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The AI trilemma: Saving the
planet without ruining our jobs

Ekkehard Ernst*

International Labour Organization, Department of Research, Geneva, Switzerland

Digitalization and artificial intelligence increasingly a�ect the world of work.

Rising risk of massive job losses have sparked technological fears. Limited

income and productivity gains concentrated among a few tech companies

are fueling inequalities. In addition, the increasing ecological footprint of

digital technologies has become the focus of much discussion. This creates

a trilemma of rising inequality, low productivity growth and high ecological

costs brought by technological progress. How can this trilemma be resolved?

Which digital applications should be promoted specifically? And what should

policymakers do to address this trilemma? This contribution shows that

policymakers should create suitable conditions to fully exploit the potential

in the area of network applications (transport, information exchange, supply,

provisioning) in order to reap maximum societal benefits that can be widely

shared. This requires shifting incentives away from current uses toward

those that can, at least partially, address the trilemma. The contribution

analyses the scope and limits of current policy instruments in this regard and

discusses alternative approaches that are more aligned with the properties

of the emerging technological paradigm underlying the digital economy.

In particular, it discusses the possibility of institutional innovations required

to address the socio-economic challenges resulting from the technological

innovations brought about by artificial intelligence.
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1. Introduction

The past decade has seen an explosion of applications powered by artificial

intelligence (AI). With the ubiquity of large, unstructured databases (“Big data”) and a

rapid fall in computing costs over the past four decades, AI applications using non-linear

statistical and machine learning methods have gained renewed prominence after falling

out of favor for long periods since the inception of the field of AI properly speaking. This

has triggered both fears about a robo-apocalypse with machines dominating the world

as well as enthusiastic techno-scenarios where humanity can solve most of its current

global challenges, be they related to climate change, poverty or diseases (Brynjolfsson

and McAfee, 2014; Frey and Osborne, 2017; Frey, 2019; Ford, 2021). Yet, none of

these scenarios seem to materialize right now. Rather, we see specific challenges arising

from the wide-spread use of AI, in particular when it comes to the use of social

media. Also, the rising ecological footprint of digital tools—and specifically AI-powered
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applications—notably as regards cryptocurrencies1 and

foundation models2, has raised concerns about the sustainability

of these developments (Robbins and van Wynsberghe, 2022).

At the same time, enhancements to our way of life have been

equally limited, mostly concentrated around improvements

in digital navigation or the rapid rise in online shopping and

delivery. At the back of these rather limited effects looms a

more concerning trend: the rise in economic power of a few

dominant technological companies that increasingly seems to

add to inequalities already prevalent before the rise in AI.

By now, all three challenges resulting from the rise of AI

are well documented, whether they concern limited productivity

gains (Gordon, 2021), worsening inequalities (Bessen, 2020)

or rising ecological costs (van Wynsberghe, 2021). This paper

argues that these three challenges are interrelated and need to

be understood as resulting from an “AI trilemma:” Following

its current path the technological paradigm taken by AI will

worsen its ecological footprint and deepen economic inequalities

without delivering better living standards for all. Using the

concept of a technological paradigm as developed by Dosi

(1982) and Nightingale et al. (2008), I will argue that at

the heart of this trilemma lies a particular way of how this

technology develops, related to both technical and economic

aspects of its current paradigm. I will also argue that these

developments are not inevitable as specific policy interventions

and institutional changes can modify this paradigm in such

a way as to deliver positive contributions to our way of life

without worsening or even with improving on its ecological and

social costs to become a truly sustainable paradigm. This point

is similar to the one raised by Acemoglu (2022) in as much

as the unfettered technological development under the current

paradigm is unlikely to deliver the benefits expected from AI;

in contrast, I argue that identifying a direction of technological

change that delivers these benefits requires to understand the

1 Cryptocurrencies and blockchain applications more broadly are

not strictly relying on artificial intelligence. However, many of their

applications do, including latest developments around Decentralized

Autonomous Organization applications (DAO) that execute certain

functions autonomously ormarket trading applications to anticipate price

movements in these currencies. Many of the ecological implications

discussed in this article relative to AI applications do carry over to other

digital tools such as the use of blockchains.

2 Foundation models, a term first coined by the Stanford Institute for

Human-Centered Artificial Intelligence, are generic models trained on a

large set of unlabeled data that can be re-purposed for a specific set

of tasks. For example in natural language processing, the Bidirectional

Encoder Representations from Transformers (BERT) model has been

trained on a large corpus of the English language; the model can then

be refined for specific tasks to recognize English sentences in technical

applications, such as to identify the similarity in the description of skills in

di�erent classification systems (see, for instance, Fossen et al., 2022).

inherent trade-offs between inequality, ecological costs and

productivity growth that comes with the current paradigm.

Many researchers and observers focus their analyses of

AI on its applications in the world of work, which initially

rose fears of wide-spread technological unemployment (Frey

and Osborne, 2017; Balliester and Elsheikhi, 2018; Frey, 2019).

Whether autonomous taxis, fully automated logistics centers,

the Robo-Hotel concierge Pepper or the Bar Tender Tipsy

Robot; in more and more areas machines seem to be able

to replace us. This is especially true in those areas where we

ourselves have been convinced of being irreplaceable: In artistic

or intellectual activities (Muro et al., 2019). Calls for a universal

basic income or some other unconditional forms of government

transfers abound in order to secure all thosemasses of employees

falling out of work and providing them some minimum way

of life. In the meantime, however, it seems that (technological)

unemployment should be the least of our concerns with

these new digital technologies, at least in advanced economies

(Carbonero et al., 2018). Indeed, if anything, unemployment has

declined in OECD countries during the past decade up until the

outbreak of the Covid-19 pandemic (see Figure 1).

Part of the reason why AI-powered applications have so

far not led to a job-less future relates to the vary narrow

range of applications that are currently being developed by

industry (Ernst and Mishra, 2021), affecting only a small

percentage of the workforce. Indeed, over the past decade

most applications have been centered around business process

robotisation, autonomous driving, e-commerce and digital

platforms, which together accounted for more than 40 per

cent of all applications developed between 2010 and 2020

(see Figure 2). In particular, business process robotisation—

such as applications in accounting and compliance—seem to

have been developed partly as a reaction to rising compliance

cost and regulatory overhead, rather than to substitute

employment. Some researchers have even highlighted that many

of these applications are likely to prove labor augmenting

rather than replacing, possibly leading to job enrichment,

which, in principle, should allow workers to command

higher incomes and firms to enjoy higher productivity

(Fossen and Sorgner, 2019).

Yet, these more positive conclusions also do not seem to

have materialized. Productivity growth has continued its secular

decline over the 2010s (Ernst et al., 2019) and does not seem

to have accelerated with the onset of the recovery as we are

gradually moving out of the pandemic. Despite much touted

benefits from working-from-home and the further growth in

e-commerce, apparent hourly labor productivity growth in

the OECD has not increased (see Figure 3), with the possible

exception of the United States that saw a gradual increase since

the mid-1990s, albeit well below levels achieved in decades prior

to the second oil shock in the early 1980s.

Meanwhile the rising ecological cost of developing and using

AI has become an important concern. This has become most
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FIGURE 1

Evolution of unemployment: OECD and selected G20 countries (2010 vs. 2019; in per cent of total labor force). Source: OECD, Stats Portal.

visible in the area of cryptocurrencies where the particular

security concept behind Bitcoin, for instance, has led to an

explosion in the use of electricity, up to the point that

several countries have restricted or outright banned its use

(e.g., China, Kosovo). Other areas of the digital economy

have also experienced increasing constraints. Some large

digital companies have started experimenting placing its cloud

computing servers in deep sea water for cooling. Large-

scale neural networks such as the natural language processing

network GPT-3, currently one of the largest and most powerful

tools in this area, is reported to cost US$ 12 million on a single

training run, making it very costly to correct training errors

(for instance due to biased data) and effectively preclude a

more wide-spread application of this tool, especially by smaller

companies (OECD, 2021). What is more, as these tools become

more complex and presumably more precise, their economic

and energetic costs explode and do not scale up linearly

(Thompson et al., 2020). In the meantime, a call for “Green

AI” or sustainable AI has emerged, focusing on how to lower

the carbon-footprint of these tools and ensure their (low-cost)

accessibility of a large range of researchers and users (Robbins

and van Wynsberghe, 2022). Various possible technological

improvements have been suggested but, so far, none of them

seems promising enough to contribute significantly to a solution

as we will discuss in more detail below. Presumably, the rise

in renewables in the energy mix would bring down the carbon

footprint of AI but only to the extent that its use does not

continue the exponential rise observed over the past decade,

which seems unlikely.

Interestingly, those areas where AI neither replaces nor

(directly) complements work have not received much attention.

In economic terms, new technologies can affect productivity

at three levels: labor, capital or total factor productivity. The

latter typically refers to technologies that help combine both

production factors in more efficient ways, for instance through

re-organization of work processes. More broadly, technologies

to manage networks more efficiently, for example in transport

and logistics, in electricity and waste management or in

information exchange, are prime candidates for improvements

in total factor productivity (UN DESA, 2018). Modern urban

traffic control systems can use flexible traffic management to

direct individual and public transport in such a way that the

traffic volume is managed optimally and efficiently. AI will

also become increasingly important in the area of electricity

network control, especially where more and different energy

sources (e.g., renewables) have to be connected as economies

are transiting toward sustainable energy supply. Similarly, as

economies are trying to reduce their overall ecological burden,

waste management will become more important together with

an increasing role played by the circular economy. Such

(complex) supply chains remain beyond the purview of human

intervention and require high-speed control by machines.

So far, however, none of these applications seem to play an

important role in the discussion among economists and social

scientists about how transformative this technology potentially

can be. As I will argue below, this has to do with the particular

way the technology business operates and requires a conscious

effort to redirect (partly) our efforts in developing innovations
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FIGURE 2

Main areas of AI development (2010–2020, cumulative investment in US$, global; Robotic Process Automation = 100). The chart depicts the

cumulative, global investment in US$ over the period 2010 to 2020 in various AI-applications. Investments have been scaled such that total

investment in Robotic Process Automation = 100. Source: Ernst and Mishra (2021) based on the Stanford AI Vibrancy index.

in this area. I will start with somemethodological considerations

before presenting the AI trilemma in a nutshell, highlighting the

key mechanisms underlying it. I will then delve into its three

main components: lack of productivity growth, rising inequality

and market concentration, and a worsening ecological footprint.

In Section 4, I demonstrate several areas in which technological

progress in the digital work can indeed contribute to address

the AI trilemma and present some policy proposals on how to

instigate such a change. A final section concludes.

2. The AI trilemma in a nutshell: A
technological paradigm

2.1. Technological paradigms

Underlying the understanding of the AI trilemma is the

concept of a technological paradigm as a socio-technological

interaction between technological capabilities, economic

conditions and social structures that determine the future

development of the productive forces of an economy (Dosi,

1982; Nightingale et al., 2008). A technology here refers to

a set of combinations between labor, capital and ideas to

produce a certain economic output. At its most basic level,

technological development then can be either autonomously

driven by scientific progress (“ideas”)—the scientific supply

push paradigm—or determined by economic conditions under

which firms operate on both labor and capital markets—the

demand pull paradigm. As such, the concept of a technological

paradigm expands on Kuhn’s scientific paradigms as one that

applies more broadly even outside academic communities.

As highlighted by Dosi (1982), the two ideal forms do

not uniquely reflect the dynamics of technological progress,

which will inevitably navigate between the available scientific

knowledge of any particular era and the specific socio-economic

conditions under which firms operate. One shall add to this that

either of the two forces will be influenced by institutional and

regulatory conditions, such as laws and regulations governing
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FIGURE 3

Hourly labor productivity growth (in %, decade averages,

1980-2020, G7 countries). The chart depicts the average hourly

labor productivity growth between 1980 and 2020 for G7

countries. Decade averages only available for 1980–1989;

1990–1999; 2000–2009; 2010–2019. Last observation is for

2020 and might be biased due to the e�ect of the COVID-19

pandemic on national statistics. Source: OECD, Statistics Portal,

available at: https://stats.oecd.org/.

intellectual property rights, tax regimes or government subsidies

for R&D, among others.

It is against this concept of technological paradigms

that the AI trilemma will be developed in this paper: I

will explore how the current scientific and technological

development of digital tools in general and AI in particular

interacts with the institutional and regulatory regime on labor

and capital markets. I will then analyse the specific socio-

economic outcomes this interaction produces to show that

certain undesirable properties cannot be overcome within this

prevailing technological paradigm. As such the AI trilemma is

not a logical impossibility to achieve more desirable outcomes

with the currently available technologies but rather a contextual

trilemma that can be overcome with the right institutional and

regulatory adjustments.

To develop my argument, I start by reviewing the

technological characteristics of what is typically dubbed

“machine intelligence” and compare it with our current

understanding of human cognitive processes. Specifically, I will

show how the current wave of machine intelligence is correlated

with significant scale effects that make economic concentration

a prerequisite for further technological development. Through

an overview of empirical studies I will demonstrate the

extent to which such concentration effects can already be

observed and discuss the specific underlying mechanisms.

Based on this analysis, I will argue that this tendency

for economic concentration has some other, undesirable

consequences from a macro-economic standpoint, including

a slowdown in technological diffusion and a deceleration

of productivity growth. My argument, therefore, consists in

FIGURE 4

The AI sustainability trilemma in a nutshell.

considering the current technological paradigm around AI as

one of “supply push,” driven predominantly by technological

considerations, rather than one of “demand pull,” oriented by

policy goals regarding the development of productive forces and

sustainable societies.

The way the AI trilemma is being developed in the following

relies on an extensive review of the available evidence as it

is being brought together by computer scientists, economists

and policy experts to form a new, coherent understanding of

the current difficulties that help understanding the apparent

contradiction of a seemingly accelerating technological progress

and a manifest difficulty to detect this progress in improvements

in economic and social indicators.

2.2. The AI trilemma as a supply push
paradigm

Figure 4 summarizes the key message of the AI sustainability

trilemma: We cannot have low inequality, high productivity

and ecological sustainability simultaneously, at least not

when pursuing the current technological paradigm underlying

the development of AI-powered automated decision making

systems. As such, the AI trilemma is composed of three,

interrelated dilemmata of which only two can be solved

simultaneously at the expense of the third one.

Specifically, the AI trilemma consists of the following three

interrelated dilemmata:
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• The productivity-energy dilemma (Figure 4, upper-right

leg): Rising (labor) productivity can only be achieved

through the replacement of human labor by machines at

the expense of higher use of energy (electricity). This is

not specific to the AI revolution. In the case of the digital

economy, it implies that human cognitive work is being

substituted by machine intelligence. In the next section we

will see more closely that this often means that the energy

efficiency of decision-making processes actually declines

rather than improves. From the storage of data in cloud

computing centers, to data analysis by high-performance

computers, to the power consumption of even the smallest

mobile digital devices needed to stay connected, the digital

economy is already using upmore than 6 percent of average

electricity consumption. And the trend is accelerating.

Without major efficiency gains, electricity consumption is

expected to rise to over 20 percent in 2030 (Jones, 2018).

This dilemma could only be overcome if productivity were

to rise beyond what humans could achieve with the same

amount of energy expended. As we argue, this is currently

not the case.

• The energy-economic concentration dilemma (Figure 4,

upper-left leg): For energy efficiency to increase rather

than to fall, data concentration needs to grow further

in order to exploit the variation of information in

large samples. This is the logic currently underlying the

development of approaches such as Large LanguageModels

that exploit almost the entire (English-speaking) library.

Given the network externalities involved in data collection

(which we will discuss in more detail below), market

concentration is bound to worsen, at least within the small

segment of data collection and algorithm training. Such

concentration of data collection can indeed enhance energy

efficiency and hence yield productivity gains but only at

the level of individual companies. At the aggregate level,

this concentration worsens economic inequalities. This

dilemma could only be overcome if access to data were

regulated as a public good that allows strong competition

among data users. In Section 4, we will discuss different

options how this could be achieved.

• The concentration-productivity dilemma (Figure 4, bottom

leg): Higher income inequality, especially in mature

economies, is associated with lower productivity gains. As

incomes are gettingmore concentrated at the top, aggregate

demand grows more sluggishly, slowing down embodied

technological change, i.e., that part of technological

progress that requires investment in new machines.

Whether higher productivity growth increases or declines

inequality, on the other hand, depends on whether and

how quickly new technologies diffuse throughout the

economy. Highly specialized technologies that benefit only

few sectors might permanently lift inequality when other

sectors of the economy cannot from its advantages. In

contrast, General Purpose Technologies are thought to “lift

all boats,” albeit sometimes with a long delay, creating a

J-curve effect (Brynjolfsson et al., 2021) with increases in

unemployment in the short run and faster job growth in

the long run (Chen and Semmler, 2018). In Section 4, we

discuss possible ways of addressing the growth-depressing

consequences of higher economic concentration.

There is indeed some debate regarding whether a J-curve

effect is relevant in understanding why major economies have

not yet seen productivity improvements commensurate of

what has been expected from the latest wave of technological

advancements. Depending on how flat the “J” is, the effect can

take several decades, related to major sectoral restructuring and

work-process re-organization. Ernst (2022) argues that because

of the rise in inequality triggered by the specific conditions

under which digital technologies evolve, it is rather unlikely

to see a fast diffusion of these new applications spreading

through the economy. In the worst case, these benefits might

never materialize broadly. In other words, it is increasing

market concentration of digital companies andwidening income

differentials that prevent stronger growth for all. Digital growth

is not inclusive and—depending on the application—it is not

resource efficient.

What explains this AI sustainability trilemma? This paper

argues that the trilemma—low growth, greater inequality and

high energy consumption despite rapid technological progress—

is mainly due to the specific technological regime in which the

digital economy currently operates: Under the current regime

of intellectual property rights, energy efficiency of silicon-based

information processing tools can only be achieved through

high degrees of data concentration, preventing economy-wide

productivity spillovers while generating significant economic

inequalities. In other words, it is a supply-push technological

paradigm driven by the specific conditions under which

technological companies develop their applications. This

"weightless economy" now occupies the largest place and leads

to market distortions that have so far received insufficient

attention (Haskel and Westlake, 2017). Moreover, AI-powered

tools trigger various forms of inequality beyond the failure

to diffuse its benefits more widely. Indeed, at the micro

level, too, problems are emerging that perpetuate existing

inequalities. The use of historical data, for instance, necessary

to train AI routines, often reflects discrimination, specifically

of women or ethnic minorities in the labor market. If an AI-

routine is fed with such data without a corresponding filter,

the disadvantages will be perpetuated, for instance through

continued discrimination in hiring processes. Several major tech

companies have already experienced this to their disadvantage.

Taken together, the specific institutional and technological

characteristics of artificial intelligence and AI-based innovations

cause and perpetuate the AI sustainability trilemma. In order

to offer possible ways out, however, we first need to better
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understand what is driving these three different elements of the

trilemma in the next section.

3. Understanding the mechanisms of
the trilemma

3.1. Why are brains so much more
e�cient than computers?

A core assertion of the AI trilemma is that computers are

highly energy intensive. Therefore, their massive use in the

current digital transformation of our economies comes at a

significant cost for the environment, specifically in form of the

use of electricity and its related carbon footprint. Looking at it

from a total factor productivity perspective—i.e., considering all

input factors, labor, capital and energy—we start by exploring

the first axis of the AI trilemma: the trade-off between using

computing power vs. brain power in the drive toward higher

levels of productivity. This first section starts by looking into the

reasons why digital tools in general—and machine learning in

particular, at least as it is currently being conceived—are high

consumers of energy. I discuss key differences between brains

and computers, arguing that despite many broad similarities,

their underlying architecture and information processes show

remarkable differences that explain much of why brains are

much more efficient than computers. I also discuss how recent

changes in the way computer algorithms have evolved have

integrated ideas inspired by neurological research, producing

remarkable improvements in computing performance. My core

argument in this section is that the way computers are currently

being used is unsustainable from an ecological point of view.

That is not to say that a different kind of use could not prove

beneficial for society, but it would require reorienting our

current technological paradigm away from trying to substitute

for human cognition toward a paradigm where computers and

brains are complements3.

Key for the argument in this section will be to understand

the trade-offs involved between the functioning of a computer

in comparison to the brain. This might come as a surprise for

some as computers are often being seen and modeled following

the architecture of the brain. Indeed, seeing the computer as

the (better) version of the brain has a long history, going back

to the early beginnings of the computer age (Cobb, 2020, ch.

12). Yet, there are fundamental differences in the working of

a computer and a brain, beyond the physical characteristics of

both (inorganic vs organic matter).

3 My argument is di�erent from a general backlash against

technological progress and rather stresses the comparative advantages

each cognitive technology brings, see, for instance, the criticism

expressed here: https://datainnovation.org/2022/01/innovation-wars-

episode-ai-the-techlash-strikes-back/.

What adds to confounding both—computers and brains—is

the fact that key components with similar function are present in

both: Memory and circuits, i.e., structured connections between

elementary units that can recall previously stored information—

using transistors in the case of computers and neurons in

the case of brains. Both elements have been shown to be

essential for information processing. Indeed at a fundamental

level, all mathematical functions can be represented by a

suitable connection of basic logical gates, represented as neural

networks, which makes the comparison of computers and

brains particularly appealing (Hornik et al., 1989). Moreover,

progress in computing performance over the past decades

has been driven to a non-negligible part by improvements in

algorithm design, often inspired by a better understanding of

some of the key principles behind the workings of the brain.

The exponential development and use of neural networks, for

instance, was responsible for vast improvements over and above

what simple hardware developments would have made possible

(Sherry and Thompson, 2021).

As a consequence, many researchers consider that a

convergence of computers toward brains is underway.

Moreover, the rapid growth in applications around artificial

intelligence suggests that computers would eventually not only

work in a fashion similar to brains, they would even follow the

same information process, making predictions based on limited

information inputs (Friston, 2010; Agrawal et al., 2018). And

yet, a direct comparison reveals significant differences in terms

of performance and efficiency (see Table 1). In particular, a

trade-off becomes apparent regarding the energy consumption

and the precision/speed at which calculations are being carried

out: individual human neurons are rather slow and imprecise

when it comes to processing information. At the same time,

they turn out to be much more powerful than transistors in

computers, displaying much more complex patterns of activity

than a simple binary activation potential (Gidon et al., 2020).

On the other hand, computers can calculate at a significantly

higher speed and precision, even though most of them dispose

of less transistors and connections with much simpler activation

patterns4. Moreover, this higher precision and speed comes at a

significant price tag in the form of higher energy consumption.

Similarly, computers are significantly better at long-

term storage of information (memory), which can span

several decades, depending on the physical characteristics, the

rate of technological obsolescence and processes to transfer

information from one (digital) medium to another. In contrast,

humans have difficulties in recollecting precisely even personal

information, can easily be manipulated in what they remember

4 The hardware evolution continues to add significant amounts of

transistors every year. At the time of writing, the largest computer,

the Chinese-built supercomputer Sunway TaihuLight counted around

400 trillion transistors across all its CPUs. https://en.wikipedia.org/wiki/

Transistor_count.
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TABLE 1 Comparing (traditional) computers and brains.

Properties Computer Human brain

Number of basic units Up to 114 billion

transistors

∼100 billion neurons;

∼100 trillion synapses

Speed of basic operation 20 teraflops/s. <1,000/s

Precision 1 in 18.4 quintillion (for

a 64-bit processor)

∼1 in 100

Power consumption up to 215 watt ∼10 watt

Information processing

mode

mostly serial with 20

cores

serial and massively

parallel

Input/output for each

unit

1–3 ∼1,000

Signaling mode digital digital and analog

Note: Based on an Apple M1 Ultra chip in 2022. Flops, floating-point operations

per second.

Source: https://support.apple.com/en-am/HT213100 Herculano-Houzel

(2009), Luo (2015).

(Shaw, 2016) and “suffer” systematically from forgetting due

to the plasticity of the brain that adjusts to external input,

something a computer cannot do (Ryan and Frankland, 2022).

Several architectural differences between computers and

brains seem to explain a large part of the observed differences

in performance, albeit computer scientists are keen in trying

to close the gap regarding some of them. The question then

becomes: if the architectural differences can be closed, would

computers still perform better than brains where they currently

have their comparative advantages? In other words: would it not

be preferable to improve computers along the dimension where

they currently have an advantage rather than trying to emulate

the brain? At least from an economic point of view, such a trade-

off would call for a more careful assessment of the use of digital

tools depending on where their comparative advantages lie. In

the following, I focus on four differences that are relevant from

an efficiency point of view5.

A first difference, as noted in Table 1, stems from the

parallel structure of the brain in comparison to the mostly

serial way a computer functions. The massive expansion of

machine learning approaches in computer science demonstrates

that enormous efficiency gains can be achieved by parallelizing

calculations in the computer. Essentially, neural networks that

lie at the heart of recent progress in artificial intelligence use

layers of parallel nodes stacked one upon each other, similar

to the structure found in the brain, at least to a first order.

Researchers increasingly recognize, however, that it is not only

5 There are further di�erences that are less relevant for our

argument, such as embodiment. A good overview of the di�erences

between the brain and how artificial intelligence is being set up,

see https://www.technologyreview.com/2021/03/03/1020247/artificial-

intelligence-brain-neuroscience-je�-hawkins/.

the parallel structure but also the specific way in which neurons

are connected that explains performance differences (Luo, 2021).

Indeed, the importance of a particular network topology in

explaining this network’s function is currently an active area of

research and some of the insights are already being reflected in

the way neural networks are being set up in order to further

enhance their performance (Zambra et al., 2020). Related,

the brain seems to be hardwired for particular tasks that are

important for our social experience. For instance, our capacity

to recognize faces (Alais et al., 2021) or letters (Turoman and

Styles, 2017) seem to be hard-wired in our brains, whereas

computers need to learn this. Similarly, we all seem to benefit

from a universal grammar that allows us to learn language even

without ever being exposed to the full richness of a language, a

point made long ago by Noam Chomsky6. Such “pre-training,”

although increasingly used in ML-applications makes our brain

particularly energy-efficient if only less flexible.

A second difference lies with the particular way memory is

structured in the brain. For one, memory loss as discussed before

seems to play a significant role in enhancing a brain’s energy

efficiency by gradually removing information no longer needed

(Li and van Rossum, 2020). Moreover, rather than having a

fixed-size memory chip that stores all our information, memory

is distributed and stored dynamically. Information, therefore,

does not need to be shifted around and read out but is accessible

exactly where it is needed. This has inspired recent research

to develop integrated memory-computing circuits that allow

information being stored where calculations are taken place,

so called “mem-resistors” (Zahedinejad et al., 2022). So far,

this remains experimental and has not yet been successfully

implemented in large-scale computing but shows that significant

efficiency gains even in hardware design are still available.

A third, and for our argument most decisive difference

lies in the way information is being recorded in neurons

in comparison to computer bytes. Indeed, computers process

information in the form of small, fixed-sized chunks, so called

bytes, in binary format. Regardless of the specific computer

type, at any point in time during the operation, a significant

number of the individual bits that compose each byte are

active. In other words, computers use “dense representation”

of information. More importantly, every time such a bit loses

its action potential through a computing operation, energy is

being released. In contrast, neurons have been shown to operate

with sparse representations, where individual dendrites of a

neuron are being activated when a certain (small) percentage

of a large set of potential links is active, often less than

5 per cent (Ahmad and Scheinkman, 2016; Hawkins and

Ahmad, 2016; Hole and Ahmad, 2021). Not only do operations

on sparse representations use much less energy than those

6 https://thebrain.mcgill.ca/flash/capsules/outil_rouge06.html,

https://theconversation.com/our-ability-to-recognise-letters-could-

be-hard-wired-into-our-brains-83991
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of dense ones—most operations involve zeros—they are also

particularly robust against errors: Calculations by Hawkins and

Ahmad (2016) demonstrate that for typical synapses error rates

can reach 50 per cent without neurons losing their capacity

to properly identifying underlying patterns. Such robustness

against errors is an additional contributor for energy efficiency

as it avoids costly error correction of calculations that need

to be done on standard computing devices, in particular for

critical hardware.

Finally, while these architectural differences primarily point

to differences in the hardware, sparsity is also an important

issue regarding algorithmic differences between computers and

brains. As highlighted by Kahneman (2011), humans dispose

of two main modes of decision making: slow, optimizing and

calculating decision processes and fast, heuristic routines. The

latter might come with cognitive biases but allow for quick

decisions, in particular relevant in periods of stress and high

threats. Heuristics are typically domain-specific, which is why

their application to other domains induce cognitive biases by not

considering all relevant options (Gigerenzer et al., 2011). At the

same time, they are fast and energy-efficient. A role performed

by the brain in this regard is to identify the specific situation and

to mobilize the relevant resources for each decision problem.

In contrast, algorithms currently employed in computers will

systematically mobilize all available resources for any problem.

Integrating these considerations there are shifts toward the

use of more specialized CPUs that focus on particular tasks

with more efficiency. So far, however, this more modular and

specialized set-up has not reached the level of sophistication of

the brain.

Taken together, the specific advantage of computers lies with

fast, high precision calculations, such as those needed to design

high-tech devices or to search quickly through the available

library of human knowledge (or protein folding for that matter).

In contrast, human brains have evolved to respond to particular

challenges posed by our social environment in which empathy

and understanding social settings play a fundamental role. Here,

coordination, collaboration and adaptability to changing (social)

circumstances are key for (collective) success, a task that is

difficult for a computer to achieve as it is programmed for

a (fixed) number of tasks. A first result of this comparison

of the relative performance of computers vs brains, therefore,

is the complementarity rather than substitutability of brain

vs. computing power. This ties nicely with other research

indicating the importance of AI as a transformative force rather

than a disruptive one (Fossen and Sorgner, 2019; Carbonero

et al., 2021). It also implies that current attempts to generate

productivity gains by massively substituting labor for computers

will not lead to the expected outcomes. Rather it will lead to

a worsening of the energy bill of those companies that rely on

such technologies.

As a consequence, technological developments of digital

devices in general and AI-powered tools in particular suggest

an exponential rise in the ecological footprint under the current

technology paradigm (Jones, 2018; Thompson et al., 2020). A

simple projection of the growth in model size that are driven

by rising demands for precision shows that both the economic

and ecological costs would quickly become unsustainable (see

Table 2). As noted by the authors, this projection is a simple

illustration and the trajectory unlikely to be followed literally

as economic, financial and ecological constraints would prevent

it from happen. One area, where this can already be observed

regards applications around cryptocurrencies where several

jurisdictions have issued restrictions or outright bans for so-

called “mining” of currencies on their territory, mostly for

reasons related to the rising energy costs (with knock-on effects

on other activities in these countries).

Regardless of the limits to growth for specific applications,

a key challenge in promoting more efficient computing

procedures and in assessing which tasks can better be carried out

by humans rather than machines remains the proper assessment

of the energy consumption involved over the entire computing

value chain, from data collection, storage to machine learning

and data use (García-Martín et al., 2019; Henderson et al., 2020).

3.2. Information rules: Consequences for
market structure

A direct consequence of this high energy consumption is

a rising market concentration among AI producing companies

and a concentration of AI applications around the most

promising—i.e., most profitable—applications as shown in

Figure 2. One of the direct consequences of the rising economic

costs implied by the exponential increase in energy consumption

is a “narrowing of AI research” (Klinger et al., 2022). As

highlighted by the authors, this narrowing of AI research

is linked to a focus on data- and computational-intensive

approaches around deep learning at the expense of other

approaches in artificial intelligence that might be more easily

accessible by smaller research outlets and academic researchers.

Indeed, the ubiquitous availability of large, unstructured

databases and the exponential fall in computing costs since

the 1980s have contributed researchers to focus on a particular

branch of AI development, namely statistical and machine

learning at the expense of earlier attempts using symbolic AI

to program expert systems which are potentially more easily

accessible by a wider group of developers.

Related, narrowing AI research and rising ecological and

economic cost lead to market concentration, both in the

development and training of new (large) models (Bender

et al., 2021) and in related digital applications such as

blockchain applications in cryptocurrency markets, where

similar tendencies to oligopolistic concentration can be observed

(Arnosti and Weinberg, 2022). This should not come as a
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TABLE 2 Computational costs of deep learning.

Benchmark Error rate Polynomial Exponential

Computations

required

Environmental

cost (CO2)

Economic cost

($)

Computations

required

Environmental

cost (CO2)

Economic cost

($)

ImageNet

Today: 11.5% 1014 106 108 1014 106 106

Target 1: 5% 1019 1010 1011 1027 1019 1019

Target 2: 1% 1028 1020 1020 10120 10112 10112

MS COCO

Today: 46.7% 1014 106 106 1015 107 107

Target 1: 30% 1023 1014 1015 1029 1021 1021

Target 2: 10% 1044 1036 1036 10107 1099 1099

SQuAD 1.1

Today: 4.621% 1013 104 105 1013 105 105

Target 1: 2% 1015 107 107 1023 1015 1015

Target 2: 1% 1018 1010 1010 1040 1032 1032

CoLLN 2003

Today: 6.5% 1013 105 105 1013 105 105

Target 1: 2% 1043 1035 1035 1082 1073 1074

Target 2: 1% 1061 1053 1053 10181 10173 10173

WMT 2014

(EN-FR)

Today: 54.4% 1012 104 104 1012 104 104

Target 1: 30% 1023 1015 1015 1030 1022 1022

Target 2: 10% 1043 1035 1035 10107 1099 10100

Computations required in Gflops.

Source: Thompson et al. (2020), p. 14.

surprise as any market that requires large fixed investment

to enter will show signs of concentration. This does not

need to be a problem if alternative products and services are

available that are (close) substitutes, a situation of monopolistic

competition, which is at the heart of many models of economic

growth (Aghion and Howitt, 1992). However, the narrowing

of AI research suggests that the offer of such potential

close substitutes is also declining, which would indeed lead

to a concentration of the market as a whole. Indeed, the

tendency of digital technologies to lead to superstar firms that

dominate their market with knock-on effects on both down-

and upstream market power is increasingly well documented

(Coveri et al., 2021; Rikap, 2021).

But there is another force that pushes the data economy

toward concentration: the network externalities of data

collection (Jones and Tonetti, 2020). Indeed, individual data

has three characteristics that distinguish it from standard

goods and services: (1) its provision is (almost) costless

and often done as a byproduct of other activities (such as

purchasing a good online; Arrieta-Ibarra et al., 2018); (2) once

provided it can be shared and re-used without costs; and (3)

finally, its individual value is almost negligible other than

in some extreme cases (e.g., rare diseases). Only as part of a

larger database will individual data generate some economic

value, for instance in order to determine customer profiles

or applicants’ characteristics (Varian, 2018). Such network

externalities are known to lead to concentration effects as

has become obvious with the rising share of only a small

number of platform and social media providers on global

stock exchanges.

In principle, concentration due to network externalities

can be productivity enhancing, provided that the productivity

gains generated from data concentration are being shared

with platform users. This can happen, for instance when

platforms are price-regulated, a principle that has been applied

with previous network monopolies in telecommunication or

electricity distribution. In the case of data monopolies, this is

almost never possible as the use of many of these digital tools

is not priced and users pay these services through alternative

means, more difficult to regulate (e.g., exposure to commercials).

Alternatively, stiff competition by alternative platform providers

could help share these productivity gains more widely, but many

of the incumbent platforms have grown so big that they either

pre-emptively purchase potential competitors (e.g., Instagram in

the case of Facebook) or use predatory pricing strategies against

possible newcomers in order to limit their growth or reduce

entry altogether (as in the case of Amazon, see Khan, 2017). As

a consequence, productivity gains remain highly concentrated

among a few, ever larger firms that see their evaluations sky-

rocket. In contrast, the average company in OECD countries
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has barely experienced any (productivity) growth despite an ever

larger investment in digital assets (Andrews et al., 2015; Haskel

and Westlake, 2017). Indeed, a simple calculation can show

that these gains represented in the form of rising stockmarket

evaluations have macro-economic proportions: If the entire

stockmarket value of the five largest digital companies were to

be paid out as an indefinite annuity, US GDP would grow by

almost 1.1 per cent, a significant improvement7.

Distributional aspects of the rising use of AI do not only

appear at the macro-economic level, they also arise at the

micro- and the meso-economic level. A direct consequence of

the increased capacity of algorithms to treat large databases

is the possibility for much refined pricing strategies, so-called

individual pricing (or price discrimination). Such approaches

redistribute welfare gains from consumers to producers, which

can, under certain circumstances, be welfare-enhancing to

the extent that they allow to increase the overall volume of

production. Indeed, it can be shown that these circumstances

arise fairly easily, which would argue for a more relaxed stance

on such price discriminating strategies (Varian, 1985, 2010). On

the other hand, research increasingly demonstrates that with

the scaling of AI, these welfare-enhancing output expansion is

exactly what is lacking: Instead, customer discrimination is being

used to exclude certain socio-demographic categories from

being served. This is particularly problematic in applications for

human resources management, for instance, where automated

hiring tools often seem to apply overly strict criteria for selection,

thereby excluding large parts of the applicant pool (“hidden

workers,” Fuller et al., 2021). Often, this is being discussed

as algorithmic discrimination due to biases in historical

databases upon which these algorithms are being trained. More

profoundly, however, the reason for these welfare-reducing

effects of AI in such cases lies in the legal prerogatives to

prevent open discrimination, thereby setting incentives for firms

to restrict services to certain groups only.

Recently the debate has started to focus on the distributional

impact of algorithms at the meso-economic level, specifically

on issues arising from algorithmic collusion (OECD, 2017;

Calvano et al., 2020). In a traditional setting, pre-agreement

is often necessary in a market with only few players in

7 At the end of 2021, the fifth largest digital companies were

(by stockmarket valuation): Apple ($2.91 T), Microsoft ($2.53 T),

Alphabet/Google ($1.92 T), Amazon ($1.69 T), and Tesla ($1.06 T).

Assuming an annuity with an infinite time horizon paid out at the

historical average real return for US treasury bonds (around 2.47 per

cent p.a.), this would lead to a total annual pay-out of around $250 B or

slightly less than 1.1 per cent of US GDP in 2021 ($23 T). Stockmarket

valuations are taken from https://companiesmarketcap.com/, US GDP

comes from the Bureau of Economic Analysis: https://www.bea.gov/

news/2022/gross-domestic-product-fourth-quarter-and-year-2021-

second-estimate and historical (real) treasury bond rates have been

calculated on the basis of Jordà et al. (2019).

order to move from the welfare maximizing price level (the

“Bertrand oligopoly”) to a profit-maximizing but welfare-

reducing higher price level with lower output (the “Cournot

oligopoly”). Anti-trust regulators, therefore, spend significant

effort in documenting such written or oral commitments to

compete on quantities rather than on prices. In a world where

prices can be adjusted almost instantaneously and through

algorithms, such agreements are no longer necessary: algorithms

would learn from each others behavior and tacitly agree on

profit-maximizing pricing strategies (Ezrachi and Stucke, 2020).

There is substantial disagreement, however, as to whether

such tacit collusion has already been observed or could even

become a serious threat not only to income distribution but

to efficiency-gains to be obtained from AI (Dorner, 2021)8.

Evidence is available primarily from online platforms, such

as online drug sellers or airline ticket pricing (Brown and

McKay, forthcoming) but also retail gasoline market where

prices adjust frequently and increasingly through the use of

algorithms (Assad et al., 2020). Whether markets are prone

to algorithmic collusion might depend on the characteristics

of the product or service sold, including the frequency of

trades, the degree of transparency and the homogeneity of

products, besides the availability of algorithms that could

exploit such opportunities (Bernhardt and Dewenter, 2020).

Regardless of how widespread the phenomenon is today,

however, traditional anti-trust regulation will have difficulties to

identify such cases, precisely because of their tacit nature. There

is, therefore, a risk that scaling up the use of AI in determining

prices (and wages) will not only lead to further concentration

and rent seeking behavior, it will also significantly reduce

efficiency regardless of any labor displacement effects these

technologies might have. Some options exist to regulate firm

behavior through appropriate setting of fines and divestitures

but current examples involving social media platforms suggest

that such regulatory activism is likely met with strong resistance

(Beneke and Mackenrodt, 2021).

3.3. Why do we not see more productivity
growth?

The last aspect of our AI trilemma looks at the low

and declining productivity growth observed in most

advanced countries and major emerging economies. As

noted above, economists have long noted a productivity

puzzle between the apparent acceleration in technological

progress, specifically around digital technologies, and the

lack of observed productivity gains, at least at the national

level (Brynjolfsson et al., 2019). To understand this puzzle,

national productivity growth needs to be broken down into its

8 See also https://www.autoritedelaconcurrence.fr/sites/default/files/

algorithms-and-competition.pdf.
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components: Indeed, aggregate increases in productivity are the

product of productivity improvements at the firm or factory

level and the spread of these gains across the economy. Simply

put, productivity = innovation times diffusion. The question

therefore becomes twofold: Is the lack of observed productivity

gains due to a failure of the digital economy and AI to push

productivity at the individual firm level or is it related to a

failure of such gains to diffuse through the economy more

broadly. The answer researchers have given so far is: problems

reside at both ends and are possibly linked.

At the firm level, the introduction of new technologies in

general and AI in particular has always been confronted with

a necessary re-organization of work processes (Dhondt et al.,

2021). As such re-organization takes time and energy, a J-curve

effect arises: Each new technology requires upfront costs in the

form of restructuring that might actually depress productivity

and firm profitability. Once these adjustments have successfully

taken place, however, productivity will rise above the level at the

start of the adjustment process (Brynjolfsson et al., 2021). At the

firm level, evidence is indeed emerging that the recent surge in

patenting around artificial intelligence and robotisation has led

to a global increase in firm level productivity, especially among

SMEs and in services (Damioli et al., 2021). Research specifically

for the United States seems to suggest, however, that effects of

AI are particularly strong in large firms that patent significantly

(Alderucci et al., 2020). Looking at productivity spillovers, on

the other hand, Venturini (2022) suggests that at least during

the early periods of the transition toward automation based on

AI and robotics, significant spillovers might have contributed

to the observed productivity increases. In other words, despite

increases in productivity at both the firm and the sectoral level

that were driven by AI and robotization, aggregate apparent

labor productivity growth decelerated, suggesting that other

factors must have been holding back the possible positive

contribution of AI on growth.

One possible factor might lie in the restructuring of

production chains. Indeed, as highlighted by McNerney et al.

(2022), as economies mature, production chains normally

become longer, which increases their capacity to generate

aggregate productivity growth from individual, firm-level or

sectoral improvements in productivity. However, over the last

15 years, global trade growth has stalled, suggesting at least a

stagnation if not shrinking of the length of production chains,

which would suggest a loss in the capacity of AI to generate

productivity growth at the aggregate level. Unfortunately, the

evidence in McNerney et al. (2022) stops in 2009 but suggests

that some of these dampening effects of slow global trade growth

might indeed have started to appear toward the end of their

observation period.

Closer to the argument developed here, the narrowing

of AI research suggests another possibility, following Zuboff

(2019): Indeed, the rapid increase in AI applications might be

concentrated around surveillance software and human resources

management tools that impact workplace organization more

than it contributes to overall productivity increases. Part of the

restructuring induced by such software impacts not so much

the overall innovative capacity of firms but rather the type of

innovation carried out, with little impact on firm profitability

and employee output. In other words, rising investment in this

type of AI focused on HR management helps more with overall

information processing and incentive provisions than it does for

value creation, which is why firm level studies suggests that only

some firms seem to benefit from these tools.

At the macro level, another factor limiting aggregate

productivity gains from AI is explored by Gries and Naudé

(2020) expanding on Acemoglu and Restrepo (2019) and

analyzing an endogenous growth model. The authors analyse

the impact of AI-induced automation of tasks rather than

entire jobs, demonstrating that regardless of the elasticity

of substitution between AI and human labor, the aggregate

labor income share falls, with adverse consequences for

aggregate demand and productivity growth. When the

elasticity of substitution is high, the displacement effect is

always greater than the reinstatement effect of new tasks

(Acemoglu and Restrepo, 2019). However, Gries and Naudé

(2020) show that even in the case when the elasticity of

substitution is low, the reinstatement effect fails to compensate

for labor displacement in an endogenous growth setting

provided that the benefits from AI are heavily concentrated

among capital owners, a direct consequence from the

distributional aspects of AI discussed in the previous section.

In contrast to previous waves of automation, therefore, the data

economy generates highly concentrated benefits that do not

generate enough demand spillovers to push up growth on a

broad basis.

A last factor, intimately related to the distributional

consequences of the data economy concerns its impact

on the degree of market competition, a point stressed by

Aghion et al. (2021). Indeed, Schumpeterian rents arising

from innovation such as AI need to be gradually eroded

through the entry of new producers of highly substitutable

goods and services in order to allow for a wide diffusion

of productivity gains. This is the essence of Aghion and

Howitt (1992)’s original work on creative destruction and

subsequent empirical evidence. As demonstrated by Hidalgo

and Hausmann (2009) and Pinheiro et al. (2021) when such

growth models are prevalent in a large range of unrelated sectors

they lead countries on a path of high and persistent economic

development. In this case, monopolistic competition coupled

with creative destruction ensures the continued upgrading

of productivity across a broad range of sectors, a model

that was followed broadly during the first two waves of

industrial revolutions. However, with the arrival of digital

capitalism and data markets, the data rents generated by

platform providers and AI innovators only partly diffuse

through the economy, thereby lowering labor income shares
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and aggregate demand, a trend observed since the arrival

of the computing revolution in the 1980s that continues

until today.

This ties well with another observation that has puzzled

economists for some time: The decline in business creation

and start-up activity over the past two decades (Bessen, 2022).

Indeed, the trend toward rising market power across the

globe is well documented, following directly from a lack of

market contestability by smaller, younger firms (Eeckhout,

2021). As Bessen (2020) demonstrates, this trend toward

industry concentration can be directly linked to the rise in

the data economy and the related growth in proprietary

information technology. Such industry concentration, even

if driven by innovative products and services, are not

without adverse consequences for aggregate productivity growth

(De Loecker et al., 2020).

This then closes the loop of the AI trilemma. Despite the

potential of creating substantial productivity gains at the firm

level and some evidence for productivity spillovers, the potential

for a broad-based increase in aggregate productivity is limited

by the adverse distributional consequences of the way the data

economy functions. Empirically, this shows up in a widening

productivity gap between frontier firms and the rest (Andrews

et al., 2015). At the same time, the high energy consumption

not only limits the societal benefits of this technology; it

is itself partly responsible for the high concentration of AI

providers and a narrowing of AI applications. In this regard,

the suggestions put forward by some observers to alter the

regulatory environment of the data economy, for instance by

modifying current regulation on intellectual property rights

might not be sufficient to address the trilemma as presented here

(e.g., Karakilic, 2019). We will see in the next section that solving

the AI trilemma requires a more encompassing approach that

targets the specific benefits that a widespread adoption of AI can

have by mitigating its adverse ecological and social costs.

4. Solving the AI trilemma

Dissecting the underpinnings of the AI trilemma allows

an understanding of how to address it. Key to any policy

or regulatory intervention is that the trilemma is specific to

the current technological paradigm under which the digital

economy develops, not an inherent characteristic of the

technology. Such paradigms are subject not only to the

physical characteristics of a specific technology but also to the

institutional framework under which the technology is being

developed (Dosi, 1982; Bassanini and Ernst, 2002; Nightingale

et al., 2008). Specifically, as argued in the previous section,

the current technological paradigm is one of a supply-push,

where technology develops mostly through individual company

strategies. In this section, I argue that to overcome the AI

trilemma a switch to a demand-pull technological regime

is necessary where technology develops through a deliberate

shift in the institutional framework geared toward applications

beneficial from a societal perspective.

In the following, I offer three approaches to address the AI

trilemma, each one targeting one specific axis of the trilemma

as highlighted by Figure 4. What follows from the discussion

in the previous section is that breaking the trilemma requires

one of three things: an orientation of technological development

toward complementary, efficiency enhancing innovations; a

more equitable distribution of innovation rents; or a more

widespread diffusion of productivity gains through restoration

of competitive markets.

A first approach uses standard public economics: If the

current technological regime under which AI development

operates produces externalities (environmental, social, etc.),

these need to be internalized through regulatory or institutional

changes, for instance through changes in the corporate tax

code or by strengthening labor market institutions. A second

approach considers direct interventions to orient technological

development through policy action into applications with high

societal value that can lift productivity growth sufficiently to

justify the additional energy consumption, i.e., an approach that

will lead to an overall reduction in total resource consumption.

A final approach focuses on the concentration dilemma,

addressing the public goods problem of the current regime

of digital technologies. The following Figure 5 summarizes the

solutions for solving the AI trilemma that are being discussed in

the following.

4.1. Solving the energy-concentration
dilemma: Shifting the energy-labor
balance

Addressing the AI trilemma faces two interconnected

challenges: (i) steering technological progress into a direction

that is at least neutral and ideally complementary to jobs

(Mazzucato, 2021) so that the introduction of new machines

strengthens the demand for labor; and (ii) ensuring that

technological progress in general—and the increasing use of

AI in particular—reduces its ecological footprint rather than to

increase it (Acemoglu et al., 2012). However, as discussed in

much of the literature on environmental transition, these two

objectives often conflict, not least because the investment in new,

environmental technologies requires time to allow for resources

to be fully re-allocated. Moreover, many jobs in industries that

have a heavy ecological footprint are often well-paying jobs for

workers with less than graduate degrees (Montt et al., 2018). In

other words, our AI trilemma induces a policy trade-off between

better jobs and more energy efficiency, with both transitions

possibly coming at the cost of a—at least—temporary slow-down

or even reduction in productivity growth.
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FIGURE 5

Solving the AI trilemma.

Here we want to suggest an alternative adjustment path

that can tackle these problems directly and still solve the AI

trilemma. This is made possible by the particular characteristics

of AI, which did not exist to the same extent with previous

forms of technological change, including technologies such as

robots. For this, we need to extend our view on aggregate

production to not only include energy but also organizational

capital broadly understood:

Y = A (K, L,E,O)

where input factors are noted as K for capital, L for labor, E

for energy, and O for organizational capital. Such extensions

have a long history in economics, especially in firm-level

empirical analysis (see, for instance, Atkeson and Kehoe,

2005). At the macro-economic level, however, improvements

in organizational capital, O, are typically subsumed under the

heading of “total factor productivity,” without clarifying whether

these occur at the micro-, meso- or macro-economic level.

Current conceptualisations focus on AI as a technology that

either replaces or complements jobs similar to previous waves

of automation (Fossen and Sorgner, 2019). Notwithstanding

the fact that economic analysis has increasingly focused on

the impact of technology not on the individual job but on

the underlying tasks that are being performed by a job (Autor

et al., 2003, 2006; Autor, 2013; Acemoglu and Restrepo, 2019),

AI is not considered to be distinct from previous forms of

technological progress in this respect. However, as discussed

in the opening part of the previous section, one specificity

of AI is its capacity to process information in order to make

predictions, for instance regarding the dynamics of a particular

system. At the micro-economic level, such predictions can help

an individual worker, for instance, in respecting a certain order

in which to process the workflow by giving recommendations

about the next step. Similarly, in a research environment, AI

has been used to facilitate the discovery process of new drugs,

thereby improving the productivity of the innovation process. At

the sectoral level, AI can and has been used for dynamic pricing

purposes (Calvano et al., 2020). Both can be thought of being

complementary to labor, in the sense of a traditional production

function. At the macro-economic level, these considerations add

a new dimension. Here, applications exist that are not readily

interpretable as either complements or substitutes for labor.

For instance, AI tools are increasingly being used to improve

the management of waste and electricity networks or help with

improving the use and utilization of transport systems, including

through inter-modal connectivity (see also the discussion in the

next sub-section). None of these activities are directly linked to

human labor (unless, for instance, one considers the commute

to and from work as part of the aggregate production function,

which typically it is not). Most of these applications of AI would,

therefore fall into the category of innovations to improve total

factor productivity.

Such innovations focused at improving resource efficiency

are unlikely to have any direct employment effects but might

impact comparative advantages of different sectors as they
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impact the way capital and labor is being used. Applications

to improve waste management (e.g., in Barcelona), to help

municipal officials to identify more rapidly infrastructure

shortcomings (e.g., Amsterdam) or to improve the management

of traffic systems (e.g., Delhi, Kuala Lumpur) reduces overhead

costs. As such, they do not substitute for any current or

future jobs (other than the engineers developing the software).

However, to the extent that applications help to improve

resources efficiency in particular industries or sectors, with

effects on the comparative advantages of this industry both

domestically and internationally, resources will be reallocated

across sectors with implications for jobs and growth (Rentsch

and Brinksmeier, 2015). Similarly, to the extent that cities benefit

from AI differently, more advanced municipalities are likely

to attract new businesses and jobs, leading to a geographical

reallocation of resources. For themoment and to our knowledge,

however, there is no good empirical understanding of the extent

to which AI can help in improving resource efficiency in the

aggregate, at the sectoral level or spatially, which precludes a

proper quantitative assessment of this particular dimension of

improvements in AI.

Such indirect effects of efficiency improvements on labor

markets can be complemented by specific interventions that

help strengthening labor to be complementary rather than

a substitute. In particular, there are three areas where

policy makers and social partners alike can help to steer

technological change to become complementary to workers

rather than substitutes:

• A first and most direct way of intervening to prevent

excessive automation is via R&D incentives and tax

credits: As highlighted in Figure 2, investment in AI is

highly concentrated among a few areas, mostly associated

with excessive automation (Acemoglu and Restrepo, 2019,

2020). Such interventions are always possible and might

bring about a more balanced developed as regards the

evolution of AI and its social impact. However, from the

discussion of the AI trilemma, it follows that a broad-

based support of advances in AI that are complementary

to labor might not necessarily solve the energy problem

at the same time. Rather, as with previous waves of

technological progress, automation can come at the cost of

excessive use of energy. In other words, direct interventions

for AI development need to focus simultaneously on

their resource-efficiency and labor-complementarity aspect

in order to be effective when trying to address the

AI trilemma.

• A second intervention works through reducing the tax

burden on labor that has specifically in the US led to strong

incentives for automation (Acemoglu et al., 2020). Instead,

a shift of the tax burden away from labor toward energy

consumption can address both the adverse resource and

labor impact of AI. Indeed, as discussed by Ciminelli et al.

(2019) an often overlooked channel of a revenue-neutral

tax reform toward consumption taxes is that it strengthen

labor supply incentives at the lower end of the income

distribution, thereby partly correcting for its regressive

income effect.

• Finally, the most indirect and challenging way to steer the

degree to which a resource-efficient evolution of AI can

produce positive outcomes on jobs and working conditions

is by strengthening labor market institutions, such as

work’s councils that influence technological choices at the

firm level (El-Ganainy et al., 2021). Such institutional

arrangements have been shown to affect the way in

which technologies are being applied and implemented

at the workplace level. In the scenario envisaged here,

activities would develop in sectors and occupations that

would benefit from both AI-triggered resource efficiency

improvements and institutional comparative advantages in

favor of cooperative labor relations (Ernst, 2005).

A first approach to address the AI trilemma, therefore, lies

with the necessity to steer AI developments in the direction

of improving total factor productivity as an aspect for which

AI is particularly suited and where its potential to substitute

for labor is minimized, simply because so far none of these

network functions are fulfilled by human labor. Complementary

interventions are needed, however, to address possible adverse

effects of resource-efficiency enhancing AI applications in labor-

intensive occupations and sectors. In the following, we discuss

how the particular network complementarities implied by AI

might challenge such an approach.

4.2. Solving the productivity-energy
dilemma: Incentivize the use of network
applications

Not all AI applications are affected to the same extent

by the AI-trilemma. Especially the already mentioned network

applications have the potential to perform particularly well

when it comes to lower resource consumption and improve

inclusivity. Well-trained AI routines, for example regarding

electricity management or water consumption in agriculture

already reduce the burden on the environment today and

offer possibilities to address climate change effectively (see,

for instance, Rolnick et al., 2023). Digital technologies are

likely to play a key role in helping our societies to adapt

to rising climate risks by making critical infrastructure more

resilient (Argyroudis et al., 2022). Furthermore, such solutions

also offer opportunities for cost-effective knowledge transfer to

developing countries, where there is still a great need to catch up

onmodern technologies adapted to local conditions. Companies

such as Google and Microsoft have already discovered this
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need and have begun to establish their own research centers

in some developing countries. And local solutions, especially

in agriculture, also show potential productivity gains in these

countries (Ernst et al., 2019). In the following, we briefly discuss

three areas where the networkmanagement of AI tools can prove

of particular support: energy management, traffic management

and remote work.

Energy management is particularly high on the agenda

for AI applications. Managing complex electricity grids across

different jurisdictions (particularly acute in Europe) and diverse

energy sources as energy production is increasingly ensured

by renewables pose formidable challenges to grid management.

Failure for proper management and anticipation of external

(weather) events can lead to grid outage, as experienced in

Texas during the winter of 2020/21, for instance. Combining

Internet of Things devices and smart meters into smart grids

has been a focus of development in the energy industry (Ahmad

et al., 2022). Beyond grid management, preventive maintenance

and smart consumption are also major areas of research and

development that can help both in reducing risks of outage

and overall consumption9. Power consumption management,

in particular, has become an active area of research for tech

companies in their attempt to reduce their own carbon footprint

and is likely to contribute to a substantial reduction of the

energy-intensity of AI models10.

Mobility management as part of a smart city policy is

another area of high potential for digital tools to address

the AI trilemma. Logistics management is an area where

modern communication networks and complex supply chain

management is already making use of AI-powered tools11.

Similarly, applications regarding modal interconnectivity for

individual transportation receive increasing attention, especially

in areas where transport supply elasticity is limited. These

applications are meant to facilitate personal traffic in dense

urban settings that provide alternative modes of transportation

for the same route. Managing such traffic networks through AI-

powered tools will allow to improve traffic fluidity and manage

limited infrastructure capacity more effectively (Nepelski, 2021).

A final area to be considered here is the role AI can

play in our current transition to a higher share of remote

work. Advanced economies, in particular, have demonstrated

surprising resilience with respect to requirements to work from

home that came with the pandemic-induced lockdowns in

2020/21. Dubbed “potential capital,” the large share of digital

9 https://www.xcubelabs.com/blog/applications-of-ai-in-the-

energy-sector/

10 https://ai.googleblog.com/2022/02/good-news-about-carbon-

footprint-of.html

11 https://www.technologyreview.com/2021/10/20/1037636/

decarbonizing-industries-with-connectivity-and-5g/?mc_cid=

98f3a8206d&mc_eid=59ed455432

infrastructure and personal computing devices allowed a large

part of the workforce to continue their economic activities and

limit the economic outfall of the health crisis (Eberly et al.,

2021). As economies are recovering from this shock, remote

work will remain a reality at least for part of the workforce,

creating challenges in terms of scheduling, information sharing

and networking (Kahn, 2022). In particular the development and

maintenance of personal and professional ties that are important

for economic advancement have been shown to be critically

affected by remote work (Yang et al., 2022). So far, gains from

going remote have been meager. Both business leaders and

employees are still trying to figure out how best to make use

of the new flexibility that working from home offers (Cappelli,

2021). Here again, AI tools can prove an important answer

to solve this challenge at least partially, developing complex

scheduling software and helping to maintain information

integrity across highly distributed networks of employees.

Taken together such applications make use of the potential

of AI tools to directly address questions of aggregate resource

efficiency rather than substituting capital for labor, thereby

bringing us closer to resolving the AI-trilemma.

4.3. Solving the
concentration-productivity dilemma:
Redistribute rents

As the previous discussion makes clear, these changes

require adjustments not only in the way technology is being

developed but also in the institutional and policy settings under

which innovators and businesses operate. In concluding this

section, three approaches are being discussed that have the

potential to address both the technological and the distributional

aspects of the AI trilemma:

A first, traditional answer is to try to use taxes to better

capture capital gains, while at the same time shifting the tax

pressure from labor back toward capital. This has often been

discussed in connection with a robot tax (Merola, 2022). On

the one hand, it would allow the enormous profits of digital

companies to be captured. On the other hand, tax fairness would

be restored, which could relieve the factor labor and ease the

pressure toward rationalization and job losses. However, in a

global economy, governments have tight limits on how much

they can tax internationally operating companies. Attempts to

extend taxation to the consumption of digital services instead

of profits are being resisted by those countries that are home to

a myriad of large, digital companies. Moreover, as mentionned

before, the tax burden needs to shift away from labor and toward

energy consumption if the trilemma is to be properly addressed.

A second, more innovative approach is to ensure greater

competition between digital enterprises, for instance by making

it easy to transfer data between platforms using uniform

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2022.886561
https://www.xcubelabs.com/blog/applications-of-ai-in-the-energy-sector/
https://www.xcubelabs.com/blog/applications-of-ai-in-the-energy-sector/
https://ai.googleblog.com/2022/02/good-news-about-carbon-footprint-of.html
https://ai.googleblog.com/2022/02/good-news-about-carbon-footprint-of.html
https://www.technologyreview.com/2021/10/20/1037636/decarbonizing-industries-with-connectivity-and-5g/?mc_cid=98f3a8206d&mc_eid=59ed455432
https://www.technologyreview.com/2021/10/20/1037636/decarbonizing-industries-with-connectivity-and-5g/?mc_cid=98f3a8206d&mc_eid=59ed455432
https://www.technologyreview.com/2021/10/20/1037636/decarbonizing-industries-with-connectivity-and-5g/?mc_cid=98f3a8206d&mc_eid=59ed455432
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ernst 10.3389/frai.2022.886561

standards and protocols. Some solutions also propose data

ownership in order to provide a monetary incentive for those

who make their data available by using the platforms. So

far, however, none of these solutions are fully developed and

practicable yet. Moreover, only very few users can derive

relatively large profits from such approaches, while the vast

majority of them would have little to expect. The incentive to

switch platforms or to reap monetary rewards would be too low

to solve the AI trilemma.

A final, little debated solution is to set up a sovereign digital

wealth fund that participates widely in the digital economy.

Currently, sovereign wealth funds (SWF) have been set up in

relation with tangible public goods such as natural resources.

Leaving the exploitation of such resources to private companies,

sovereign wealth funds invest in these activities to the benefits

of a public shareholder, such as the government. This allows the

benefits of such public goods to be passed on to a broad group

of people. However, instead of feeding off oil wells (as in the

case of Saudi Arabia, Norway) or fish stocks (as in Alaska), a

Sovereign Digital Wealth Fund would be financed by taxes and

new debt, in order to generate returns by investing in a broad

fund of innovative digital companies. At the same time, such

a fund, provided it invests deeply enough, would also be able

to directly influence the operative business in market-dominant

companies in order to prevent the exploitation of such positions.

Similarly, the fund could also aim at exerting influence at the

micro level to ensure that ethical and ecological standards are

met when using AI. Existing SWFs have increasingly invested in

technology sectors, without, however, taking an active stance as

regards the technological development nor the economic impact

of the companies they have invested in Engel et al. (2020).

None of the solutions outlined here will be sufficient in

themselves to resolve the AI trilemma. National solutions often

do not provide sufficient guarantee that all market participants

will actually be offered the same conditions. International

approaches, especially in the area of taxation, are slowly gaining

acceptance, but often only at the lowest common denominator.

Innovative solutions such as data ownership require institutional

changes, which will most likely take some time to be established

and enforced. However, an approach that addresses all three

proposed solutions should make it possible to find initial

answers to the AI trilemma while at the same time offering

new, individualized proposals that optimize the potential that

AI holds for jobs, income and inclusiveness. The future of work

demands not only technological innovations, but also political

and institutional ones.

5. Conclusion

The article introduces and discusses the AI sustainability

trilemma, the impossibility to achieve ecological sustainability,

(income) equality and productivity growth under the current

technological paradigm. It presents arguments as to why

the energy-intensive nature of current computing capabilities

combined with strong network externalities leads to market

concentration, narrow AI research and weak (aggregate)

productivity gains. The paper also discusses possible answers

to this trilemma, demonstrating the potential for directed

technological change toward network applications, for instance

in electricity and mobility management, as a way to improve

total factor productivity that will lead to a lower overall

ecological footprint and higher aggregate productivity without

worsening inequality. Such directed technological change

requires, however, both technological and institutional changes

to take place in order to reduce the tendancy of the digital

economy toward market concentration.

Much of the potential to overcome the AI trilemma

remains speculative at this stage, simply because the overall

impact of directed technological change has not been tested or

implemented at scale. Some of the institutional shifts required

are likely to be resisted by strong incumbents that might

lose their market dominant positions. At the technological

level, individual applications show the potential to address the

shortcomings of the current direction of technological change

but real-world examples are lacking at the time of writing

of this article. As new applications are being developed and

implemented at scale, careful empirical research is necessary

to assess the extent to which they can truly address the AI

trilemma and possible additional policy changes required to

fully benefit from the technological evolution around digital

tools and artificial intelligence. Policy shifts that encourage less

resource use and reduces (tax) penalties on hiring labor can

help induce the development of more socially beneficial digital

tools. A more active stance, for instance, via the establishment

of Sovereign Digital Wealth Funds similar to existing models on

natural resources management should be used to accelerate the

transition toward a new technological paradigm that overcomes

the AI trilemma. The switch from a supply-push to a demand-

pull technological regime as argued for in this paper requires

further analysis regarding the specific applications that can help

overcome the trilemma. In particular, beyond the technological

feasibility of these changes, the specific political and institutional

roadblocks need to be carefully identified and addressed,

opening yet another interesting research avenue.
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