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Machine learning techniques for crop genomic selections, especially for

single-environment plants, are well-developed. These machine learning

models, which use dense genome-wide markers to predict phenotype,

routinely perform well on single-environment datasets, especially for complex

traits a�ected by multiple markers. On the other hand, machine learning

models for predicting crop phenotype, especially deep learning models,

using datasets that span di�erent environmental conditions, have only

recently emerged. Models that can accept heterogeneous data sources, such

as temperature, soil conditions and precipitation, are natural choices for

modeling GxE in multi-environment prediction. Here, we review emerging

deep learning techniques that incorporate environmental data directly into

genomic selection models.
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1. Introduction

Production of sufficient food for the increasing world population is a major concern.

Industrialization and development of infrastructure in developing countries are causing

a shortage of land for growing populations in urban areas, which leads to unplanned

expansion of cities into agricultural land (Azadi et al., 2011). Soil erosion due to water,

wind, or excessive use for cultivation affects the topsoil and fertility, thus reduces crop

production. A large amount of surface and groundwater has already been used, causing

a decrease in groundwater level (Van Meijl et al., 2018). Global temperature is increasing

and heat waves have become more frequent, which leads a significant decrease in crop

production (Bourgault et al., 2018; Nawaz and Chung, 2020). Though several regions

will benefit from the effect of climate change, especially because of the increase in

temperature, overall food production will decrease by 2050 (Van Meijl et al., 2018).

These problems will increase the price of the food and people, especially in

developing countries, will suffer from hunger and deficiency in nutrition, causing low

growth in children or low weight (Linehan et al., 2012; United Nations, 2019; Nawaz

and Chung, 2020). It is projected by the UN that by 2050, the world population will

reach 9.7 billion and to accommodate this vast number of people, a large amount of new

agricultural land will be needed (Searchinger et al., 2019). This will lead to the “more

people, less agricultural land" problem (United Nations, 2019; Nawaz and Chung, 2020).
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To ensure food security and keep the food affordable to

everyone, by 2050, we will need to increase our food production

by 50% of our current production (Nawaz and Chung, 2020).

To face the challenge of food production in the future,

selection of varieties with desired phenotypes from a collection

of varieties of a crop is essential to breeders, as the right

selection can lead to improvements such as drought resistance,

biotic and abiotic stress resistance, yield improvement and

disease resistance (Varshney et al., 2017). While the amount of

water, fertilizer, pest control, and sound production practices

contribute to the environment for the plant, the genotype of

the plant defines the ability to produce a desired phenotypic

value within that environment (Milton, 1979). Thus, as

environmental factors and breeding practices are standardized

and measured, it is vital to create improved varieties for

that environment.

Genomic selection (GS), first defined by Meuwissen

et al. (2001), is a marker-assisted selection method that

uses dense whole-genome molecular markers to improve

the quantitative traits of an organism such as a crop or

livestock by identifying the top germplasms. That is, GS is

a computational tool for choosing the most advantageous

individuals from a set of varieties and has the potential

to save money and time by accelerating improvements

to crops or livestock (Acquaah, 2009; Varshney et al.,

2017).

GS for single environment trials employs GS to identify top

individuals to create a new variety for a specific environment

(Meuwissen et al., 2001; Heffner et al., 2009; Crossa et al.,

2017; Jubair et al., 2021). If the environment changes, single

environment GS does not guarantee that the new variety will

have the desired outcome in that new environment (Oakey

et al., 2016). GS for multi-environment trial is a generalization

that is able to identify top organisms even if the environment

is new (Washburn et al., 2021). In this survey, we focus

on applications of deep learning in both single and multi-

environment trial and analyze the differences between single

environment and multi-environment models. In particular,

we are interested in those multi-environment models that

incorporate data such as hourly temperature, rainfall or other

time series data from environments into deep learning models

to improve prediction. The reader may wish to consult existing

reviews of genomic selections for material focused on statistical

models of single environment (Wang et al., 2018; van Dijk

et al., 2021; Anilkumar et al., 2022) and multi-environment

trials (Tong and Nikoloski, 2021; van Dijk et al., 2021).

Additionally, several reviews cover fully the use of machine

learning models for single environment trials (Montesinos-

López et al., 2021; Tong and Nikoloski, 2021; van Dijk et al.,

2021; Anilkumar et al., 2022; Danilevicz et al., 2022). Xu

et al. (2022) also review GS and describe the potential for

the use of multiple sources of data beyond genomic data,

including enviromental data. This includes the use of machine

learning models. In contrast, multi-environment deep learning

approaches are an emerging area that enable detailed weather

data to be incorporated directly into the model (Khaki and

Wang, 2019; Khaki et al., 2020; Lin et al., 2020; Shook

et al., 2020). Our survey focuses specifically on recent works

involving this latter class of models that employs genomic and

weather data together to inform deep learning models and

predict phenotypes.

Traditionally, we can identify two broad approaches to

GS. Linear methods such as BLUP and variants (Burgueño

et al., 2012; Bandeira e Sousa et al., 2017; Cuevas et al., 2017,

2019; Ferrão et al., 2017; Howard et al., 2019; Millet et al.,

2019) explicitly model the phenotype in terms of contributions

from different factors, including pedigree, individual markers

or distinct site-years. Typically, these models perform well for

additive traits due to the linear nature of the models. On

the other hand, machine learning models, such as Random

Forests (RFs) (Holliday et al., 2012; Ali et al., 2020; Sawitri

et al., 2020), Support Vector Machines (SVMs) (Ogutu et al.,

2011; Wang et al., 2019) and Neural Networks (NNs) (Jubair

and Domaratzki, 2019; Pérez-Enciso and Zingaretti, 2019)

can model traits in non-linear but typically opaque ways.

For a complete introduction to machine learning and deep

learning (DL), see Emmert-Streib et al. (2020) or Dey (2016).

In this paper, our focus is on the deep learning methods in

this area.

Crops respond differently in different environmental

conditions (Millet et al., 2019), an effect known as genome

by environment interaction (GxE). This leads to differences in

production quantity or quality (Cuevas et al., 2017). In a single

environment trial, it is typically assumed that the environment

is constant, thus, there is no effect of environment on genotypes.

A number of deep learning methods for single environment

trials have been published (McDowell, 2016; Rachmatia et al.,

2017; Ma et al., 2018; Jubair and Domaratzki, 2019; Zingaretti

et al., 2020; Jubair et al., 2021; Montesinos-Lopez et al., 2021).

These methods differ in their deep learning architectures and

focus on how they capture the genetic information. Multi-

environment models can be thought of an extension of single

environment trial as the models consider the interaction

between environment and genome. Though multi-environment

trials are an extension of single-environment GS, there are

very few deep learning methods that have been developed for

this problem (Montesinos-López et al., 2018, 2019b; Khaki

and Wang, 2019; Khaki et al., 2020; Lin et al., 2020; Shook

et al., 2020) that take GxE interaction in crops into account

because of the complexity in incorporating the environmental

interaction into the model and lack of complete environmental

data. In the past 3 years, new research has demonstrated the

potential of incorporating environmental information into deep

learning models for GS (Khaki and Wang, 2019; Khaki et al.,

2020; Lin et al., 2020; Shook et al., 2020). This survey focuses

specifically on deep learning methods for integrating weather
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TABLE 1 An example of genotyped data.

Genotype M1 M2 … … MD

Geno1 1 –1 –1

Geno2 0 1 1

. . . 0 -1 . . . . . . 1

. . . 0 0 . . . . . . 1

GenoN –1 0 . . . . . . 0

In the column header, M means markers. This dataset contains D markers and N

genotypes. Thus, each line is represented by D markers. Each of these markers can have

one of the three values: 1, 0, and –1.

data into GS. The ability to integrate heterogenous data into

a model is a known strength of machine learning models in

general, and deep learning models in particular. However, this

research is one facet of a large, active research community that

seeks to improve GS accuracy, using various models, through

integration of types of environmental data (Costa-Neto et al.,

2022; Montesinos-López et al., 2022; Putra et al., 2022; Song

et al., 2022).

In this survey, our aim is to provide a comprehensive

overview of genomic selection process with deep learning that

starts from data and ends with creating a new variety for both

single and multi-environment trial. To do this, (i) we provide

an overview of different data of GS and how these data need to

be processed, (ii) discuss popular components of deep learning

models typically employed in GS and then (iii) review existing

deep learning architectures and motivation behind them for

both single and multi-environment trials.

2. Datasets for GS

Crop organisms are usually genotyped using high

throughput sequencing technology that uses a large number of

genomic markers to cover the whole genome of that organism

(Goddard and Hayes, 2007; Heffner et al., 2009; Crossa et al.,

2017). These markers are usually represented by categorical

values based on their zygosity or sequencing technology. For

example, a diploid organism is usually represented by 1, 0

and −1 where 1 and −1 represent homozygous allele and 0

represents heterozygous allele. If DArT assays are used for

sequencing, SNPs are represented by binary values, indicating

a gene’s presence or absence (Crossa et al., 2016b; Jubair and

Domaratzki, 2019). Table 1 shows an example dataset.

As the data may contain uninformative markers and

missing values, the genotyped data often need pre-processing.

The preprocessing steps may involve removing uninformative

markers, imputation of missing values and representing the

features in some other forms. If the minor allele frequency≤ 5%

(Ma et al., 2018; Jubair et al., 2021) or more than 30% values are

missing, then the marker is usually removed as those markers do

not bear any relevant information. To replace themissing values,

one popular imputation techniques is k-nearest neighbor. For

example, at first, the k-nearest genotypes of the genotype of

interest are identified. From those genotypes, the missing value

is replaced by the most frequent value for the specific marker.

Most neural networks consist of a linear equation that

multiplies a weight vector with a feature vector (LeCun et al.,

2015; Dong et al., 2021). If a feature is represented with a

zero, it means the feature will not have any influence on final

outcome as the resulting multiplication between the weight and

feature will also be zero. Thus, providing traditional marker

data as input to the deep learning models may result in a loss

of information. This may lead us to think that representing

the allele with other categorical values such as 1, 2, and 3 will

solve this issue. This leads to another problem as multiplying

weights with a high value of a specific allele may mislead the

deep learning model to give higher priority to that specific allele.

To solve these problems, one-hot encoded vector (Liu et al.,

2019b) or Hardy-Weinberg equlibrium can be used to represent

markers (Jubair et al., 2021). A one-hot encoded vector is an

n dimensional sparse vector where n is the number of alleles

of a specific marker. Each allele of a marker is associated with

a specific position in the vector. If that allele is present in the

marker, the specific position for the allele is represented with 1

and other positions with 0. Sometimes, an extra position is also

added to the one hot encoded vector to represent missing values

(Liu et al., 2019b). As an alternative to categorical encoding and

one hot encoded representation, markers can also represented

by their allele frequency (Jubair et al., 2021), which can be

obtained following the Hardy-Weinberg equilibrium formula.

For example, suppose, in 10 genotypes, allele AA, Aa, and aa for

a specific marker occurs 6, 3, and 1 times, respectively. Then the

frequency of AA, Aa, and aa is 0.6, 0.3, and 0.1, respectively.

The environment of crops comprises weather, soil and field

management data. Weather information, such as maximum

and minimum temperature, precipitation, vapor pressure, wind

speed and radiation, plays an essential part in GS for multi-

environmental trials (Khaki and Wang, 2019; Gangopadhyay

et al., 2020; Khaki et al., 2020; Shook et al., 2020). Weather

information can be integrated as daily, weekly, monthly or

yearly averages based on the architecture of the deep learning

model (Khaki and Wang, 2019; Khaki et al., 2020; Washburn

et al., 2021). In addition, soil information such as percentage

of clay, silt and sand, water capacity, soil pH, number of

irrigation, organic matter, and cation-exchange capacity also

plays a vital role (Washburn et al., 2021). Sometimes, field

management information such as the number of irrigations,

sowing pattern of crops, amount of water used in irrigation,

and amount of fertilizer or insecticide applied is also recorded.

These can also be integrated with soil data as they carry

valuable information (Washburn et al., 2021). As the variables

from environmental information are in different ranges, these

variables are usually scaled by zero-centering as a pre-processing
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TABLE 2 An example of genotyped and environmental data after pre-processing in a tabular format.

Markers Weather variables Soil variables Field management

Envs Geno M1 . . . MD

W1

t = 1

. . .

Ww

t = T

S1 . . . Ss F1 . . . Ff

Env1 Geno1 0.6 . . . 0.4 0.32 . . . 0.27 0.2 . . . 0.15 0.4 . . . 0.6

Env1 Geno2 0.2 . . . 0.4 0.32 . . . 0.27 0.2 . . . 0.15 0.2 . . . 0.21

Env2 Geno3 0.6 . . . 0.4 0 . . . 0.4 0.32 . . . 0.24 0.25 . . . 0.05

Env3 Geno4 0.6 . . . 0.2 0.65 . . . 0.1 0.3 . . . 0.31 0.4 . . . 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Envk Genon 0.2 . . . 0.4 0.65 . . . 0.1 0.3 . . . 0.31 0.2 . . . 0.1

In this example, each genotype has D markers after removing minor alleles and imputing missing values. Marker values are represented by their allele frequency. There are w weather

variables where each weather variables are divided in T time steps. Apart from the weather variables, there are s soil variables and f field management variables too. All the data are

normalized.

step. Table 2 shows an example of genotyped and environmental

data after pre-processing.

3. Deep learning

in recent years, Deep Learning has emerged as a leading

paradigm for supervised machine learning tasks. Significant

innovation has occurred in diverse areas like Natural Language

Processing, Computer Vision, and Bioinformatics (LeCun et al.,

2015; Li et al., 2020; Dong et al., 2021). The dominant paradigm

inDL is a network. A deep learning network is made up of blocks

and each block has several different types of layers. A block

usually contains multiple layers of one or more neural networks,

activation function, normalization layer and regularization layer

(LeCun et al., 2015; Dong et al., 2021). In this section, we discuss

each of the layers of neural network blocks and describe the

function of the most common layers. It is worth mentioning that

we chose these layers based on their usage in previous research

conducted in GS.

In a deep learning model, the layers between the input and

output are called hidden layers. Each layer consists of several

nodes called neurons where we receive input and perform

computation on the data from previous layers. Typically, the

neural network layer contains one or more feed-forward (Bebis

and Georgiopoulos, 1994), convolution (Kim, 2017; Kiranyaz

et al., 2021) or Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997; Yu et al., 2019b) layers (discussed

in Section 3.1). As these neural networks are generally linear

functions, activation functions such as ReLU and sigmoid are

applied to the output of the neural network layer to introduce

non-linearity (discussed in Section 3.2). Normalization and

regularization layers such as L1, L2 and dropout are applied

after the activation layer to generalize the model to avoid

overfitting (discussed in Section 3.3). Figure 1 shows the general

architecture of a deep learning method.

3.1. Neural networks

3.1.1. Fully connected neural networks

A fully connected neural network (FNN), often referred

to as a linear layer, is an Artificial Neural Network where

all the neurons of the previous layer are connected to each

neuron of the current layer. The mathematical operation of the

fully connected neural network can be compared to n linear

regression methods (Montgomery et al., 2021) where n is the

number of hidden neurons of the current layer. A deep fully

connected neural network is often calledMulti-Layer Perceptron

(MLP). Figure 2 shows a fully connected network.

MLPs have been applied to predict phenotypes both in single

environment trial (Gianola et al., 2011; González-Camacho

et al., 2016; Jubair and Domaratzki, 2019; Montesinos-López

et al., 2019a; Jubair et al., 2021) and multi-environment trial

Montesinos-López et al. (2018), Khaki and Wang (2019).

In case of single environment trials, the input is the

genotyped data of crops. When the prediction of phenotypes

is for multi-environment trials, additional information such

as environmental data are concatenated with the genotyped

data. This concatenated vector is the input of the feed-forward

networks and the output is the environment-specific predicted

yield (Khaki and Wang, 2019).

3.1.2. Convolutional neural networks

Convolutional neural networks are a successful model of

DL that employ convolution operations to incorporate targeted

regions of input in decision making (Li et al., 2021). A

convolution operation summarizes point-wise multiplication

between a small kernel that slides over the input of the

convolution layer. The weights of the kernels are shared across

all the sliding windows. These kinds of neural networks are

known for capturing local information within the data since, in
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FIGURE 1

General architecture of a deep learning algorithm. All the layers between the first and last layer are called hidden layers. The first layer is the

input layer and the last layer is the output layer. A neural network layer is typically followed by an activation function and then by normalization

and regularization layers. Based on the architecture of the deep learning model, some of these layers, such as normalization and regularization

layers, may not be present in a block.

FIGURE 2

An example of fully connected layer. xi is the input and wi is the weight. The weights are initialized randomly and are optimized iteratively for

prediction. In GS, xi is the marker.

each sliding window, the network is on a small subset of the data

(LeCun et al., 2015; Dong et al., 2021). Convolution operations

were first developed in vision to help identify features of an

image in a restricted window as the spatial information in the

image plays a vital role in most vision applications (Dong et al.,

2021; Li et al., 2021). The applications of convolutional neural

networks have also been extended to other domains such as GS

(Ma et al., 2018; Jubair and Domaratzki, 2019; Liu et al., 2019b;

Zingaretti et al., 2020).

There are three types of convolution, conv1D, conv2D, and

conv3D, available in different deep learning frameworks (Abadi,

2016; Paszke et al., 2017; Chollet, 2018). The choice of the
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convolution layer depends on the dimension of the input to

the convolution layer. In GS, as the data is generally one-

dimensional, conv1D is typically used (Ma et al., 2018). As the

genotyped data is often categorical (1, 0, and –1), the marker

data can also be converted to a one-hot encoded vector which

will be the input of a conv2D layer (Liu et al., 2019b; Washburn

et al., 2019; Avsec et al., 2021; Ji et al., 2021). Figure 3 shows

an example of how 1D convolution works. In this example, a

sequence of length 5 is processed with a kernel of size 3 and

stride 1. The weights of the kernel are randomly initialized. A

point-wise multiplication operation between the input window

(in this example, the input window = 3) and the kernel takes

place and after that an aggregation operation is performed. As

the stride = 1, the input window then shift one space and the

same operation of point-wise multiplication and aggregation

takes place. This continues till the total input space is covered.

The result is a sequence of length 3 where each neuron bears

spatial information of the sequence.

To apply convolutional neural network for multi-

environment trials, the algorithm should be developed

carefully as a concatenated input vector of environment, genetic

and soil data may not properly represent relationships between

different data sources. The reason is that since the sliding

window of convolution operation captures local information,

a convolution operation on the concatenated vector may not

properly reflect the effect of environment on the genetic data, as

these are represented in regions of the concatenated vector that

are not adjacent. To solve this problem, different types of neural

networks can be employed on different types of data (Khaki

et al., 2020; Washburn et al., 2021; Sharma et al., 2022). The

predictions from different networks can be combined to obtain

an overall prediction.

3.1.3. Recurrent neural networks

Recurrent neural networks (RNNs) are distinct from both

MLPs and CNNs as they are not feed-forward. Neurons in RNNs

may have connections to themselves. RNNs are a family of

neural networks, such as Long Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit

(GRU) (Cho et al., 2014), that typically work with time-series

and sequence data (Hochreiter and Schmidhuber, 1997). These

networks have been successfully applied in weather prediction

(Qing and Niu, 2018; Salman et al., 2018; Yu et al., 2019a)

and in GS (Shook et al., 2020). Particularly, LSTM has been

applied in genomic selection task mostly with environmental

information (Shook et al., 2020). LSTM either preserves or

forgets past information for future prediction by applying a

particular structure called gates. The input of LSTM is time-

steps or sequences and the output depends on all the previous

time-steps or sequences. As LSTM are applicable to time-series

data, the use with environmental data in GS allows the networks

to efficiently summarize large-scale data. We refer the readers

to the review on LSTM by Yu et al. (2019b) to know more

about LSTM.

Generally, in multi-environment GS, historical weather

information is the input to the RNNs. Genetic information is

incorporated in the later part of the network (Shook et al., 2020).

As the genetic information is not a time series data in nature,

this part of the network generally does not contain any LSTM

layers. The outcome is the predicted phenotypes for a specific

weather condition.

3.1.4. Transformers

Transformers are another type of neural networks that

transform one sequence to another sequence. That is, the

transformer architecture is designed to take a sequence as input

but also produce a sequence as output (Vaswani et al., 2017; Ji

et al., 2021; Jubair et al., 2021; Le et al., 2022), as opposed to

a single value, which is the output of MLPs or and CNNs. The

transformer architecture contains an encoder and a decoder.

This encoder and decoder can be used separately or together.

The transformer encoder has been applied in GS (Jubair et al.,

2021) and other fields such as DNA representation learning

(Ji et al., 2021; Le et al., 2022) and gene expression prediction

of humans (Avsec et al., 2021). Here, we discuss only the

transformer encoder to predict crop traits.

The main building block of a transformer encoder is the

multi-head attention layer which applies self attention (Vaswani

et al., 2017). In GS, self-attention measures how important a

marker is with respect to other markers for the phenotype

prediction. Thus, the self attention captures the relationship of

distant markers that influence the final phenotypic outcome

(Jubair et al., 2021). Usually, the importance of markers with

respect to a specific marker m is represented in a vector called

attention vector. If multiple attention vectors are generated per

marker, the final attention vector is the weighted average of all

the attention vectors. The multiple attention vector is called

multi-head attention. Apart from the multi-head attention layer,

a transformer also contains a feed-forward neural network and

layer normalization. Figure 4 shows a transformer encoder. The

input of the transformer can be a one hot encoded vector or the

genotype frequency (Avsec et al., 2021; Jubair et al., 2021). The

embedding layer then embeds each marker to a d dimensional

expanded representation. Usually a feed-forward neural network

or a convolutional neural network is applied to embed the input

features. The embedded representation of the markers are the

input of the attention layers of the transformer.

3.2. Activation functions

The previous discussion shows that neural networks

typically compute a linear function. However, as it is known

that complex traits such as yields are non-linear, we need to
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FIGURE 3

An example of convolution operation on a one dimensional input vector. In GS, xi is a marker.

introduce non-linearity in the network. Activation functions

introduce non-linearity to the network by deciding which

neuron should be activated. Each activation function addresses

different limitations; see the survey of Szandała (2021) for

information on different activation functions used in the

literature. However, sigmoid, ReLU and tanh are the most

widely used activation functions for GS (McDowell, 2016; Ma

et al., 2018; Jubair and Domaratzki, 2019; Khaki and Wang,

2019; Khaki et al., 2020; Shook et al., 2020; Måløy et al., 2021;

Washburn et al., 2021). Hence, we provide an overview of these

activation functions below.

The sigmoid activation produces the output neuron between

0 and 1 by applying the sigmoid function (Szandała, 2021;

Dubey et al., 2022). Though sigmoid function is one of the most

used activation function, it suffers from the vanishing gradient

problem, that is, the gradient of the loss function approaches

zero, which causes the model parameters of the DNN to not

update or update very slowly. It is also not zero centered, causing

difficulties during optimization.

The tanh activation function solves the zero centered

problem as the output of this function ranges from –1 to 1

(Szandała, 2021; Dubey et al., 2022). However, it suffers from

vanishing gradient problem, as very high value and very low

value of the input neuron will be mapped to –1 and 1 and other

values will be toward zero.

ReLU (Rectified Linear Unit) is the most popular activation

function which ranges from 0 to∞ (Szandała, 2021; Dubey et al.,

2022). It solves the vanishing gradient problem and because of

the simplicity of the function, it converges quicker than other

activation functions.

3.3. Regularization layer

A regularization layer helps DL algorithms avoid overfitting

and leads to better generalization by reducing the model

complexity (Kukačka et al., 2017; Moradi et al., 2020). The

most popular generalization techniques employed in GS are
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FIGURE 4

A transformer encoder. Here N represents N transformers can

be stacked together.

L1, L2 and dropout regularizer. L1 regularization calculates the

summation of the absolute value of the weight vectors while

trying to estimate the median of the data. On the other hand,

L2 regularization calculates the summation of the square of the

weight vector that tries to estimate themean of the data. Dropout

(Srivastava et al., 2014) is the most popular regularization

technique. Dropout regularization randomly drops a neuron

with a probability p and thus reduces the complexity of

the model.

3.4. Loss functions

A loss function calculates the loss between the observed

phenotype and predicted phenotype during training. The most

popular loss function for GS is mean squared error (MSE). MSE

measures the average squared difference between the observed

and predicted phenotypes (Rachmatia et al., 2017; Ma et al.,

2018; Khaki and Wang, 2019; Khaki et al., 2020; Shook et al.,

2020; Jubair et al., 2021). Categorical cross entropy has also

been applied as the loss function where the prediction task is

converted to a classification problem (González-Camacho et al.,

2016).

3.5. Optimization

The objective of training is to optimize the DNN. For

optimizing, after each iteration, the weights need to be adjusted

to minimize loss function. An iteration over the whole training

set is called an epoch. Optimizers adjust the weights by

applying certain algorithms and optimizing the loss function

(LeCun et al., 2015; Dong et al., 2021). Optimization functions

typically apply gradient descent to optimize the weights of

the neural networks. The gradient measured is in relation

to the loss function, that is, between the true and predicted

value of the network as it currently predicts at this point in

training. Stochastic Gradient Descent (SGD) (Ruder, 2016) is

an optimizer that uses a subset of the training data to calculate

and update the gradient of each weight. It uses a hyper-

parameter called the learning rate to control how much it will

adjust the weights from each iteration. There are also some

algorithms that employ an adaptive learning rate strategy such

as Adagrad (Ruder, 2016) and Adam (Kingma and Ba, 2014).

Instead of using a fixed learning rate for all the weights, they use

different learning rates for each of them. Adam calculates the

first and second moments of the gradients and updates weights

based on this calculation. For more detail on Adam and other

optimization methods, we refer the readers to the review by Sun

(2020).

3.6. Performance metrics

Performance metrics measure the performance of a machine

learning model on a test dataset, which indicates how well the

model will perform in production. As the ultimate goal is to

rank genotypes to create a new variety, most of the research

applied a correlation based performance metric such as Pearson

Correlation Coefficient (PCC), or a ranking based measure such

as Normalized Distributed Cumulative Gain (nDCG) (Järvelin

and Kekäläinen, 2017). Some research also applied MSE as the

performance metric.

PCC measures how linear the predicted phenotypes and

the true phenotypes. PCC values range from –1 to 1 where a

perfect linear relationship is indicated by 1 and completely non-

linear relationship is indicated by –1. The formula of PCC is

given below:

r =

∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2
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In the above equation, xi is the observed phenotype, x̄ is the

mean of observed phenotype, yi is the predicted phenotype and

ȳ is the mean of predicted phenotype.

nDCG@k is a key measure for GS because it measures

the quality of the ranking of the predicted phenotypes for the

top k individuals (Järvelin and Kekäläinen, 2017; Jubair and

Domaratzki, 2019). The formula for calculating nDCG@k is

given below:

nDCG@k =
DCG@k

IDCG@k

In the above equation, DCG@k means the discounted

cumulative gain for the top k individuals. DCG@kmeasures the

graded relevance of top k predicted genotypes. On the other

hand, IDCG@k is the ideal DCG for the top k genotypes. The

value of nDCG@k ranges from 0 to 1 where nDCG@k is 1 for

perfectly ranked genotypes. nDCG was previously employed for

measuring performance in GS by Ma et al. (2018) and then

adopted by Jubair and Domaratzki (2019).

3.7. Training, test, and validation set

Supervised machine learning algorithms learn from the

training data and their corresponding labels. Validation data is

used to optimize the parameter of a machine learning algorithm

while the final performance is measured on the test data. During

training, the input of the DL algorithm is both genotyped and

phenotyped data, with phenotypes being our target value to

predict. An iteration for training a DL algorithm is called an

epoch. After each epoch, the DL algorithm is validated on

validation data to decide on the necessity of further training.

During the validation step, the input to the DL algorithm is

genotyped data while the model predicts the phenotypes. A loss

between actual and predicted phenotypes for the validation data

is measured. The training stops if there is no improvement in

validation loss in n consecutive epochs. The final performance

of the DL model is measured on the test data with the model

that is obtained from the last most succesful epoch.

For a single environment trial, k-fold cross validation can be

applied to divide the data into training test and validation sets.

Runcie and Cheng (2019) recommended separating the training

data and test data first and then applying k-fold cross validation

on training data to divide the data in k training and validation

sets (Refaeilzadeh et al., 2009).

For a multi-environment trial, a deep learning model can

be evaluated in four scenarios, as described by Gillberg et al.

(2019). In the first scenario, the authors used the trained

model to observe the test lines in some environments. As some

environments did not contain the test lines, the objective is to

estimate traits of unobserved lines in those environments. In the

second scenario, some lines are observed in some environments,

but a subset of lines in the test set were never observed in any

environments. The second scenario is more complex than the

first one as the machine learning model has no prior knowledge

of the test lines from any environment. In the third scenario, the

machine learning model did not observe the environment where

we want to grow the genotypes; however, the genotypes may be

observed in other settings. The goal here is to predict traits for

this new environment. Finally, the fourth scenario is the most

extreme case of all scenarios. In this scenario, machine learning

models do not have any prior information about the test lines

and environment. That is, both lines and environments are new

to the model and the objective is to predict traits for these new

lines in a new environment.

In classical linear models, such as extensions to Genomic

Best Linear Unbiased Prediction (GBLUP), environments are

treated as a discrete category or as a relationship matrix between

environments (de Los Campos et al., 2010; Endelman, 2011;

Pérez and de Los Campos, 2014; Lopez-Cruz et al., 2015; Pérez-

Elizalde et al., 2015; Crossa et al., 2016a; Cuevas et al., 2016;

Hassen et al., 2018). Because of this, only the first two scenarios

can be simulated, as environments unknown to the training

set cannot be modeled. This demonstrates power of using deep

learning models that are capable of incorporating heterogenous

weather data directly into predictive models. In the examples

we see in Section 5, deep learning models that incorporate

weather data directly are capable of being evaluated in all four

scenarios. However, the extent to which all these evaluations are

performed varies.

4. Deep learning methods for single
environment trials

Single environment trials have been the subject of many

approaches. The main objective of GS for a single environment

trial is to build a new variety of crops for that specific

environment. A variety of deep learning models have been

demonstrated to be successful for single environment datasets

and building a new variety for crops (Pérez-Enciso and

Zingaretti, 2019; Tong and Nikoloski, 2021). During the training

phase of a deep learning algorithm, the typical inputs to the

neural networks are the genotyped data and phenotypes. The

model learns from these observed data, and then, after learning,

it predicts the phenotypes of unobserved genotypes. From the

predicted phenotype values, the top k genotypes are chosen as

potential candidates for new varieties. Figure 5 shows how a new

variety is developed by applying machine learning.

DL models have received a significant amount of attention

recently (Pérez-Enciso and Zingaretti, 2019) and can predict

complex traits. DL methods have been mostly either based on

fully connected networks or convolutional neural networks, with

the exception of the early neural networks for genomic selection

(Gianola et al., 2011; González-Camacho et al., 2012; Pérez-

Rodríguez et al., 2012). Below, we discuss the advancement and
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FIGURE 5

Workflow of genomic selection in single environment trial. For collecting training data, plants are grown in a field trial and phenotypes were

measured. These plants are also genotyped. After obtaining both genotyped and phenotyped data, a machine learning model is trained during

the training phase with both types of data. After the machine learning model is trained, potential genotypes that will be grown in the field are

genotyped. These genotyped data are the input to the trained machine learning model. The machine learning model estimates the phenotypes.

The estimated phenotypes are ranked and the top k phenotypes are chosen to select new varieties that will be grown in the field.

motivation of different neural networks for single environment

trials.

Early implementations of neural networks in GS were

mostly based on Bayesian Regularization, known as Bayesian

Regularization Neural Network (BRNN) and Radial Basis

Function Neural Network (RBFNN). Since some phenotypes

follow a Gaussian distribution for some species, this works

as the motivation to apply BRNN and RBFNN. Bayesian

Regularization assumes the weights of the neural network come

from a Gaussian distribution and calculates the loss between

predicted phenotypes and true phenotypes by applying the

Bayesian probabilistic approach. RBFNN, on the other hand,

applies the radial basis function on each hidden neuron and thus,

works as an activation function. These networks usually have

one input layer, one hidden layer and an output layer. Gianola

et al. (2011) proposed a BRNN for genomic selection and applied

their framework to predict wheat yield. They compared the

model with Bayesian Ridge Regression and showed that 11–

18% improvements with their BRNN depending on the number

of hidden neurons. Pérez-Rodríguez et al. (2012) compared

two different shallow neural networks: BRNN and RBFNN

with linear statistical models such as Bayesian ridge regression

(BRR) (Bishop and Tipping, 2003), Bayesian LASSO (Hans,

2009), BayesA (Meuwissen et al., 2001), and BayesB (Meuwissen

et al., 2001) on twelve different single environment trials and

two phenotypes, grain yield and days to heading. Though

there was no single winner for all traits and phenotypes, the

research showed that non-linear models perform better than

linear statistical models in general. Similar research is conducted

by González-Camacho et al. (2012), which applied RBFNN on

twenty-one traits of maize. The results showed that RBFNN

performs similarly or better than statistical models.

After the moderate success of BRNN and RBFNN,

researchers have applied shallow fully connected neural

networks to GS. The shallow fully connected neural networks

usually contain one or two hidden layers. González-Camacho

et al. (2016) conducted a large study between a probabilistic

ANN (PNN) and shallowMLPmodel on 33 datasets comprising
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wheat and maize. The PNN model is the extension of RBFNN

where a softmax activation function is applied to convert the

output of the RBF kernel layer to a probability of c classes.

The shallow MLP model consists of two hidden layers and also

predicts a class as the output. As their model predicts a class,

they transformed the regression problem into a classification

problem by dividing the data into three categories, where the

top category contains 30%, the middle category is 40% and the

bottom category is the remaining 30%. The results showed that

the PNN is better than the shallowMLPmodel for classification.

McDowell (2016)’s M.Sc. thesis also employed three shallow

fully connected neural networks to GS consisting of one to

three hidden layers. In their shallow models, they also employed

different regularization techniques such as L2 and dropout

regularization on some benchmark datasets, such as wheat

and maize. Overall, the single hidden layer regularized neural

networks performed better than the unregularized ones. The

research showed that though increasing the number of hidden

layers decreases the performance of their model, the neural

networks are as good as the statistical models.

Rachmatia et al. (2017) proposed a different model than

MLP known as Deep Belief Network (DBN). The motivation of

applying DBN is to learn the genetic structure of the genomic

data for a specific phenotype prediction. DBNs are usually

applied in a semi-supervised setting where only a limited portion

of the data is labeled. Thus, from all the available genomic data,

it first tries to identify the pattern within the data by applying

Restricted BoltzmanMachine (RBM) (Zhang et al., 2018) blocks.

Each RBM block in the DBN focuses on learning the probability

distribution of its previous layer and, in the end, produces a

feature vector for each input. This feature vector is the input to

an output layer that predicts the phenotypes. Rachmatia et al.

(2017) employed three block RBMs to predict both additive

and non-additive effect phenotypes of maize, such as grain

yield, female flowering, male flowering, and the anthesis-silking

interval. The results showed that while the DBN is better than

the existing statistical methods (BLUP and Bayesian LASSO)

for predicting non-additive phenotypes, the performance for

additive phenotypes drops significantly below BLUP by 3.5–

7.5% for different traits.

Though most of the research has found that machine

learning performs better than the statistical methods

(McDowell, 2016; Rachmatia et al., 2017; Ma et al., 2018;

Montesinos-López et al., 2019a) found that statistical methods

are as good as machine learning methods and that SVMs

(Hearst et al., 1998) are better than fully connected deep

learning models. However, they also discussed the reason for

the low performance of DL methods might be because of the

small dataset they used, which only contained 270 wheat lines.

To the best of our knowledge, DeepGS (Ma et al., 2018) was

the first method that applied CNN for GS. As GS data are high

dimensional, DeepGS employed a combination of convolution,

dropout and pooling layers. Conceptually, the adoption of

CNN, with strides and window size, allows the possibility to

integrate the effect of proximal markers and later when a linear

layer is applied, capture the overall influence of markers on

the phenotype. Ma et al. (2018) used a ranking procedure

called Mean Normalized Cumulative Gain to rank the predicted

individuals and obtained 2–7% improvements in the ranking

of traits such as grain length, grain width, grain hardness,

thousand-kernel weight, test weight, sodium dodecyl sulfate

sedimentation, grain protein, and plant height, compared to RR-

BLUP. They also showed that the selection of input markers and

reducing the data dimension improved the performance of the

deep learning model.

Jubair and Domaratzki (2019) proposed an ensemble CNN

model to predict six traits of wheat. Each CNN model in the

ensemble is created by a subset of randomly selected markers

from the marker set. The final output is the average of the

models in the ensemble. They compared their model with

other non-ensemble and ensemble machine learning methods

such as: support vector regression (SVR), CNN, ensemble

SVR and Random Forests (Breiman, 2001) and RRBLUP. The

work showed that overall ensemble machine learning methods

are 20–30% better than single machine learning methods and

slightly better than RRBLUP in correlation coeffcient and

genotype ranking. The notable observation from this research

is when CNNs are applied on a random marker set, the model

still performs well, indicating little importance of the spatial

relationship of GS for wheat. This observation also aligns with

the observation of Ma et al. (2018).

Liu et al. (2019b) applied a dual-CNN architecture where

after the input layer, they applied two separate streams of CNN

that are not connected. The first stream has two CNN blocks and

the second stream has one CNN block. The motivation behind

employing two CNN streams is to use the second stream as a

residual connection to the first CNN stream by aggregating two

CNN streams together. The aggregated output is then passed

to another CNN block, followed by a fully connected block for

further processing and predicting phenotypes. Their model is

trained and tested on a soybean dataset which performs better

than DeepGS (Ma et al., 2018), MLP and statistical methods such

as RRBLUP, BRR, BayesA, and Bayesian Lasso. The saliency map

they applied also showed that the dual stream CNN model puts

more importance on known biologically important markers for

the specific traits.

There have been some other researches that employed

CNN with limited success. Zingaretti et al. (2020) applied

CNN in two polyploid species: strawberries and blueberries for

predicting five different phenotypes. Their study showed that

while CNN outperformed statistical models and Reproducing

Kernel Hilbert Spaces (RKHS) for epistatic traits, it was not

as successful for additive and mixed traits. Pook et al. (2020)

showed the importance of dataset size while applying CNN

in genomic selection. In an arabidopsis dataset, they showed

that increasing training data could allow a CNN model to
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outperform state-of-the-art models such as GBLUP and MLP.

Sandhu et al. (2021c) applied MLP and CNN on multiple traits

of spring wheat data. Their research showed that no unique

MLP or CNN models worked well with all traits, since the

number of hidden neurons, activation functions and the number

of hidden layers differs from trait to trait. While there is 0 to

5% improvement in correlation score from RRBLUP with CNN

andMLP, MLP performs consistently better than CNN by a very

small margin.

Self-attention is a recent mechanism in DL which identifies

the relationship among features and has been applied primarily

to natural language processing (Devlin et al., 2018; Liu et al.,

2019a; Raffel et al., 2020). One of the popular methods for

incorporating self-attention is the transformer model. Though

the transformer and attention have not been the subject of

much research for GS, they have been applied successfully in

similar research areas (Avsec et al., 2021; Ji et al., 2021; Le

et al., 2022). Jubair et al. (2021) proposed a transformer-based

DL method for genomic selection. The main motivation for

employing the transformer in genomic selection was to capture

and use the information on internal relationships between

markers to predict phenotypes. To the best of our knowledge,

this was the first transformer-based DLmethod for GS in a single

environment trial. The model was trained on a barley dataset

to predict Fusarium Head Blight (FHB) and Deoxynivalenol

(DON) content in barley. Their work showed that even with a

small amount of data (400 genotypes), the transformer-based

DL method can be as good as or better than the state-of-the-art

GS methods such as BLUP. It also outperformed other machine

learning methods such as MLP, linear regression and decision

trees. However, the authors also mentioned the limitation of

the transformer in terms of memory and time complexity, as

it needs a massive amount of memory and computation time

and may not be feasible to consider all markers representing the

whole genome.

Montesinos-Lopez et al. (2021) proposed anMLPmodel that

applied negative log-likelihood of Poisson distribution as the loss

function to predict counts of symptomatic spikelets of Fusarium

Head Blight (FHB) in wheat in three different environments.

The model was compared with the MLP model without the

Poisson loss, Generalized Poisson Ridge regression, Generalized

Poisson Lasso regression, Generalized Poisson Elastic net

regression, Bayesian normal Ridge regression and Bayesian

log normal Ridge regression. The MLP model with negative

log-likelihood of Poisson distribution loss was better than

the normal MLP model and performed similarly to Bayesian

normal Ridge regression. The use of Poisson distributions in

this research was motivated by the particular phenotype of

FHB-affected spikelets: Poisson distributions are an accurate

model for situations when counting of some quantity. The

authors note that this extends beyond physical counts (as of

spikelets) but to other situations as well, like laboratory test

results and adverse drug events. Further attention is necessary

for integrating Poisson models, as they are not commonly used

in many datasets that fall into these categories.

Ubbens et al. (2021) also explained deep learning for GS. The

work examined a kernel method for masking marker data while

making prediction, to investigate the role that other factors, such

as marker location, play on prediction. The authors concluded

that deep learning models for GS may suffer from so-called

shortcut-learning (Geirhos et al., 2020), where models learn

from contextual information that is correlated with the outcome

variable rather than the intended data, which in this case is the

marker data. This suggests that further attention is necessary

for using deep learning with GS. This also gives motivation for

incorporating environmental data into models, as this yields

larger data set and may mitigate overfitting.

5. Deep learning methods for
multi-environment trials

The previous section shows that deep learning methods

can predict complex traits in a single environment trial.

However, extending models to multi-environmental datasets is

challenging (Oakey et al., 2016; Crossa et al., 2017; Rincent

et al., 2017). Here, a multi-environment deep learning model is

defined as a deep learning architecture that takes environmental

and/or genetic data as the input and predicts phenotype for a

specific environment. Though the ideal scenario is training a

model with genotyped data along with weather, soil and field

management information (Khaki and Wang, 2019; Washburn

et al., 2021), some of this data is sometimes not available and

some of the multi-environment models are developed with

environmental data only (Khaki et al., 2020; Lin et al., 2020;

Shook et al., 2020; Zhong et al., 2022). Since in a multi-

environment task, our goal is to estimate phenotypes of a crop

in a new environment, the machine learning model typically

needs field trialed data in many different environments. An

environment is the growing cycle of a crop; for example, if a

crop is grown multiple times of the year in the same field, each

instance will be a different environment. As crops need to be

grown numerous times in various locations, collecting these

data may take years before it is possible to train a machine

learning model (Spindel and McCouch, 2016). In addition, as

the sources and types of data are different (genetic, weather,

soil and field management data), the machine learning model

can become very complex. Figure 6 shows the workflow of a

multi-environment trial.

We have discussed single trait trials, where the deep learning

model estimated one phenotype. There have been studies that

develop multi-trait deep learning models for multi-environment

trials, to predict multiple phenotypes simultaneously. The

intuition behind this approach is that deep learning models

will capture the information of common factors as well as
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FIGURE 6

Workflow of genomic selection in a multi-environment trial. Before training the machine learning model, along with genotyped and phenotyped

data, environmental information such as weather variables, soil and field management data are also collected. The genotypes are typically

grown in multiple seasons/locations which provides a wide range of environmental data. During the training phase, the model is trained with all

these data along with phenotypes. After the model is trained, in production, the model is given the genotyped data of crops along with

environmental information of where the crops will be grown as the input. The model estimates the phenotype for that environment. Based on

the estimated phenotypes, the top k genotypes are chosen and grown in the field.

phenotype-specific factors to predict phenotypes. Montesinos-

López et al. (2019c) proposed an MLP containing three hidden

layers and an output layer with three neurons to predict grain

yield, days to heading and plant type of wheat. The input to this

model is the concatenated matrix of environmental variables,

a genomic relationship matrix obtained from genotypes, and

a GxE term. The model was compared with GBLUP and MLP

for the single phenotype. They observed that multi-trait MLP

is better than the single trait MLP and overall, GBLUP model

outperformed all of them with limited data (259 lines). Guo

et al. (2020) also applied the same architecture of a multi-trait

MLP model with a minimal wheat dataset (240 genotypes).

Though their dataset was different than Montesinos-López et al.

(2019c), as it consisted of genotyped data and environmental

information, they also observed better performance.

Sandhu et al. (2021a) applied the same MLP architecture on a

wheat dataset comprised of spectral information of site-year

and genetic information. These data were concatenated together

to predict yield and protein content. The notable difference

between this work and the previous two (Montesinos-López

et al., 2019c; Guo et al., 2020) is the amount of data, as their

dataset comprises 650 genotypes. The work showed that MLP

performs similarly or better than GBLUP, BayesA, BayesB

(Meuwissen et al., 2001), Random Forests (Breiman, 2001),

CNN and Support Vector Machines (Hearst et al., 1998).

The model of Khaki and Wang (2019) was the first research

to incorporate genetic information of corn and rich weather

and soil data into a single deep learning framework. Their

proposed method has two disjoint parts: (i) predicting weather

variables for the growing cycle and (ii) predicting yield. In
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the first part, they employed individual shallow MLP that take

the previous 4 months’ data of a specific weather variable

as the input to predict the monthly weather variables of

the growing cycle. In the second part, their deep learning

model for predicting yield contained 21 fully connected neural

network blocks where each block had 50 hidden neurons, an

activation function and a regularization function. The input of

this network was a concatenation of genetic information and

weather variables obtained from the first part, along with soil

information. The predicted output was the yield. As each hidden

neuron combined environmental and genetic information, the

motivation was to capture the GxE in each hidden neuron to

predict yield. This model improved the correlation coefficient

between predicted yield and original yield by 57% compared to

the model that only had genomic data as the input.

Shook et al. (2020) proposed an LSTM-Fully Connected

Neural Network based deep neural network that processed the

inputs in two stages to predict soybean yield. In the first stage,

LSTM blocks were employed on historical weather data. The

weather data was divided into multiple time steps in the growing

season where each time step is 30 days. An average of each

weather variable was taken within the given time steps. LSTM

blocks were applied on all the times steps to capture the temporal

relationship and provide a context vector as an output optimized

for yield prediction. After obtaining the context vector, maturity

group information and a genotype cluster derived from applying

k-means on the pedigree matrix were concatenated with the

context vector. This concatenated vector was the input of the

fully connected network that predicted yield. Thismodel showed

that when cluster and maturity group information are added, it

leads to a lower root mean square error (RMSE).

Deep learning has also been successfully applied when

no genetic or pedigree information is available. The deep

learning model of Lin et al. (2020) had two parts: (i) attention-

based LSTM network that captured the effect of environmental

variables over time on yield, and (ii) multi-task learning (MTL)

networks that predicted location-specific corn yield anomaly.

The weather information was the weekly average of minimum

and maximum temperature, precipitation, growing degree days

and killing degree days. This model was compared to Random

Forests and Lasso (Ranstam and Cook, 2018) and had the lowest

RMSE among the three.

Khaki et al. (2020) employed a CNN-RNN based deep

learning model on a dataset that contained historical yield and

weather information and soil data for corn and soybean. In this

work, CNNs were applied to yearly data to capture the spatial

information of weather and soil information. Two separate CNN

networks were employed that output two vectors to capture

the spatial information of weather and soil variables. After

obtaining the spatial information, LSTMs were applied to obtain

the temporal relationship within the data. To employ LSTM, the

distributed representations of soil and weather along with the

corresponding yield of previous t years were concatenated and

provided as the input to the LSTM, which predicted the yield of

the current growing cycle. This model improved the correlation

coefficient by 20–25% compared to LASSO (Ranstam and Cook,

2018) based on different years and crops.

Gangopadhyay et al. (2020) applied a dual attention neural

network on a soybean dataset that comprised 13 years of data of

5,839 genotypes resulting in 103,365 observations. The attention

networks are known for their ability to identify important

features as it calculates an importance score (attention score)

for each feature and aggregate all the features in a context

vector by applying weighting based on the attention score.

The dataset contained weekly weather variables such as average

direct normal irradiance, average precipitation, average relative

humidity, maximum direct normal irradiance, maximum

surface temperature, minimum surface temperature and average

surface temperature. A fully connected neural network followed

by an attention layer was applied initially to the weather variables

to capture the spatial information. Then, on the output of

the spatial attention layer, multiple LSTM layers followed by

another attention layer were applied to capture the temporal

relation and predict the soybean yield. Though their model had

comparable performance to the baseline model (LSTMs and

LSTMs with temporal attention), they showed that the attention

layer provided their model with more interpretability. They

also observed that the attention mechanism identified average

precipitation as the most influencing factor for soybean growth

in most weeks.

McCormick et al. (2021) applied nine different architectures

of LSTMs to predict the current growth stage of soybean.

The architectures of LSTMs mostly differ in the number

of layers and hidden neurons. These models were applied

to a dataset consisting of 187 environments and 13,673

observations of soybean, based on different planting times and

locations. Their weather variables included daily minimum and

maximum temperature, solar radiation, night length, longitude

and latitude. The task of these LSTM models was to predict,

from seven growth stage variables, what the current stage of the

plant is. In their LSTM model, they also included the output

of a knowledge-based model named CROPGRO (Boote et al.,

1998; Salmerón and Purcell, 2016) as features and showed that

including the predicted output from CROPGRO as a feature

improved the mean absolute error by 2.76 and 5.51% for

different traits.

Washburn et al. (2021) applied a CNN-MLP based

neural network on maize data. Their dataset is similar to

Khaki and Wang (2019) as their data contains genetic,

environmental, soil and fieldmanagement information. Initially,

this model processed the inputs in three parts: (i) fully

connected blocks were applied to genetic data, (ii) CNN

blocks were applied to environmental information and (iii)

fully connected neural network blocks were employed on

soil and field management data. Then the outputs of

these three parts were concatenated and passed to fully
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connected blocks to predict yields. They observed that soil

and environmental factors play a bigger role than the

genetic information for yield prediction as they comprised

35 and 22% of the importance score, respectively. From the

feature perspective, precipitation, vapor pressure and plant

density were the most influential features. They also observed

that adding historical information for a specific location

improved prediction and overall, the performance of the

proposed CNN-MLP model was comparable to or better than

GBLUP-based models.

Måløy et al. (2021) employed a variation of transformers

named performers (Choromanski et al., 2020) on a barley dataset

to predict yield. Performers were developed as attention-based

models capable of capturing long-range interactions between

features; this is appropriate for genomic data where attention

related SNPs may be distant in the genome. In their work,

the environment variables were of two types: (i) mean value

of temperature and precipitation for the entire growing season

and (ii) mean temperature and cumulative precipitation for

each day of the growing season (historical data). Performers

were applied to the genomic data to extract genomic features.

An MLP was employed when the mean weather variables for

the entire growing season were considered, or a performer was

employed when historical weather data was considered as the

input, to obtain the relevant features from the weather variables.

Finally, both feature representations were concatenated and

passed as the input to the regression layer to predict yield. Their

results demonstrated that the model that considered historical

weather information had the highest R2 scores. Their model also

outperformed a CNN + MLP model by 1.3% in R2 score. In

addition, as the historical weather data based model was better

than average weather based models, the results showed that

research needs to concentrate on integrating historical weather

data and genomic data together in ameaningful way for different

growth stages of crops to predict genotype-specific yield for a

specific environment.

Zhong et al. (2022) proposed a multi-task learning model

where each task-specific layer predicted the average yield of

maize for a specific county. Their input variables contained

weather, remote sensing and soil data. K-means clustering was

applied to county-level yield and weather and soil data to obtain

spatial features. In addition, an LSTM and a fully connected

neural network were applied to the weather data and soil data,

respectively, to extract temporal and soil features. Finally, these

three outputs were combined and served as the input to the

county-specific output layer that predicted yield for that specific

county. The result of the proposed model showed that killing

degree days was one of the major driving factors for yield loss

in 2012. As this model predicted county-specific yield, it did not

integrate genetic information. However, this model considered

spatial-temporal relationships which can be integrated with

genomic data and have the potential to play a vital role in

capturing GxE.

Sharma et al. (2022) proposed a deep learning model that

contains four modules: genome, weather, field management

and soil module and predicted maize yield. For each of these

modules, they obtained an embedded vector representing the

feature set of that module by employing different types of neural

networks. For example, two different CNNs were employed

for weather and genomic data, while two separate MLPs were

used for field management and soil data to obtain embeddings

for each module. In addition, they applied an attention

mechanism between the genome embedding and weather data

embedding to learn an embedding that replicates GxE. Finally,

the embeddings for GxE, weather, field management and soil

were concatenated, and a fully connected layer was employed

to predict the yield. The results demonstrated 1.45 times better

correlation coefficient than GBLUP and CNN-based methods.

This approach is unique compared to other methods as they

used the attention mechanism to obtain GxE, which ideally puts

more importance on the environmental variables that influence

maize yield.

In Table 3, we list the deep learning-based academic papers

that work with multi-environment trial and environmental data.

Some single-environment models (Sandhu et al., 2021b,c, 2022)

employed an MLP, similar to the model of Montesinos-López

et al. (2019c), to predict quantitative traits in another location or

year. As these models did not incorporate environmental data

into the model, we consider them single-environment models.

Thus, this type of research, while important in demonstrating

advances in prediction of traits in new situations, is not

summarized in this survey. In addition, typically, environmental

information is not readily available, and even if they are

available, thesemodels are complex in nature as different types of

data need different types of ANNs to extractmeaningful features.

Thus, the development of new deep learning approaches in

this new research area is comparatively slower than single

environment trial models. We expect that, as data collection

and integration continues in crop breeding programs, more

detailed datasets containing rich genotypic, weather, soil and

management data will be generally available. Models that

incorporate this data will become more common as well, as the

data becomes more reliable, standardized and available.

6. Discussion

Genomic selection is a well-established tool for crop

breeding, and non-linear supervised deep learning models are

increasingly being used to predict phenotypes for complex traits.

As datasets become increasingly feature-rich and large enough

to train complex models, the use of deep learning models

becomes more feasible. This trend also enables incorporating

heterogeneous weather, soil and field management data to be

added to predict environmental effects on genotypes. Typically,

weather variables such as precipitation and vapor pressure
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TABLE 3 Papers on multi-environment deep learning models.

Year References DL model Crops Traits
Geno

data

Weather

data

Soil

data

Other

data

2019 Khaki and Wang (2019) MLP Corn Yield Yes Yes Yes

2019 Montesinos-López et al. (2019c) MLP Wheat

Yield,

Days

to

Heading

Yes Yes No

2020 Shook et al. (2020)
LSTM-

MLP
Soybean Yield No Yes No

Genotype

Cluster

2020 Khaki et al. (2020)
CNN-

RNN

Corn,

Soybean
Yield No Yes Yes

Historical

Yield,

Field

Management

2020 Lin et al. (2020)
Att-

LSTM
Corn Yield No Yes No

2020 Gangopadhyay et al. (2020)

MLP

LSTM

Att

Soybean Yield No Yes No

2020 Guo et al. (2020) MLP Wheat

Yield,

Harvest

Index,

Spike

Fertility,

Thousand

Grain

Weight

Yes Yes No

2021 Sandhu et al. (2021a) MLP Wheat

Yield,

Protein

Content

Yes Yes No

2021 Washburn et al. (2021)
CNN

MLP
Maize Yield yes Yes Yes

Field

Management

2021 Måløy et al. (2021)
Transformers

MLP
Barley Yield yes Yes No

2022 Zhong et al. (2022)
LSTM

MLP
Maize Yield No Yes Yes

2022 Sharma et al. (2022)

CNN

MLP

Att

Maize Yield Yes Yes Yes
Field

Management

In the table, MLP means Fully Connected Networks and Att means attention networks.
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(Gangopadhyay et al., 2020; Washburn et al., 2021) are the

most important. However, other environmental variables such

as day length (Tacarindua et al., 2013; Rahman et al., 2018;

Islam et al., 2019), and maximum and minimum temperature

(Gul et al., 2020; Moore et al., 2021) may also become vital

based on the crop species and environment. These weather

variables are the most influential during the early stages of crop

development (Washburn et al., 2021). As these weather variables

are mostly available as hourly or daily data, determining how

this information can be added to the deep learning models,

especially during the early stages of development, is essential

(Gangopadhyay et al., 2020). Most existing methods employed

neural networks on monthly average data of weather variables

for the whole growing season (Khaki and Wang, 2019; Khaki

et al., 2020; Shook et al., 2020). To add more information in

the early stage of development, a variable length time window

approach can be adopted where in the beginning, time window

can be shorter, and in the later stage, the size of time window

can be increased. Additionally, the use of unsupervised learning

techniques to learn appropriate representations of weather data

is a potential area of additional exploration.

Some research (Khaki and Wang, 2019; Washburn et al.,

2021) incorporated a wide range of soil and field management

variables in their model, such as soil electrical conductivity,

calcium carbonate content, saturated hydraulic conductivity,

gypsum content, plant density, irrigation, and pH. Typically,

water and nutrition-related soil variables are the most relevant

(Washburn et al., 2021). Though it is observed that soil variables

are more important than weather variables (Washburn et al.,

2021), in most of the current research, these variables are not

considered due to the lack of data. Recently, the use of IoT

devices to collect soil and field data (for example, weather

variables described above) is gaining popularity (Sharma et al.,

2020). As IoT devices can collect data more accurately and

frequently, it has become possible to estimate soil nutrients and

moisture for the growing cycle (Sharma et al., 2020). These

estimated values can be the input of the deep learning algorithm

to estimate phenotypes. Another source of data that can work

as the input of GS is high-quality image data of fields. Drones

with high-quality cameras have been used recently to capture

field images. These images can be fed into a deep learning model

to add additional information about the field. Recent research

has indicated that using early phenotypic data, including spectral

data collected by drones, yields models that can be competitive

with GS (Adak et al., 2021) in predicting phenotype at harvest.

Since GS aims to estimate yield even before sowing, we need

to ensure that the information added in the model is collected

either before sowing the plants or is estimated for the growing

season based on previously available data. Collecting phenotypic

information during growing season to attempt to predict future

phenotypes represents a different philosophy of approaching

GS, either when this data is used alone or in conjunction with

genomic data. This approach may be consider advantageous in

forestry or perennial crops, where early phenotypic information

may shape long-term field trials (Cros et al., 2015; Kwong et al.,

2017; Faville et al., 2018; Crain et al., 2020; Lebedev et al., 2020;

Archambeau et al., 2022).

Most of the multi-environment deep learning architecture

we discussed so far sought to capture the spatial and/or temporal

effect of environmental variables on traits and later incorporated

genomic data into the model for estimating phenotypes. Though

a few deep learning models were developed by employing

attention for genomic selection (Gangopadhyay et al., 2020;

Jubair et al., 2021; Måløy et al., 2021), we believe attention-based

architectures are the most promising approach for genomic

selection. Attention-based methods can capture both temporal

and spatial information and summarize the input data by

aggregating them based on importance scores. As a robustmodel

needs to be trained on different types and data sources, attention

may play a significant role by providing more importance to

the critical parts of different data sources (Gangopadhyay et al.,

2020; Jubair et al., 2021; Måløy et al., 2021).

As one of the major challenges of GS for multi-

environment is the data, collaboration among breeders and

a well-defined data collection strategy will be useful to

take GS application into production (Spindel and McCouch,

2016; Xu et al., 2022). To the best of our knowledge, the

only user-friendly software designed to integrate multiple

data sources in genomic selection is learnMet (Westhues

et al., 2022). This software allows the user to employ

traditional machine learning methods, such as XGBoost and

Random Forests, and MLP-based neural networks. However,

complex models also need to be packaged as user-friendly

software to make more accurate predictions and bring GS

to breeders.

In summary, continued advances in deep learning, driven

by disparate application areas such as vision and languages,

will continue to be adapted to GS, especially in the context of

large datasets incorporating environmental conditions. Future

research should focus on extracting meaningful features from

different data sources and leveraging their interactions to

predict quantitative traits. To extract meaningful features,

choosing an appropriate deep learning architecture that can

capture different relationships within each type of data will

be the first step. For example, weather and image data during

the growing season contains a spatial-temporal relationship,

whereas soil data before the growing season has a spatial

relationship. There are also heterogeneous unstructured text

data about field management, such as the sowing pattern

of crops, the amount of water supplied during irrigation,

and notes on the overall condition of fields. Deep learning

architecture such as transformers may play a vital role as

they have been successfully employed to extract meaningful

features from genomic (Avsec et al., 2021; Ji et al., 2021;

Monteiro et al., 2022), weather (Måløy et al., 2021), and

unstructured text data (Devlin et al., 2018; Raffel et al.,
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2020). However, GS for multi-environment model may need

to employ different types of neural networks on different

sources of data depending on the data property, such as the

spatial, temporal and spatial-temporal relationship between

variables. Future research also should focus on how to capture

the interrelationship between genotypes and these features to

predict quantitative traits.
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