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Muscle mass and force are key for movement, life quality, and health. It is well

established that resistance exercise is a potent anabolic stimulus increasing

muscle mass and force. The response of a physiological system to resistance

exercise is composed of non-modifiable (i.e., age, gender, genetics) and

modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors

are integrated by systemic responses (i.e., molecular signaling, genetic

responses, protein metabolism, etc.), consequently resulting in functional

and physiological adaptations. Herein, we discuss the influence of non-

modifiable factors on resistance exercise: age, gender, and genetics. A solid

understanding of the role of non-modifiable factors might help to adjust

training regimes towards optimal muscle mass maintenance and health.
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Introduction

The importance of muscle mass and strength and their associated metabolic functions

in the performance of exercise and activities in daily living is recognized as a critical factor

in life (Fuhrman et al., 1951; Kotler et al., 1989; Wolfe, 2006). Skeletal muscle is a highly

plastic tissue consistently adapting to different physiological conditions, such as

mechanical loading (Goldberg et al., 1975; Fry, 2004; Rindom et al., 2019) or

metabolic stress (ROONEY et al., 1994; Carey Smith and Rutherford, 1995; Schott

et al., 1995), disuse (Bodine, 2013), hypoxia (Hoppeler et al., 2008), weightlessness

(Desplanches, 1997), cold exposure (Buser et al., 1982; van den Berg et al., 2011), and

nutritional modifications (Vogt et al., 2003). As such, it adapts to physical activity

(exercise) or inactivity (disuse, disease, injury) (Flück and Hoppeler, 2003).

Physical activity, the movement of the human body by skeletal muscles that expends

energy, was evolutionary advantageous as it allowed for traveling and discovering new

habitats (Lieberman, 2013). The evolution of exercise coincides with the evolution of

hunting and gathering, as foraging for food increased physical activity significantly

(Lieberman, 2015). The absence of the need for daily hunting and gathering for food or

water resulted in inactivity in our more comfortable lifestyles today. In order to counteract

this inactivity, we have to engage in voluntary physical activity that is planned, structured,

repetitive, and undertaken to sustain or improve health and fitness, defined as exercise
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(Lieberman, 2021). Exercise challenges whole-body homeostasis,

demanding an orchestrated systemic response permitting to

equilibrate metabolic demands of contracting skeletal muscles

(Hawley et al., 2014). Hence, the resulting metabolic and

morphological adaptations are highly exercise-specific.

The combinatorial possibilities of intensity and duration

allow for a plethora of exercise types. Two of the most

extensively studied types of exercise are endurance and

resistance exercise.

Endurance exercise is typically characterized by continuous

bouts of lower-intensity contractions (Coffey and Hawley, 2017)

allowing the individual to sustain exercise for a prolonged time.

Typical endurance training is, for instance, walking, running,

cycling, and swimming. Prolonged contractile activity at a lower

intensity denotes a challenge to the metabolic system disrupting

intracellular concentrations of oxygen, lactate, reactive oxygen

species, adenosine triphosphate, nicotinamide adenine

dinucleotide, and calcium (Coffey and Hawley, 2007). These

disruptions initiate signaling cascades converging on

peroxisome-proliferator-activated receptor gamma coactivator

1 alpha regulating mitochondrial biogenesis (Baar et al., 2002;

Wu et al., 2002; Pilegaard et al., 2003), capillarity (Saltin and

Gollnick, 1983), and substrate utilization (Holloszy and Coyle,

1984). Therefore, endurance exercise is associated with

adaptations to increase oxidative capacity (Hawley, 2002).

In contrast to endurance exercise, resistance exercise (RE) is

associated with short duration and higher to maximal intensity

contractions (Egan and Zierath, 2013). RE challenges the

mechanical integrity (Ingber, 2003a; Ingber, 2003b) and

metabolic homeostasis of muscles (Goto et al., 2005;

Schoenfeld, 2013). The classical morphological and neural

adaptions to RE include for instance changes in muscle fiber

size (McDonagh and Davies, 1984; Jones et al., 1989) and

architecture (Franchi et al., 2017), myofibrillar growth and

mitochondrial proliferation (Macdougall et al., 1979;

MacDougall et al., 1980), metabolic profile (Zanuso et al.,

2017), tendon stiffness and thickness (Reeves et al., 2003;

Kongsgaard et al., 2007), firing frequency (Leong et al., 1999),

cortical adaptations (Perez et al., 2004), spinal reflexes (Aagaard

et al., 2002) and antagonist coactivation (Baratta et al., 1988). In

addition, cardiovascular improvements are reported, such as

enhanced blood pressure control (MacDonald et al., 2016),

improved insulin sensitivity controlling blood glucose (Codella

et al., 2018), and weight management (Paoli et al., 2015). The

high plasticity of skeletal muscle is retained lifelong as RE

increases muscle mass (DeLorme, 1945; Phillips, 2014) in men

and women of all ages (Westcott et al., 2009).

Conceptually, the response of a physiological system to RE

comprises non-modifiable (i.e., age, gender, genetics) and

modifiable factors (i.e., type and duration of exercise,

nutrition, training status, etc.) (Spiering et al., 2008). Both

factors are integrated by systemic responses (i.e., molecular

signaling, genetic responses, protein metabolism, etc.),

consequently resulting in functional adaptations (Spiering

et al., 2008). While the contribution of RE descriptors has

been reviewed elsewhere (Viecelli and Aguayo, 2022), the aim

of this review is to discuss the influence of age, gender, and

genetics on RE outcomes.

Age

Age-associated changes on the cellular
and molecular level

Aging, a decline in physiological function, is universal and

impacts quality of life (Selman et al., 2012; Lemaître et al., 2015).

In contrast to chronological aging, whereby aging is referred to as

a function of time an individual existed, biological aging is

referred to epigenetic changes and expresseses how fast the

cellular machinery deteriorates, depending on the individual

genetic setup and lifestyle factors, such as nutrition and

exercise (Sillanpää et al., 2019). As biological aging impacts

musculoskeletal health, in this review, aging is referred to as

biological aging.

On the cellular level, aging is associated with the occurrence,

accumulation, and consequences of molecular damage (Rattan,

2016), resulting from different sources (i.e., reactive oxygen

species (ROS), free radicals and their associated biochemical

interactions, spontaneous DNA duplication, translational,

posttranslational errors, etc.) (Rattan, 2009). These

interactions, as observed in cell cultures of human diploid cell

strains, contribute to the finite replicative capacity of cells

(Hayflick, 1965), ultimately resulting in proliferative cell cycle

arrest attributed to telomere shortening (Harley et al., 1990;

Bodnar et al., 1998). These processes gave rise to the concept of

cellular senescence. It is noteworthy that chronic activation of

tumor suppressors (i.e., retinoblastoma protein and the

transcription factor p53) has also been shown to induce cell

cycle arrest (Harvey and Levine, 1991; Serrano et al., 1997). Aging

might therefore be a function of the progressive accumulation of

senescent cells over a lifetime, consequently associated with a

disruption in tissue homeostasis and integrity, reducing

responses to physiological stressors (Sharpless and DePinho,

2007; Signer and Morrison, 2013; Van Deursen, 2014a;

Muñoz-Espín and Serrano, 2014) (Figure 1).

Moreover, cellular senescence changes the cellular protein

expression and secretion; the latter is termed secretome (Agrawal

et al., 2010). This impacts complex biological processes used for

development, tissue repair, and age-related diseases (Van

Deursen, 2014b). The secretome of senescent cells, consisting

of cytokines, proteases, chemokines, growth factors, and

extracellular vesicles, can either be beneficial or detrimental

depending on the composition and senescence-inducing

stressors (Coppé et al., 2008). The 2 – 4 fold elevated serum

levels of secreted TNFα, IL-6, and C-reactive protein (CRP)
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compared to younger individuals promote inflammation that can

accelerate aging (Schaap et al., 2006; Bian et al., 2017; Can et al.,

2017; Marzetti et al., 2019).

In addition, multiple signaling pathways such as Wnt (Du

et al., 2014; Hu et al., 2014), TGFβ (Carlson et al., 2008) and FGF

(Bernet et al., 2014) promote cell-cycle inhibitors and, thus,

contribute to cellular senescence in skeletal cells.

In aging skeletal muscle, the proliferative potential and the

number of satellite cells decline significantly (Boldrin et al., 2010;

García-Prat et al., 2013). The observation that in elderly people,

the proportion and the cross-sectional area (CSA) of type II fibers

are significantly reduced, and these fibers showed a lower satellite

cell content led to the conclusion that satellite cell dysfunction

could be a driver for muscle aging (Verdijk et al., 2007). However,

this is still controversial as satellite cell depletion in adult mice did

not affect muscle atrophy (Jackson et al., 2012; Fry et al., 2015),

suggesting that satellite cells are only crucial in regenerative

processes and do not support size maintenance of aged

muscle fibers (Fry et al., 2015; Murach et al., 2018). The

secretome might influence extrinsic factors from satellite cell

niches, such as FGF (Pawlikowski et al., 2017), TGFβ (Carlson

et al., 2009), and myostatin (McKay et al., 2012), negatively

affecting satellite regenerative potential (Bentzinger et al., 2010).

Emerging evidence suggests a key role of mitochondria in aging

and age-associated diseases (Amorim et al., 2022). Caloric restriction

has been shown to extend lifespan in yeast (Lin et al., 2002),

Caenorhabditis elegans (Schulz et al., 2007), and mammals (Nisoli

et al., 2005), indicating a role of mitochondria as longevity signaling

pathways converge, inter alia, on mitochondrial regulation (López-

Lluch andNavas, 2016). By contrast, the disruption of mitochondrial

function is observed in senescent cells (Yoon et al., 2003; Byun et al.,

2012; Lafargue et al., 2017). Age-associated mitochondrial damage

increases ROS accumulation and leads to energy deficiency in skeletal

muscle (Lourenço dos Santos et al., 2015; Kadoguchi et al., 2020),

rendering skeletal muscle susceptible to atrophy mediated by FoxO-

dependent autophagy (Tezze et al., 2017). Hence, failure in

mitochondrial dynamics has a negative impact on muscle

function and maintenance (Favaro et al., 2019; Huang et al.,

2019) and this mitochondrial dysfunction contributes to a

proteolytic shift (Mankhong et al., 2020).

In addition, the mechanistic target of rapamycin (mTOR) has

been found to be hyperactivated during aging, resulting in

mitochondrial dysfunction and increased oxidative stress

(Joseph et al., 2019; Tang et al., 2019), ultimately leading to

fiber decay (Vainshtein and Sandri, 2020) (Figure 1). The reason

for this hyperactivation has not yet been elucidated, and due to

the complexity and interrelatedness, the molecular mechanisms

of muscular aging are not fully understood (Cruz-Jentoft and

Sayer, 2019). Nevertheless, it is undebated that aging interferes

with skeletal muscle homeostasis resulting in an imbalance of

protein synthesis and degradation, promoting proteolytic

signaling pathways (Cruz-Jentoft and Sayer, 2019).

FIGURE 1
The three non-modifiable factors of resistance training.
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Aging and the force-generating capacity

Human aging is associated with a reduced force-generating

capacity attributed to multiple changes such as the loss of muscle

mass (Janssen et al., 2000a; Williams et al., 2002; Topinková,

2008; Degens and Korhonen, 2012; Mitchell et al., 2012), fiber

type shifting (Andersen, 2003; Verdijk et al., 2007; Barnouin

et al., 2017), muscle architecture and ultrastructure (Binzoni

et al., 2001; Kubo et al., 2003; Morse et al., 2005), and neural

control (Urbanchek et al., 2001; Morse et al., 2004), significantly

impacting the health of elderly (Rosenberg, 1989; Baumgartner

et al., 1998; Cruz-Jentoft et al., 2010; Karaguzel and Holick, 2010;

Levinger et al., 2016; Lo et al., 2017).

Unfortunately, skeletal muscle cannot escape the aging

process and, hence, deteriorates as a function of time (Degens

and Korhonen, 2012).While post-puberty and during adulthood,

muscle mass and strength are stable in healthy individuals,

starting between the 4th and 5th decade of life, atrophic

processes are favored, resulting in a decrease in muscle mass

and strength (Williams et al., 2002). A recent quantitative review

calculated the median loss of muscle mass per decade in men as

4.7 and 3.7% in women, respectively (Mitchell et al., 2012). By the

age of 80 years, 30% of the peak muscle mass of an individual is

lost because of aging (Janssen et al., 2000a; Topinková, 2008).

Muscle mass loss is not distributed uniformly over the whole

body, as determined in a magnetic resonance imaging study of

200 women and 268men, whereby the rate of loss of muscle mass

in lower limb muscles was more than double in comparison to

upper limbmuscles (Janssen et al., 2000b). Althoughmen possess

more muscle mass than women, muscle mass loss is similar

between sexes when the loss is regarded as a proportion of peak

muscle mass (Janssen et al., 2000b; Silva et al., 2010). Hence, there

is no evidence of sexual dimorphism in the age-associated loss of

muscle mass (Runge et al., 2004; Maden-Wilkinson et al., 2015).

As men do have 1.5–2 times larger muscle mass and strength

than women, they are reaching the disability threshold later in life

(~1.5 years) (Miller et al., 1993; Goodpaster et al., 2001).

Aging is associated with a reduction predominantly in the

cross-sectional area (CSA) of type II fibers (Barnouin et al., 2017).

Hence, the proportion and volume of type I fibers increase

(Andersen, 2003; Verdijk et al., 2007; Barnouin et al., 2017).

Between the age of 22 and 74, a reduction of type II CSA from

58 to 52% was observed for the m. vastus lateralis in men

(Barnouin et al., 2017). Given that the mechanical tension of

type II fibers is 1.4 times higher than the specific tension of type I

fibers (Bottinelli et al., 1996; Widrick et al., 1996), at best, it could

explain a 2% and not a 45% force reduction that was reported

between these ages (Degens et al., 2009). It is also noteworthy that

there are studies not observing tensional differences between

fiber types (Ottenheijm et al., 2005; Degens and Larsson, 2007;

Meijer et al., 2015). Hence, it is fair to conclude that fiber type

shifting only minimally accounts for the age-associated force

reduction seen during aging.

Muscle architecture and ultrastructure change during aging.

While aging or detraining decreases the pennation angle of the

fascicle (Binzoni et al., 2001; Kubo et al., 2003; Morse et al., 2005)

when muscle mass is lost (Janssen et al., 2000a;Williams et al., 2002;

Topinková, 2008; Degens andKorhonen, 2012;Mitchell et al., 2012),

vice versa RE increases the fascicle pennation angle due to the

optimization of the packaging of large fibers between the

aponeurosis (Aagaard et al., 2001; Blazevich, 2006; Seynnes et al.,

2007; Bloomquist et al., 2013). A decrease in the pennation angle

increases the force and power-generating capacity because of an

enhancement of the cosine function. Therefore, the change in

muscle architecture (i.e., a decrease in pennation angle of

fascicle) attenuates the loss of force and power (Degens et al., 2009).

Aging has been associated with ultrastructural changes such

as increases in connective tissue and fat infiltration (Goodpaster

et al., 2001; Degens and McPhee, 2013; Power et al., 2014) as

extensively researched using ultrasound (Pillen et al., 2009;

Akima et al., 2017). The non-contractile area was found to be

twice the size when comparing young versus old men (p < 0.05)

and could thus explain the observed force loss better than the

reduction of type II CSA (Power et al., 2014).

Reduction of force in the elderly may also be attributed to the

comprised ability to recruit the muscle voluntarily (Morse et al.,

2004). In rat muscles, the denervation of muscle fibers explained

11% of force reduction (Urbanchek et al., 2001). Furthermore,

increased co-activation of antagonist muscles has been shown to

interfere with maximum force production in the elderly

attenuating specific tension (Morse et al., 2004).

Given that skeletal muscle mass accounts for up to 40% of an

individual total body mass (Frontera and Ochala, 2015), the loss of

musclemass and strength has a fundamental impact on health in the

elderly population as it is associated with the risk of adverse

outcomes such as physical disability, poor quality of life and

death (Rosenberg, 1989; Baumgartner et al., 1998; Cruz-Jentoft

et al., 2010). Moreover, the close link between skeletal muscle

mass and bone mineral density leads to bone loss when skeletal

muscle mass deteriorates. Osteopenia, the loss of bone mass

(Karaguzel and Holick, 2010), together with sarcopenia, present

major clinical problems. The impairment of locomotory functions

leads to comprised balance and increases the risk of falls promoting

osteoporotic fractures (Levinger et al., 2016). Hence, low skeletal

muscle mass is a driver of public medical costs as hospitalization

within this cohort has a high prevalence (Lo et al., 2017). In the

United States alone, the total cost of hospitalizations in individuals

with sarcopenia was estimated to be $40.4 billion in 2014 (Goates

et al., 2019). In Switzerland, a quarter of the elderly was affected by

sarcopenia in 2016 (Wearing et al., 2020).

Aging and resistance exercise

RE is a potent anabolic countermeasure to fight sarcopenia as

it increases muscle mass and strength even in geriatric
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individuals. Fiatarone and colleagues (Fiatarone et al., 1990)

subjected ten frail, institutionalized volunteers aged 90 ±

1 year to 8 weeks of high-intensity training. Strength gains

averaged 174 ± 31% (mean ± SEM) in the 9 subjects who

completed the training. Midthigh muscle area increased 9 ±

4.5%. Therefore, resistance exercise leads to significant gains in

muscle strength, size, and functional mobility among frail

residents of nursing homes.

Churchward-Venne et al. (2015), investigated the prevalence

of non-responders to RE, assessing lean body mass (LBM),

muscle fiber size, strength, and/or physical function after 12

(n = 110) and 24 (n = 85) weeks of RE. In response to resistance

exercise training, LBM increased by 0.9 ± 0.1 kg (range: −3.3 to

+5.4 kg; p < 0.001) from 0 to 12 weeks of training and by 1.1 ±

0.2 kg (range: −1.8 to +9.2 kg; p < 0.001) from 0 to 24 weeks.

Moreover, muscle fiber analysis showed an average increase of

type 1 and 2 muscle fiber size by 324 ± 137 mm2 (range: −4,458 to

+3,386 mm2; p = 0.021) and 701 ± 137 mm2 (range: −4,041 to

+3,904 mm2; p < 0.001) from 0 to 12 weeks for type 1 and

2 muscle fiber respectively. From 0 to 24 weeks, type 1 and

2 muscle fiber size increased by 360 ± 157 mm2 (range: −3,531 to

+3,426 mm2; p = 0.026) and 779 ± 161 mm2 (range: −2,728 to

+3,815 mm2; p < 0.001) for type 1 and 2 muscle fiber,

respectively. Functional assessment for the 1-RM strength on

the leg press and leg extension showed an increase by 33 + 2 kg

(range: −36 to +87 kg; p < 0.001) and 20 + 1 kg (range: −22 to

+56 kg; p < 0.001) from 0 to 12 weeks and an increase by 50 +

3 kg (range: −28 to +145 kg; p < 0.001), and 29 + 2 kg (range:

−19 to +60 kg; p < 0.001) from 0 to 24 weeks for the leg press and

leg extension 1-RM respectively. Lastly, further functional

assessments such as chair-rise time decreased by 1.3 + 0.4 s

(range: +21.6 to −12.5 s; p = 0.003) from 0 to 12 weeks and

decreased by 2.3 + 0.4 s (range: +10.5 to −23.0 s; p < 0.001) from

0 to 24 weeks.

The authors observed that in all subjects, at least one positive

interventional outcome was found and concluded that there is no

evidence for non-responders to RE in their study.

Wroblewski et al. (2011) examined body composition, peak

torque, and magnetic resonance imaging (MRI) of bilateral

quadriceps of 40 highly trained individuals aged 40–81 years.

MRI quantification of mid-thigh muscle area (p = 0.31) and lean

mass (p = 0.15) revealed no increase with age, and a significant

relationship of retention of mid-thigh muscle area (p > 0.0001)

was observed. Additionally, in these highly trained individuals,

specific strength (strength per quadriceps area) did not

significantly decline as a function of aging (p = 0.06).

Therefore, the authors concluded that aging alone could not

explain the commonly observed decline in muscle mass and

strength, and chronic disuse might be a stronger driver of

atrophy rather than aging.

Although a large heterogeneity of hypertrophy in response to

RE is observed, chronic RE is associated with increases with

positive effects, as observed by (Churchward-Venne et al., 2015).

It is again pointing to a necessity of a lifelong intervention. As

such, muscle plasticity is not compromised due to the aging

process per se. Hence, we strongly encourage even the oldest olds

to implement regular resistance exercise into their daily habit.

Gender

Besides the reproductive organs, before puberty, no

significant anthropometrical differences between boys and

girls exist. Sexual dimorphism is pronounced as puberty

begins due to hormonal changes.

Testosterone serum level, for example, is 10- to 40-fold higher in

men at rest (Kraemer et al., 1991; Vingren et al., 2010) and because

of its androgenic-anabolic potential (Brodsky et al., 1996; Bhasin

et al., 1997; Snyder et al., 2000) thought to mediate muscle mass

through the ability to increase (Urban et al., 1995) the synthesis and/

or decreasing (Zhao et al., 2008) the breakdown of myofibrillar

protein. Estrogen is thought to regulate the muscle mass of women

as this hormone exerts the capacity to downregulate myofibrillar

protein breakdown (Pollanen et al., 2007). Estrogen receptors have

been found in skeletal muscle tissue, tendons, and ligaments and are

thought to regulate skeletal muscle proteins and enhance the

sensitivity to anabolic stimuli (Hansen and Kjaer, 2014). During

aging, the estrogen levels decrease, affecting women detrimentally as

they experience a rapid decline in muscle mass and force (Hansen

and Kjaer, 2014). Postmenopausal hormone replacement therapy

reversed these changes by an increase in myogenic gene expression,

indicating the role in muscle anabolism (Dieli-Conwright et al.,

2009).

The menstrual cycle was the subject of multiple studies

examining muscle strength, whereby little or no differences

were found during the different stages of the cycle (Elliott

et al., 2003; Fridén et al., 2003; Bambaeichi et al., 2004).

However, as many factors can influence exercise performance,

this topic warrants more research.

As such, men and women are capable of increasing muscle

mass and strength in response to RE (Abe et al., 2000; Hubal

et al., 2005; Kosek et al., 2006). However, it must be understood

that women start with less muscle mass, thus biasing, relative

changes of muscle mass increase in their favor.

Gender differences in resistance exercise

It is well established that RE provides a potent anabolic

stimulus for both sexes, mediated partly by acute and chronic and

hormonal changes, including testosterone, insulin-like growth

factor 1 (IGF-1), growth hormone (GH), and

dehydroepiandrosterone sulfate (DHEA-S) (Consitt et al.,

2002; Kahn et al., 2002; Kraemer and Ratamess, 2005; Fleck

and Kraemer, 2014). However, RE-induced changes differ

significantly between women and men (Figure 1).
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While serum testosterone levels following heavy RE are

acutely elevated in men (Fleck and Kraemer, 2014) they do

not change in women after RE (Kraemer et al., 1991; Kraemer

et al., 1993; Staron et al., 1994; Hakkinen and Pakarinen, 1995).

For GH, the response to RE seems to be similar between gender,

as RE induced a post-exercise increase of GH in women and men

(Kraemer et al., 1991; Hakkinen and Pakarinen, 1995). While

research on the acute response of IGF-1 to RE is equivocal

(Kraemer et al., 1991; Kraemer et al., 1993; Consitt et al.,

2001; Kraemer and Ratamess, 2005), the combination of GH

and IGF-1 seems to play a testosterone-compensatory effect in

women (Kraemer et al., 2010) as women show a markedly

increase in fiber CSA as a result of regimented RE (Staron

et al., 1994) despite low levels of testosterone.

DHEA-S is a peripheral precursor in testosterone

metabolism (Yamazaki and Shimada, 1997), accounting for

roughly 90% of circulating testosterone in women (Baulieu,

1996; Labrie et al., 1997) being the predominant adrenal

steroid hormone in women and men (Nakamura and Aizawa,

2017). An acute bout of RE increased blood DHEA-S levels in

women and men (Riechman et al., 2004) while 8 weeks of RE

significantly increased resting DHEA-S levels in women (Aizawa

et al., 2003). In addition, Aizawa et al. (Aizawa et al., 2006)

reported that DHEA-S levels positively correlated with leg

extensor power in women (p < 0.001) but not in males. As

such, DHEA-S levels might be an important driver of strength

development in female athletes. Thus, gender differences in

resting anabolic hormone levels and responses to exercise do

exist.

Multiple studies addressed gender differences in RE-induced

hypertrophy and force. Roth et al. (Roth et al., 2001) examined the

possible influence of age and gender on muscle volume responses to

strength training. Eight young men, six young women, nine older

men, and ten older women underwent a 6-months whole-body

strength training program that exercised all major muscle groups of

the upper and lower body 3 days per week. The authors usedMRI to

assess thigh and quadriceps muscle volume and mid-thigh CSA

before and after the interventional period. Muscle volume increased

significantly in all age and gender groups in response to strength

training (p < 0.001). No statistically significant difference between

the groups was found. Neither gender nor age influenced the muscle

volume response to strength training.

In a study examining the effects of age, gender, andmyostatin

genotype on the hypertrophy response to heavy resistance

strength training (Ivey et al., 2000), recruited 11 young men

(25 ± 3 years) and women (26 ± 2 years), 12 older men (69 ±

3 years), and 11 older women (68 ± 2 years). The participants

underwent 9 weeks of resistance exercise, consisting of knee

extensions of the dominant leg three times per week. Bilateral

muscle volume was measured using MRI before and after the

intervention. Absolute increases in muscle volume were greater

in men than in women (204 ± 20 vs. 101 ± 13 cm3, p < 0.01). Even

after adjusting for baseline muscle volume, a gender effect

remained. Additionally, 31 weeks of detraining showed a

significantly greater loss of absolute muscle volume in men

than in women (151 ± 13 vs. 88 ± 7 cm3, p < 0.05). The

authors concluded that muscle mass response is affected by

gender as men increased their muscle volume about twice as

much as women.

In line, Bamman and colleagues (Bamman et al., 2003)

examined gender differences in resistance-training-induced

myofiber among older adults and recruited nine older men

(69 ± 2 years) and five older women (66 ± 1 year). Using

biopsies of the vastus lateralis to determine CSA after

26 weeks of resistance exercise three times a week, including

knee extension, leg presses, or squats. In addition, 1-RM was

assessed pre- and post-intervention. Although the intervention

increased CSA for all fiber types (i.e., I, IIA, IIX) in both sexes,

hypertrophy (p < 0.05) and strength gains (p < 0.05) were greater

in men when compared with women.

Walts and colleagues (Walts et al., 2008) investigated the

influence of sex and race on the effects of strength training on

thigh muscle volume. They recruited 181 inactive healthy women

(63 ± 0.9 years, n = 99) andmen (63 ± 0.9 years, n = 82) who were

subjected to unilateral knee extension of the dominant leg trice a

week for 10 weeks. Quadriceps muscle volume was measured

using computed tomography before and after the intervention

period. Absolute increases in muscle volume were significantly

greater (p < 0.001) in men than in women, although both sex

groups increased muscle volume significantly (p < 0.001) as a

response to strength training.

Hubal et al. (2005), tested 342 women and 243 men. The

participants were subjected to isometric and dynamic strength

training regimes of the biceps brachii of the non-dominant arm.

MRI was used to determine the CSA before and after 12 weeks of

progressive, dynamic resistance training. Men experienced 2.5%

greater absolute gains for the muscle CSA (p < 0.01) when

compared to women. However, despite absolute gain, relative

increases in strength measures, i.e.,maximal voluntary isometric

contraction and 1 repetition maximum (1RM), were greater in

women versus men (p < 0.05).

These results are in line with a study conducted by (West et al.,

2012) that conducted a sex-based comparison of myofibrillar

protein synthesis (MPS) after a single bout of high-intensity RE

in the fed state of eight men and eight women. Participants

underwent constant infusions of L-[ring-13C6] phenylalanine on

consecutive days with serial muscle biopsies. Results showed that

although serum testosterone increased 45-fold in men compared to

women, MPS did not differ between men and women when

comparing 1–5 h post-exercise and after protein ingestion

following 24 h recovery. Although testosterone levels are

significantly different in men and women in response to a single

bout of high-intensity RE, MPS is robustly elevated in both sexes.

Hence, there seems to be a disassociation from post-exercise

testosterone levels and MPS as MPS is elevated in women,

exerting low systemic testosterone concentrations.
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Although men and women differ in their basal anabolic

hormone levels and thus also in responses to exercise, women

and men display similar changes in muscle mass and force as a

function of RE (Figure 1). However, absolute increases in muscle

mass are greater in men than in women. Nevertheless, MPS is

robustly elevated in both sexes as a response to RE.

Therefore, it should be strongly advocated for all and

especially encourage women to perform resistance exercise

training.

Genetics

Genetic factors influence phenotype traits. This is also the

case for traits related to sports performance (MacArthur and

North, 2005) and might explain why certain individuals do have

the genetic makeup to become elite bodybuilders, for example.

Up to the year 2008, over 200 autosomal genes and

18 mitochondrial genes were associated with improving fitness

and performance (Bray et al., 2009). Sports performance,

however, is influenced by far more than one gene and is

considered a highly complex, polygenic trait (Pickering et al.,

2019). Furthermore, even identical twins with the same genetic

machinery do have subtle distinct physical and personality traits

(McArdle et al., 2010). Thomis et al. (1998) studied maximal

static, eccentric torques, and arm components estimated by

anthropometry and measured by computed tomography in

25 monozygotic and 16 dizygotic twins (22.4 ± 3.7 years).

They reported a heritability for the arm CSA measurements of

more than 85% without the significance of common

environmental factors (Thomis et al., 1998). Huygens and

colleagues (Huygens et al., 2004) estimated the genetic and

environmental contribution to the variation in skeletal muscle

mass and strength in 748 sibling pairs of young brothers (24.3 ±

4.5 years) and an additional 25 monozygotic and 15 dizygotic

male twins from the Twin & Training Study by (Thomis et al.,

1998). They reported transmissibility for muscle mass to be

greater than 90%. In regard to the genetic influence on

strength, Thomis and colleagues (MA et al., 1998) quantified

strength after 10-week high-resistance training in

25 monozygotic and 16 dizygotic twins (22.4 ± 3.7 years) and

reported a heritability for 1 RM strength of 77% for the elbow

flexor. This is lower than what Huygens et al. found in 748 sibling

pairs of young brothers (24.3 ± 4.5 years) for the elbow flexors,

where they reported a heritability of >90% (Huygens et al., 2004).

Thus, for twins, the inheritance of muscle mass and strength is

extremely high, between 85 and 90%.

By contrast, examining to what extent human skeletal muscle

fiber type proportion is under the control of genetic factors by

analyzing vastus lateralis muscle biopsies from 32 pairs of

brothers, 26 pairs of male and female dizygotic twins, and

35 pairs of male and female monozygotic twins (Simoneau

and Bouchard, 1995). They found that roughly 45% of the

variance is associated with inherited factors, 40% are

environmental influences, and 15% are attributed to sampling

errors (Simoneau and Bouchard, 1995).

Given the difference in the genetic setup of the general

human population, it should then not come as a surprise that

Hubal and colleagues (Hubal et al., 2005) demonstrated highly

dissimilar responses to 12 weeks of resistance training of the

elbow flexors in men and women, whereas CSA change ranged

from −2.3 to 59% in women and −2.5–55.5% in men. This great

variance in the CSA change led to the notation of low responding

(0.08% of men and women) and high responding (3% of men and

2% of women) individuals.

In a retrospective study assessing the prevalence of

unresponsiveness of older men and women to augment

muscle mass and strength, (Churchward-Venne et al., 2015)

examined the adaptive response to 12 and 24 weeks of

supervised resistance-type exercise training in older

(>65 years) men and women. The 24-weeks training

intervention consisted of evaluation at 12 and 24 weeks. It was

observed that the duration of resistance training is an important

factor as there were individuals who demonstrated little to no

effect after 12 weeks of training but substantial improvements

after 24 weeks of training.

In a study quantifying high- and low-responders by

resistance training-induced changes in muscle size and

strength, data of untrained healthy men and women (age

19–78 years, n = 287 with 72 controls) were examined by

(Ahtiainen et al., 2016). Resistance training-induced muscle

size changed from −11 to 30%, and strength changed

from −8 to 60% in men and women. Interestingly, looking at

the correlated data of changes in muscle size andmuscle strength,

some individuals experienced a resistance exercise-induced

decrease in muscle size (ca. −10%) but a substantial increase

in 1-RM (ca. 28%). This might be due to better innervation of the

muscle leading to increased strength.

Pérusse et al. (1987) used path analysis to assess inherited and

environmental variance components in physical fitness

indicators measured in 1,630 subjects from 375 families and

assessed muscular strength, among other things. The used BETA

model allowed the partition of transmissible variance, defined as

factors transmitted from parents to offspring, into genetic factors

and cultural components. The results indicated that the

transmissible variance accounted for 63% of muscular

strength, while genetic factors alone were found to account for

30% of the muscular strength of the phenotypic variance.

Concerning the phenotypic variation observed in muscular

strength, cultural inheritance was reported to account for 31%

and environmental factors for 37%.

In summary, phenotypic variation in force and muscle mass

seems to be influenced by genetic and environmental factors

(Figure 1). However, the contribution of heredity is moderate in

non-identical twins, and non-transmissible environmental

factors are the drivers of muscle mass and strength.
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Additionally, it must be recognized that the terms non-, low- and

high-responders have to be treated with caution (Figure 1).

Adaptations to resistance training are multifaceted and

associated with health benefits. Focusing only on a small

number of variables and determining the level of responders

is too narrow-minded. Besides that, non-responsiveness is

extremely unlikely. None of the mentioned studies followed

up within the non-responsive cohorts by adjusting the

training variables (e.g., volume, frequency, duration, etc.).

Conclusion

The non-modifiable factors age, gender, and genetics

influence muscle mass and force as a function of RE.

Although aging is associated with a reduced force-generating

capacity attributed to multiple changes such as the loss of muscle

mass, fiber type shifting, muscle architecture, and ultrastructure

and neural control that can impact the health of the elderly, the

plasticity of muscle is retained lifelong. Hence, vigorous RE can

reverse or attenuate age-associated loss of muscle mass and

strength.

Gender also influences muscle mass and strength. Men and

women display similar changes in muscle mass and force as a

function of RE. Although muscle mass increases are greater in

men than women, MPS is robustly elevated post-exercise in both

sexes. Therefore, men and women are encouraged to implement

RE as a weekly routine to maintain and increase muscle mass and

strength.

As stated above, the phenotypic variation in muscle mass and

force seems to be influenced by genetic and environmental

factors. However, the contribution of heredity is moderate,

and non-transmissible environmental factors are the drivers of

muscle mass and force. Hence, vigorous RE contributes to a

greater extent to muscle mass and force.

In this review, we discussed the effects of the non-modifiable

factors age, gender, and genetics separately. Future research

examining the interactional or combined effects of those

factors could further contribute to the understanding of the

non-modifiable factors of RE.

A schematic representation of the key concepts for age,

gender, and genetics are summarized in this review.
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