood that effectively mask the

missing portions of sample observations, without dropping such

cases entirely. As with other missing data approaches, simulation

studies indicate that the power of the TiMEG approach varies with the

degree of missingness. As the percentage of missing data increases,

the power decreases. However, across changes in missing data

percentages, the type 1 error rate is controlled at the nominal rate.

Middle integration

Contrasting the integrative approaches of the previous

subsection, the following methods are middle, or transformation-

based, integration approaches. In general, each of these approaches

involves the mapping of the multi-omics data to some lower-

dimensional space containing latent representations of different

combinations of input features spanning multiple omics.

Joint-imputation
Multi-Omics Factor Analysis (MOFA; Argelaguet et al., 2018)

and its more recent improvement, MOFA+ (Argelaguet et al.,

2020) are unsupervised integrative approaches that may be

understood as generalizations of principal components analysis

(PCA) to multi-omics data. These approaches factorize each

‘omics data matrix into products of two component matrices,

with one component matrix shared across all ‘omics matrix

factorizations. The shared component matrix generates a low-

dimensional representation of the data that accounts for the

variability across each of the individual ‘omics datasets and

may be used for downstream analyses (e.g., clustering). MOFA’s

factorization model is formulated within a probabilistic Bayesian

framework such that regularization for feature sparsity may be

implemented through the specification of priors on the unobserved

model variables (i.e., component matrices). Parameters are updated

according to an EM-like algorithm, whose implementation enables

the incorporation of partially observed data points. The MOFA+

algorithm was introduced to address MOFA’s scaling issues by

implementing a stochastic variational inference framework for

model estimation, substantially speeding up computations. As a

joint-imputation approach, MOFA/MOFA+ was compared to other

imputation strategies including imputation by feature-wise mean,

SoftImpute (Mazumder et al., 2010) and a k-nearest neighbor

approach (Troyanskaya et al., 2001). Comparing these approaches in

a simulated setting, it was found that imputation by MOFA resulted

in a lower mean squared error of prediction (i.e., imputation) relative

to compared methods across varying percentages of missingness. The

missing percentages considered ranged between ∼10–∼80%, and all

methods demonstrated increases to mean squared error of prediction

with increased missing percentage.

Unique from most other approaches described in this review,

BIDIFAC+ (Lock et al., 2022) is a matrix factorization approach for

bi-dimensionally linked matrices. Traditional multi-omics considers

the integration of several different ‘omics for the same set of
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samples, whereas the integration considered by BIDIFAC+ involves

combining different ‘omics and different sample sets. BIDIFAC+

builds upon BIDIFAC (Park and Lock, 2019) and SLIDE (Gaynanova

and Li, 2019), two extensions of the JIVE method (Lock et al.,

2013) that yields matrix factorizations that convey a decomposition

of data variability into variability shared across multiple ‘omics

and variability primarily attributable to single ‘omics platforms.

The proposed BIDIFAC+ model is amenable to a probabilistic

representation and is compatible with a modified EM algorithm

approach to jointly impute missing data during model parameter

estimation. Simulation studies assessing the performance of BIDIFAC

across different types of missingness (entry, column, and block) and

signal strength indicate that for entry-level missingness, imputation

error is smallest when for stronger signals. For column-missingness,

where entries for an entire ‘omic are missing across all samples,

imputation error is smallest for stronger joint-signal strength. A

similar trend is observed for block-level missingness, which is the

type of missingness where several omics (columns) are missing across

a set of samples (rows).

Optimization-masking
Building upon the matrix factorization model introduced by

MOFA (Argelaguet et al., 2018), Compositional Omics Model-

Based Integration (COMBI; Hawinkel et al., 2020) introduces model

extensions better suited for modeling compositional and sequence

count data. Sequence count data describe the type of data common

to transcriptomics and other ‘omics, and these ‘omics data are

also compositional given that they indicate sample composition

as opposed to direct molecular concentrations. To better conform

to the compositional nature of these data, COMBI modifies the

MOFA regression formulation of the matrix factorization process

by specifying a centered log-ratio transform (clr) link function. The

inverse of the clr function is the softmax function, whose output

is a vector with elements that sum to one (i.e., a composition).

COMBI utilizes quasi-likelihood estimation (Wedderburn, 1974) to

fit its model, enabling one to specify only a mean and variance as

opposed to an entire parametric distribution for model estimation.

Modeling only the mean and variance through quasi-likelihood

estimation is advantageous considering that sequence count data

are often characterized by high variability and inflated zero-counts,

aspects which are often poorly modeled by fully specified parametric

distributions. The quasi-likelihood estimation approach is also robust

to missing data values. Provided that the data are missing completely

at random (MCAR) or missing at random (MAR), the quasi-

likelihood estimation procedure yields unbiased parameter estimates

based on all (complete or partial) observations. Missing values of a

given ‘omic are simply excluded from the estimating equations.

Wu and Goodman (2018) propose a multimodal variational

autoencoder (MVAE), an unsupervised approach for integrative

multi-view (i.e., multi-omic) analyses. MVAE’s use of variational

autoencoders (Kingma and Welling, 2014) casts the encoders and

decoders of a traditional autoencoder within a stochastic framework,

allowing one to leverage certain probabilistic assumptions and

properties in specifying the loss function for model training. One

key assumption made by this approach is that data views are

independent from one another, given a shared latent representation.

This assumption, and a few other approximations, motivate a model

architecture and loss function described by the authors as a product-

of-experts (PoE) that efficiently combines the variational parameters

of ‘omic-specific encodings when mapping to a lower-dimensional,

shared latent space. This PoE model architecture is robust to partially

observed samples, combining only the ‘omic-specific encodings of

each partial sample’s observed ‘omics during model training.

DeepMF (Chen et al., 2019) casts traditional matrix factorization

within a deep learning framework to map concatenated multi-

omics data to a lower-dimensional latent space. This is achieved by

specifying a fully connected network architecture that takes as input

one-hot encoded representations of each ‘omics feature, and outputs

predicted values of the original multi-omic data matrix. Between

these input and output layers are several (at least two) hidden layers

that enforce a lower-dimensional representation of the input one-hot

encodings. To train this network, a variational L2-norm is used such

that missing ‘omics entries may be dropped during backpropagation.

The trained network yields three matrices of potential use to the

analyst. The first is the predicted data matrix, whose entries may

be used to impute any missing data values in the original data

matrix. The second extracted matrix is the “feature-latent” matrix,

which is obtained by taking the trained weights of the first hidden

layer. The columns of this “feature-latent” matrix define the relative

weights of each original feature in generating the corresponding

latent factor (column) of the matrix. The third extracted matrix,

the “sample-latent” matrix, defines a similar mapping, but here,

each row defines the relative weights of each original sample in

defining the corresponding latent factor. This matrix is obtained by

taking the trained weights of the final hidden layer that precedes

the output layer. A natural use of the feature-latent or sample-

latent matrices are for clustering analyses to identify feature or

patient subgroups. In evaluating the robustness of DeepMF to varying

levels of missingness (10, 50, and 70%), Chen et al. (2019) found

that DeepMF was consistently able to identify sample and feature

subgroups with perfect accuracy. However, it should be noted that

these evaluations were completed in a simulated data setting in

which data were simulated as missing completely at random (MCAR)

and ground truth feature subgroups were generated with simple

discrimination boundaries.

A similarly motivated approach, the Multi-view Neighborhood

Embedding (MvNE) method introduced by Mitra et al. (2020),

integrates and maps multi-omics data to a lower-dimensional

subspace to facilitate cluster analyses. The proposed model first

estimates a unified probability distribution that describes the

likelihood of neighboring points across the full-dimensional space

of the original multi-omics data. This distribution is “unified”

in the sense that it represents an aggregation of individual,

‘omic-specific neighbor distributions. Aggregation of these normal

distributions is achieved through the process of statistical conflation

(Hill, 2011), which involves taking the normalized product of

the aggregated probability density functions. To map the data

to a lower-dimensional subspace, embeddings are generated by

a stacked autoencoder, and these embeddings are optimized by

iteratively minimizing the Kullback-Leibler divergence (Kullback

and Leibler, 1951) between the unified probability distribution

of the full-dimensional data and the neighborhood distribution

based on the lower-dimensional embeddings. Samples with partially

observed ‘omics data are incorporated during optimization through

adjustments to the conflation approach used to generate the unified

neighborhood distribution.
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DeepIMV (Lee and van der Schaar, 2021) incorporates some of

the principles utilized byWu and Goodman (2018) to develop a deep

variational information bottleneck approach that maps integrated,

multi-omics data into a lower-dimensional subspace of task-relevant

embeddings. These task-relevant embeddings are those attuned for

either regression or classification purposes, improving upon a similar

approach (Zhang et al., 2019) whose embeddings are generated in

an unsupervised fashion. DeepIMV’s latent mappings are trained

according to the informational bottleneck principle (Tishby et al.,

2000; Alemi et al., 2016; Achille and Soatto, 2017), which seeks to

define task-relevant data representations that respect the balance

between parsimony and predictive power. The DeepIMV approach

is characterized by a model architecture that may be partitioned

into four components: view-specific encoders that map the data of

individual ‘omics to a common latent space; a product-of-experts

(PoE) network module that maps the marginal latent representations

of the view-specific encoders to a joint latent representation within

the same common latent space; a multi-view predictor that generates

task-specific predictions based on the joint encodings of the PoE

module; and view-specific predictors that generate predictions based

on the view-specific (marginal) encodings. Use of the PoE module

in the DeepIMV architecture allows one to ignore missing ‘omics

for a partially observed sample without dropping the sample entirely

during model training. Though the marginal encodings or ‘omic-

specific predictions associated with these missing ‘omics may not

be generated for these partially observed samples, the PoE module

may still flexibly use only the marginal encodings of these sample’s

observed ‘omics to generate joint latent encodings. These joint

encodings may then be used by DeepIMV’s multi-view predictor

to generate response predictions. The robustness of DeepIMV to

different rates of missingness was assessed by the authors using

several benchmark datasets provided by the Cancer Genome Atlas

(TCGA) and the Cancer Cell Line Encyclopedia (CCLE). Using the

area under the receiver-operator curve (AUROC) as a performance

metric, the authors found that the performance of DeepIMV

diminished with increased missingness but performed as well as or

better than the compared approaches.

Joint association and classification analysis (JACA; Zhang and

Gaynanova, 2021) is a semi-supervised approach that enables

quantification of inter-omic associations with respect to known

classifications or data subtypes. JACA establishes a connection

between linear discriminant analysis (LDA) and canonical correlation

analysis (CCA) to motivate the construction of a loss function that

combines and balances between the objectives of each approach.

Balance between these objectives is regulated by a tuning parameter,

α. When α = 0 the JACA loss reduces to that of CCA or SUMCOR

multiset CCA (Kettenring, 1971) with sparsity regularization,

depending on whether three or more ‘omics are under consideration.

On the other hand, when α = 1, JACA reduces to sparse LDA with

additional orthogonality constraints. JACA’s loss function utilizes a

co-regularization framework, where a regularization term is shared

across omic-specific loss functions. The JACA loss may be viewed

as an aggregation of individual objective functions—specific to

individual ‘omics—that are linked and jointly optimized by their

shared regularization. Similar co-regularization approaches for semi-

supervised multi-omic or (more generally) multi-view learning

have been previously introduced (Sindhwani et al., 2005; Brefeld

et al., 2006; Sun and Shawe-Taylor, 2010). Missing data may be

accommodated by JACA provided that partially observed samples

have either a response label and at least one observed ‘omic, or

at least two observed ‘omics. For either case, the loss function is

constructed as it is under the complete-case setting, except that each

loss component may have a different subset of contributing samples.

Partially observed samples with a response label and at least one

observed ‘omic are used to train the omic-specific classifiers (i.e.

LDA component) whereas partially observed samples of the other

variety are used to penalize inter-omic classification disagreement

(i.e., CCA component).

Last, SUMO (Sienkiewicz et al., 2022) is a non-negative matrix

factorization approach that enables the integration of continuous

data from multiple data types to infer subtypes in multi-omics

datasets. Implementation of SUMO involves the construction of

‘omic-specific similarity matrices, where entries of the similarity

matrices are computed as radial basis functions of the Euclidean

distances between sample pairs. Each similarity matrix is then

factorized into two-non-negative matrices— one representative of

the basic components and the other containing mixture coefficients

indicative of cluster membership. This factorization is done jointly

across all similarity matrices such that the matrix of mixture

components is shared across all similarity matrices, similar in spirit

to the shared factorization of MOFA and MOFA+. The iterative

solver used to determine this joint factorization is specified such that

missing similarity entries are masked. Intuitively, this is achieved by

viewing each similarity matrix as a connected graph and missing

entries as edgeless nodes within this graph. The authors compared

SUMO to a different integrative approach, NEMO (Rappoport and

Shamir, 2019), in terms of their robustness to varying levels ofmissing

samples. These comparisons indicated a slight outperformance by

SUMO, except for in the cases of extreme missingness (80% and

greater). As well, the range of adjusted rand index values (the

performance metric used) was typically observed to be narrower for

SUMO, suggesting less variability in expected performance.

Late integration

Here we describe integrative approaches for partially observed

multi-omics that may be categorized as late-integrative, or model-

based, since each involve some post-hoc combination of several ‘omic-

specific analyses. Of the recent approaches surveyed by this review,

only optimization-masking approaches were identified.

Optimization-masking
Neighborhood based Multi-Omics clustering (NEMO;

Rappoport and Shamir, 2019) is an algorithm that generates

clusters based on individual data view similarity matrices. NEMO

operates in three phases, where in the first phase similarity matrices

and relative similarity matrices are built separately for each data view

(i.e., ‘omics data type) under consideration. The relative similarity

matrix of a data view is a function of its similarity matrix, and its

entries capture the similarity between two points relative to the

nearest neighbors of each point. In the second phase of NEMO

these relative similarity matrices are averaged across views, and in

NEMO’s final phase, spectral clustering is performed on the averaged

relative similarity matrix. NEMO can handle partially observed

samples, provided that these samples are observed in at least one

view common to other observed samples. For these cases, the relative
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similarity matrix entries for a given point pair are simply averaged

across the data view matrices where both points (i.e., samples) have

observed values of the data view. A more recent approach, Multiple

Similarity Network Embedding (MSNE; Xu et al., 2021) modifies

NEMO’s original framework to overcome limitations in the patterns

of missing data that can be accommodated. MSNE incorporates a

random walk strategy for integrating across view-specific similarity

matrices, leading to a more flexible framework for handling missing

data and removing the condition that partially observed samples

may only be integrated if they are observed in at least one data view

common to other observed samples.

Multi Omics clustering by Non-Exhaustive Types (MONET;

Rappoport et al., 2020) is a clustering algorithm that defines

“modules”, which are clusters formed based on subsets of different

data views. Modules are detected by identifying heavy subgraphs

common across the separate, edge-weighted graphs constructed for

each view. This detection process is guided by an objective function

defined by the sum of module weights, where the weight of a module

is the sum of all edge weights between all sample pairs across all

‘omics in the module. This algorithm incorporates partially observed

samples by representing their missing components as edgeless nodes

within their corresponding edge-weighted graphs. Notably, there is

no constraint on the number of detected modules, nor is there an

upper bound on module size. As a result, maximizing the objective

function for heavy subgraph detection is an NP-hard problem. The

authors circumvent this issue by proposing a heuristic algorithm

that identifies a local maximum and recommend using the best

solution from repeated runs of the algorithm to better approximate

the globally maximal solution.

Discussion

Integrative approaches for the analysis of multi-omics data are

rapidly evolving, and such advancements are largely driven by the

power of AI and ML. In this work we have highlighted several of

these more recent developments, focusing on those that directly

embed, within their analytic frameworks, techniques that address the

missing data issue that commonly arises in multi-omic data analysis.

The reviewed approaches vary in their general applicability and use

case but should be applied where appropriate to fully leverage the

information across multi-omics datasets. However, in applying these

methods, users should be aware of their limitations.

A limitation common to several approaches, for example, is

the implicit requirement of relatively larger sample sizes for model

estimation or fitting.We describe this requirement as “implicit” given

that it is rarely, if ever, stated as a limitation, but instead implied

based on the sample sizes of the datasets that these methods were

successfully applied to. The datasets considered by these approaches

contain hundreds, if not thousands, of observations, sample sizes that

may be practically prohibitive due to cost, biospecimen availability,

or both. For example, a study to identify biomarkers for Snyder

Robinson syndrome, a rare neurological disorder, obtained data on

16 patients, only three of which presented with the disorder of interest

(Abela et al., 2015). Other studies that involve rare diseases, the

collection of difficult-to-access tissue, or smaller grants that do not

allow for large consortium samples are characterized by similarly low

sample sizes (Sirrs et al., 2015; Abela et al., 2017). These cases present

the need for methods that generate reliable inference despite smaller

sample sizes and avoid overfitting to the data. Alternatively, the

development of methods for integrating multi-omics data generated

by separately conducted studies should be prioritized. The present

review describes one of these methods, BIDIFAC+, that enables

bi-dimensional data integration such that data may be integrated

both vertically (i.e., integration across omics) and horizontally (i.e.,

integration across sample cohorts). However, Lock et al. (2022) note

that BIDIFAC+ assumes that shared structures are present across

the integrated matrices, an assumption that may be violated in

practice. As well, they noted that BIDIFAC+ took nearly 24 h to reach

convergence when fitted to a combined TCGA dataset, and thus the

method may not scale well with larger aggregations of datasets.

Though the shared structure assumption made by BIDIFAC+

may pose as problematic in certain practical instances, the ability

to capture dependencies and correlations across ‘omics data types

is important when considering that known biological relationships

exist between these data. For joint-imputation approaches, which

“predict” missing values, capturing data dependencies is particularly

important as imputed values may be otherwise biased, affecting

downstream results. Of the joint-imputation approaches discussed

in this review, only the FBM and iMODA approaches describe

ways in which the correlation structure is modeled or impacts

results. Further investigations toward the effects of properlymodeling

these correlations are therefore warranted. On the other hand,

though dependencies exist between different ‘omics data, important

differences between ‘omics must also be accounted for in developed

integrative approaches. Kok et al. (2018) notes, for example, that one

may need around 19 samples per group to detect a fold change of 1.5

in microRNA data at 80% power and false discovery rate <10%. This

is as opposed to other (larger) transcriptomics platforms that would

require at least 35 samples per group to detect the same magnitude

fold change at the same power and false discovery rate levels

(Krassowski et al., 2020). This disparity in sample size requirements

indicates differences in variability across different omics, implying

inter-omic differences in signal strength as measured by signal-to-

noise ratios (SNR). Thus, approaches that naïvely combine these

data views may inadvertently overrepresent relationships particular

to a high SNR ‘omics and underrepresent lower SNR ‘omics.

Beyond variability and signal strength, heterogeneity across ‘omics

may also be observed in terms of their missing data patterns or

confounders, especially considering that different ‘omics are collected

on different instrumentation that vary in their accuracy, precision,

and detection ability.

Related to this point, many of the methods described here

were motivated by or evaluated exclusively on sequencing-based

omics platforms (e.g., transcriptomics, genomics, and epigenomics)

and few considered the fuller breadth of omics platforms that

includes metabolomics, proteomics, lipidomics, etc. Contrasting

with the sequencing-based ‘omics used by many of the methods

reviewed in this work, data of other ‘omics are typically generated

by a mass spectrometer, an instrument whose use introduces

several nuances to the data which may mean integration model

assumptions reasonably made for sequencing-based data may

not hold for mass spectrometry-based data. For example, batch

effects are common and often much more pronounced in mass

spectrometry-based data (Mertens, 2016; Phua et al., 2022; e.g.,

Han and Li, 2020), even when the same physical instrument is

used and the same data type is being generated. Variations in

sample handling, temperature fluctuation, imprecise timing, liquid
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chromatography/gas chromatography (LC/GC) column degradation

and other factors result in systematic errors or biases of the

measured abundances between the batches or over time. Further,

mechanisms for missing data can be more complex in the case

of mass spectrometry data, as described for proteomics data

previously in this paper. For small molecule measurements, such

as metabolomics, manual verification of metabolites following

identification scoring is required for shotgun metabolomics, as

scoring methods are much less mature than for other ‘omics data

types (Stein and Scott, 1994; Samaraweera et al., 2018). This can

result in increased misidentifications and missing values compared

to ‘omics data with more established identification algorithms such

as transcriptomics and genomics. Finally, additional sources of

uncertainty may arise from processes such as protein quantification

in bottom-up proteomics (Rifai et al., 2006; Plubell et al., 2022) as

measurements are made at the peptide level and isoforms can be

difficult to identify (Forshed et al., 2011; Webb-Robertson et al.,

2014). In untargeted metabolomics and lipidomics false discovery

rates are difficult to compute and largely not accurate (Stein, 1994;

Jeong et al., 2011; Matsuda et al., 2013; Kim and Zhang, 2014).

Additional exploration and evaluation of the appropriateness of

the aforementioned integration methods is necessary given the

differences in mass spectrometry-based data types compared to

sequence-based omics data types.

While all these methods have been presented within the context

of multi-omics integration, few explicitly require the use multi-

omics data. The criteria of sets of features from distinct views across

a shared set of samples is applicable to any domain where the

combination of different data sources provides a more complete

representation of the system under investigation. For example, many

of the deep-learning architectures mentioned in this review have

similarities to ones used in analysis of digital media that try to

combine multiple modalities to improve predictive performance of

video content (Carreira and Zisserman, 2017; Afouras et al., 2019).

These methods also commonly investigate differences in “early”,

“middle”, and “late” fusion and work has even been done to address

the view-missing and view-heterogeneity problems (Nagrani et al.,

2018; Wang et al., 2020). Insights from the ‘omics domain, where

some of these issues are most salient, could transfer to other domains.

The methodological choices inherent to the ‘omics domain are

usually the ones that offer the ability to constrain or elucidate

relationships between biomarkers. Some common choices are the

use of principal-component-like representations that might identify

important groups of biomarkers, and the injection of prior knowledge

through techniques that constrain the relationships between features

such as directed edges in graph representations, hard parameter

constraints, or carefully chosen priors in Bayesian frameworks.

These biologically informed constraints are likely critical to

develop successful approaches, as relying on over-parametrized

models such as DNN’s to learn non-spurious, inspectable

relationships is not a reliable strategy (Lee and Kim, 2022).

However, the strength of over-parametrized models in learning

complex relationships cannot be ignored. The methodology

discussed within this review spans the interpretability spectrum,

from more interpretable approaches like iMODA (Lin et al., 2020) to

more opaque methods such as DeepIMV (Lee and van der Schaar,

2021); and incorporating domain knowledge may be key toward

bridging the interpretability gap apparent across these methods. For

example, many of the middle integration methods discussed here

are black-box in nature, as the specific relationships learned by each

are often incommunicable. However, the groupings implicit within

the latent factors generated by these models may be contextualized

according to domain-specific knowledge (e.g., shared molecular

pathways), thus increasing their interpretability and allowing

one to infer underlying relationships. Identifying these groupings

within latent factors is often a post-hoc process, however, and

such domain-relevant groupings are not always identifiable within

generated latent factors. If the generation of these latent factors were

instead guided by domain knowledge, resulting groupings may be

more likely to hold relevance and rely less on post-hoc analyses for

contextualization within the scientific domain. Thus, recognizing

the need for greater interpretability of the more opaque integration

methods, efforts to combine biological-knowledge-injecting methods

such as graph representations or other hard constraints on parameter

representations with machine learning methods are ongoing (Noor

et al., 2019; Lee and Kim, 2022), and evaluation and development of

mechanisms for handling missing data within these frameworks will

be necessary.
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