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Using a generative adversarial
network to generate synthetic MRI
images for multi-class automatic
segmentation of brain tumors
P. Raut1,2,3*, G. Baldini4, M. Schöneck3 and L. Caldeira3

1Department of Pediatric Pulmonology, Erasmus Medical Center, Rotterdam, Netherlands, 2Department
of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands, 3Institute for
Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany, 4Institute of
Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
Challenging tasks such as lesion segmentation, classification, and analysis for the
assessment of disease progression can be automatically achieved using deep
learning (DL)-based algorithms. DL techniques such as 3D convolutional neural
networks are trained using heterogeneous volumetric imaging data such as MRI,
CT, and PET, among others. However, DL-based methods are usually only
applicable in the presence of the desired number of inputs. In the absence of
one of the required inputs, the method cannot be used. By implementing a
generative adversarial network (GAN), we aim to apply multi-label automatic
segmentation of brain tumors to synthetic images when not all inputs are
present. The implemented GAN is based on the Pix2Pix architecture and has
been extended to a 3D framework named Pix2PixNIfTI. For this study, 1,251
patients of the BraTS2021 dataset comprising sequences such as T1w, T2w,
T1CE, and FLAIR images equipped with respective multi-label segmentation
were used. This dataset was used for training the Pix2PixNIfTI model for
generating synthetic MRI images of all the image contrasts. The segmentation
model, namely DeepMedic, was trained in a five-fold cross-validation manner
for brain tumor segmentation and tested using the original inputs as the gold
standard. The inference of trained segmentation models was later applied to
synthetic images replacing missing input, in combination with other original
images to identify the efficacy of generated images in achieving multi-class
segmentation. For the multi-class segmentation using synthetic data or lesser
inputs, the dice scores were observed to be significantly reduced but remained
similar in range for the whole tumor when compared with evaluated original
image segmentation (e.g. mean dice of synthetic T2w prediction NC, 0.74 ±
0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08). A standard paired t-
tests with multiple comparison correction were performed to assess the
difference between all regions (p < 0.05). The study concludes that the use of
Pix2PixNIfTI allows us to segment brain tumors when one input image is missing.
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3D, three-dimensional; BraTS, brain tumor segmentation; CNN, convolutional neural network; CET, contrast-
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FLAIR, fluid-attenuated inversion recovery; GANs, generative adversarial networks; GPU, graphics processor
unit; GT, ground truth; MSE, mean square error; MRI, magnetic resonance imaging; mpMRI, multi-parametric
magnetic resonance imaging; NC, necrotic tumor; PET, positron emission tomography; T1w, T1-weighted
imaging; T1CE, contrast-enhanced T1-weighted imaging; T2w, T2-weighted imaging; WT, whole tumor.
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1 Introduction

In a standard care protocol for glioblastoma, imaging is

considered a crucial tool for the diagnosis and the monitoring of

the patients. Magnetic resonance imaging (MRI) is one of the

most widely chosen modalities among others by treating

clinicians for tracing the progression of the disease. Several

dedicated multi-parametric image acquisition sequences are used

at the different stages of the disease, but T1-weighted (T1w), T2-

weighted (T2w), contrast-enhanced T1w (T1CE), and FLAIR

(fluid-attenuated inversion recovery) are one of the few types of

imaging sequences commonly being used in a routine protocol

(1, 2). These multi-parametric MRI (mpMRI) sequences are

efficient in highlighting the biological status and smallest changes

occurring in the tumor micro-environment, thereby guiding

clinicians in providing the best care for the patient (3). To

precisely locate and trace the progression of anomalies, to study

the tumor micro-environment for strategic planning of

treatment, and to determine the efficacy of applied treatment, the

quantification of lesions is considered an essential step in a

clinical establishment. However, manual volumetric segmentation

of brain lesions is a challenging, repetitive, and time-consuming

task. At the same time, it is dependent on the skills of the expert

and knowledge of the subject and thus prone to intra-reader or

inter-reader bias. Hence, the manual segmentation method is less

reliable and precise with limited reproducibility and repeatability.

The drawbacks of the manual method and the unmet need for

having accurate and user-independent segmentation tools, which

possess the potential to become an integral part of the clinical

workflow, can be overcome by implementing automated

algorithms for multi-regional segmentation.

Deep learning (DL), an advanced artificial intelligence (AI)-based

technique, provides a solution for automatic analysis using three-

dimensional convolutional neural networks (3D CNN) (4–6). These

neural networks proved to have the potential to provide an

automatic analysis based on training the algorithms with a variety of

large-quantity datasets for achieving consistent and improvised

results (7–9). The key to gaining highly precise results using 3D

CNN is to train the algorithms with a large cohort of heterogeneous

datasets. These CNNs allow the creation of application-based

models for various purposes using different types of modalities,

producing close accurate results which often outperform the manual

analysis (10, 11). However, due to a great variation in the local

pathologies of brain tumors, the algorithm must face several

challenges to be clinically relevant, including being subjected to

numerous anatomical disparities, with images acquired using

different types of acquisition protocols across multiple scanners.

While employing CNN for automatic analysis, several strict

prerequisites are expected to be met for the trained model to

function properly. However, these prerequisites are not always

matched in clinical practice, such as the number of input images

required for the algorithm, which observed to be incomplete in

most of the cases. Depending on the clinical indication, the

image sequences are selected individually and can differ in

number at every instance; hence, not all the required images for
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automatic segmentation are always available. This is one of the

most common existing issues in clinical environments, which

hinders the use of AI models in clinical practice. However, the

availability of required multiple input images (T1w, T2w, T1CE, and

FLAIR for the brain tumor segmentation) is crucial for the

generation of predictions as it provides greater accuracy and

precision for the detection of heterogeneous tissue structure within

tumor micro-environment to draw multi-class segmentation. For

example, T1w image aids in the detection of adipose tissue and

tumor boundaries, while T2w–FLAIR accentuates vasculature within

the tumor and T1CE highlights the tissue perfusion characteristics.

The challenge of missing input data can be logically addressed by

generating the images using another DL-based technique making

image-to-image translation (single-input/multi-input and single-

output) on principles of generative adversarial networks (GANs).

The method is widely used for creating an approximate image of

the desired modality using another available image (12–14).

However, it is yet unknown whether it is beneficial to use synthetic

data in combination with other original images for deriving

automatic segmentation using 3D CNN. To be clinically relevant,

synthetic images should provide a sufficient approximation of

anatomical variation of missing contrast to enable automatic

analysis. Furthermore, the model to be deployed first must prove

its ability to be reliable, robust, consistent, and time-efficient.

All of the deficiencies of existing clinical routines forbidding

the use of AI models for automatic segmentation were taken into

consideration in this study. The primary objective of this study

was to develop a model based on existing CNN for accurate

multi-regional automatic segmentation of brain tumors using a

variable number of input channels for the training of the

algorithm. The secondary objective involved the evaluation of the

feasibility of using synthetic data to compensate for missing

input channels so that existing AI models could be clinically

established. We hypothesized that synthetic data generated by

GANs in combination with other original contrast images can

support sufficiently well existing segmentation models for

automatic multi-label segmentations of brain tumors. The

validity and repeatability of the segmentation model when

subjected to all original images with more or fewer inputs and

when subjected to synthetic images shall be evaluated individually.
2 Materials and methods

2.1 Materials

For this study, the brain tumor segmentation (BraTS) 2021

dataset (15), publicly made available by the joint organization of

the Radiological Society of North America, the American Society

of Neuroradiology, and the Medical Image Computing and

Computer Assisted Interventions society, was used for the training,

validation, and testing of the algorithm. The BraTS2021 dataset

comprised 1,251 patients with multi-institutional pre-operative

baseline mpMRI scans, including 3D sequences such as T1w, T2w,

T1CE, and FLAIR, all presented in Neuroimaging Informatics
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FIGURE 1

Four input (T1w, T2w, T1CE, and FLAIR) images subjected to deep learning (DL)-based 3D convolutional neural networks presenting feature extraction
and classification for the automatic multi-label segmentation of brain tumors.
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Technology Initiative (NIfTI) format. The multi-label segmentation

consisting of edema (ED), necrotic tumor (NC), and contrast-

enhanced tumor (CET) was provided for each patient and used as

ground truth (GT) for automatic analysis. All the images were

provided rigidly aligned, resampled to 1 mm3 isotropic resolution,

and skull-stripped. Before training the models, the images were

subjected to several pre-processing steps including the generation

of a region of interest (ROI) mask and whole tumor (WT) mask;

relabeling sub-regions of the GT mask to standardized voxel value

as expected by automatic algorithm; co-registering all the input

modalities, GT, and ROI mask to have same anatomical

presentation with identical image size (240 × 240 × 155); and

standardizing to zero mean and unit variance. The dataset was

later randomly divided into subsets of 1,000 and 251 patients for

training plus validation and testing of algorithms, respectively.
2.2 Methods

The mpMRI BraTS2021 dataset was subjected to two DL-based

methods, primarily for multi-class automatic segmentation of brain
FIGURE 2

Adapted Pix2PixNIfTI architecture of conditional generative adversarial netw
reference image (T2w in the figure) (20).
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lesions and secondary for image-to-image translation purposes as

shown in Figure 1 and Figure 2. The DeepMedic algorithm,

which is known for its configurable multi-resolution pathways to

extract features and classify them, was employed as a benchmark

for the multi-label segmentation (16, 17), whereas for image-to-

image translation, the tool Pix2PixNIfTI (18, 19) was

implemented. Pix2PixNIfTI is a 3D single-input single-output

variant of conditional GAN architecture that learns the mapping

between two MRI sequences to generate an approximated map of

the target image. The 1,000-patient subset of the BraTS2021

dataset was further divided into sets of 800 and 200 patients,

respectively, for training and validation. The split of training and

validation data followed five-fold cross-validation, a process in

which the intended dataset is randomly split by 80% and 20%

into training and validation sets, respectively, for the specified

number of folds (n = 5 for this study) as shown in Figure 3. All

the CNN were first evaluated using five-fold cross-validation

subsets and then were tested individually using a cohort of 251

patients. All the algorithms were executed on a Linux

workstation equipped with a graphics processor unit to enable

fast processing of the images.
ork (cGAN) for the creation of target image (FLAIR in the figure) using
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FIGURE 3

Illustration of Brain Tumor Segmentation (BraTS) 2021 data split and five-fold cross-validation of 1,251 patients for deriving multi-class automatic
segmentation using the (A) four-input DeepMedic model using original images, (B) for generation of missing input using the 3D Pix2PixNIfTI
model with inference to four-input DeepMedic model, and (C) for the three-input DeepMedic model using original images.
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2.3 Data processing

To serve the primary goal of the study, the segmentation

model, DeepMedic, was trained by using four input images

(T1w, T2w, T1CE, and FLAIR) with a batch size of 10

and 35 epochs (referenced as the four-input model). The

same algorithm with identical batch size and epochs was
TABLE 1 Deepmedic model trained with original input image
combinations for multi-label automatic segmentations of brain tumors.

DeepMedic

Four-input model Three-input model
T1w, T2w, T1CE, FLAIR T1w, T2w, T1CE

T1w, T2w, FLAIR

T1w, T1CE, FLAIR

T1CE, T2w, FLAIR

TABLE 2 The Pix2pixnifti model generated T1w, T2w, T1CE, and FLAIR
images using other images.

Target image Reference image
T1w T1CE T2w FLAIR

T2w T1w T1CE FLAIR

T1CE T1w T2w FLAIR

FLAIR T1w T2w T1CE

Each intended target image (e.g., T1w) was generated using three available

reference images (e.g., T1CE, T2w, FLAIR) giving rise to a total of 12

approximated images of all original input images.
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later also trained with three input images of four

combinations (referenced as the three-input model) as

listed in Table 1.

To test the hypothesis of providing missing input image

for a four-input segmentation model, the synthetic image-

generating 3D model (Pix2PixNIfTI) was trained and tested

using the same subset of training, validation, and test

dataset in a five-fold cross-validation manner with a batch

size of 1 and total 100 epochs. The intended image was

generated using other available images (reference image) as

specified in Table 2.

The generated images were later used within a DeepMedic

model by replacing one of the original images in a five-fold

cross-validation manner as indicated in Table 3.
TABLE 3 The combination of generated T1w, T2w, T1CE, and FLAIR images
with other original images provided to the four-input DeepMedic
segmentation model.

DeepMedic

Synthetic
T1w

Synthetic
T2w

Synthetic
T1CE

Synthetic
FLAIR

T1wT1CEgen,T2w,
T1CE,FLAIR

T1w,T2wT1gen,
T1CE,FLAIR

T1w,T2w,
T1CET1gen,FLAIR

T1w,T2w,T1CE,
FLAIRT1gen

T1wT2gen,T2w,
T1CE,FLAIR

T1w,T2wT1CEgen,
T1CE,FLAIR

T1w,T2w,
T1CET2gen,FLAIR

T1w,T2w,T1CE,
FLAIRT2gen

T1wFLgen,T2w,
T1CE,FLAIR

T1w,T2wFLgen,
T1CE,FLAIR

T1w,T2w,
T1CEFLgen,FLAIR

T1w,T2w,T1CE,
FLAIRT1CEgen

The subscripts denote the image on which the generated image was based, e.g.,

“FLAIRT1gen” denotes a FLAIR image that was generated from a T1w image.

frontiersin.org

https://doi.org/10.3389/fradi.2023.1336902
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


TABLE 4 Meandice scoreswith SD, accuracy,precision, sensitivity, andMSE
evaluated for individual tumor sub-regionsandwhole tumor for predictions
evaluated using a four-input DeepMedic model with original input images.

Parameter Dice score

Necrotic
tumor
core

Edema Contrast-
enhanced
tumor

Whole
tumor

Dice coefficient ± SD 0.76 ± 0.29 0.86 ± 0.13 0.86 ± 0.20 0.93 ± 0.06

MSE 0.01 0.01 0.01 0.001

Accuracy 0.99 0.99 0.99 0.99

Sensitivity 0.87 0.87 0.86 0.96

Specificity 0.99 0.99 0.99 0.99
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2.4 Statistical analysis

The statistical analysis involved three steps, primarily determining

the accuracy, precision, and sensitivity of segmentation models

in evaluating multi-label predictions as close as possible to the GT.

The similarities and reproducibility between GT and automated

segmentation of five-fold models were assessed using the dice

coefficient for both WT and individual tumor labels (NC, ED, CET).

The dice were primarily evaluated for individual patients for all classes

considering the GT segmentation and unionized using five predictions

from cross-validation folds and later averaged over all patients.

Following dice coefficient measurement, differences between

tumor sub-regions were tested for statistical significance using a

standard paired t-test. The comparison included automatically

generated segmentations of two models, one using a combination

of all original images and one model substituting an original

image with a synthetically generated one. Statistical significance

was set to the value p < 0.05 for unit segmentation and then was

adjusted for multiple comparisons (Bonferroni correction).

Finally, mean squared error (MSE), a quantitative measure of

image quality, was evaluated for all synthetic images to assess the

average error reflecting the difference between the original and

predicted images for the brain volume of the generated image.
3 Results

As a part of the statistical assessment, the primary analysis was

carried out to determine the best-performing model in achieving

multi-class segmentation among four-input trained DL-based

algorithms as the best-case scenario when all the original images

are available. For model evaluation, common measures such as

dice coefficient per class and for WT, with accuracy, sensitivity,

and specificity were calculated.
3.1 Prediction evaluated using a four-input
DeepMedic model using an original image

In the standard evaluation of ensembled five-fold DeepMedic

model prediction generated using all original images, the dice

coefficient observed for individual classes was high for ED and CET

(0.86 ± 0.13 and 0.86 ± 0.20, respectively), but moderately acceptable
Frontiers in Radiology 05
dice were measured for NC with 0.76 ± 0.29 score. The assessment

of WT provided the best dice score for prediction derived using a

four-input model with a value of 0.93 ± 0.06. The model predicted

the segmentation with accuracy, precision, sensitivity, and MSE for

all classes as interpreted in Table 4.
3.2 DeepMedic prediction evaluated using
synthetic image inference

In the evaluation of five-fold ensembled DeepMedic-derived

predictions for each class, the predictions using synthetic T1CE

images were observed to have the lowest dice scores per class,

especially for NC and CET, when compared with other predictions

derived using inference of other synthetic images. The predictions

generated using the synthetic T1CE inference (either using T1w, T2w,

or FLAIR contrast as reference for synthetic T1CE generation) all had

a similar range of dice score per class (range of dice NC, 0.27–0.31;

ED, 0.62–0.64; CET, 0.12–0.23; WT, 0.82–0.83). Comparatively,

synthetic FLAIR and synthetic T1w DeepMedic predictions were

observed to have moderately acceptable dice scores per class. For

synthetic FLAIR DeepMedic prediction, the highest dice scores per

class were achieved when FLAIR images were generated using T2w

images (NC, 0.70 ± 0.31; ED, 0.56 ± 0.21; CET, 0.82 ± 0.22). On the

other hand, for synthetic T1w DeepMedic prediction, the dice scores

per class were observed to have a similar range when compared with

predictions generated using synthetic T1CE, T2w, and FLAIR images,

and very little differences were perceived between acquired

predictions (NC, 0.64 ± 0.30; ED, 0.77 ± 0.18; CET, 0.79 ± 0.23). The

best prediction using the DeepMedic model with synthetic images

was observed with synthetic T2w images, yielding predictions with

dice scores similar to predictions based on original images. The

DeepMedic predictions using synthetic T2w images generated from a

reference image of FLAIR, T1CE, or T1w led to dice scores per class

in similar ranges and yielded the highest values when compared with

other DeepMedic predictions using synthetic data (NC, 0.74 ± 0.30;

ED, 0.81 ± 0.15; CET, 0.84 ± 0.21).

In the predictions of the five-fold ensembled DeepMedic for the

WT assessment, some unexpected differences from regional

evaluations were noticed. Using synthetic T2w image, DeepMedic

predictions had the highest dice scores just like in the individual

label evaluation (WT, 0.90 ± 0.08). The synthetic T1w DeepMedic

prediction had the second-highest dice score of WT (WT, 0.85 ±

0.12); however, surprisingly the lowest dice score for WT was

observed in synthetic FLAIR DeepMedic prediction (WT, 0.64 ±

0.19), while synthetic T1CE prediction had a comparatively higher

dice score for WT evaluation (WT, 0.83 ± 0.13). The dice scores

can be reviewed in Table 5, and for the visual representation of the

segmentations, Figure 4 can be referred to.
3.3 Prediction evaluated using a three-input
DeepMedic model using an original image

Among the four combinations of three-input trainedDeepMedic

model used for deriving multi-class brain tumor segmentation, the
frontiersin.org
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TABLE 5 Mean dice scores with SD evaluated for individual tumor sub-region and whole tumor for predictions evaluated using applied inference of
synthetic images generated with image-to-image translation method to DeepMedic model with combination of three original input images and one
synthetic image, along with four-input DeepMedic prediction derived using original images for comparison purpose.

Target
image

Reference
image

Dice ± SD

Necrotic tumor core Edema Contrast-enhanced
tumor

Whole tumor

FLAIR T1CE 0.70 ± 0.32 0.49 ± 0.22 0.80 ± 0.23 0.64 ± 0.19

T1w 0.69 ± 0.32 0.50 ± 0.21 0.80 ± 0.23 0.66 ± 0.17

T2w 0.70 ± 0.31 0.56 ± 0.21 0.82 ± 0.22 0.70 ± 0.17

T1CE FLAIR 0.27 ± 0.22 0.62 ± 0.17 0.23 ± 0.18 0.83 ± 0.13

T1w 0.31 ± 0.25 0.64 ± 0.16 0.12 ± 0.11 0.83 ± 0.12

T2w 0.29 ± 0.25 0.64 ± 0.16 0.21 ± 0.17 0.82 ± 0.13

T1w FLAIR 0.63 ± 0.30 0.76 ± 0.18 0.79 ± 0.23 0.85 ± 0.12

T1CE 0.66 ± 0.30 0.77 ± 0.18 0.80 ± 0.23 0.85 ± 0.12

T2w 0.64 ± 0.30 0.77 ± 0.18 0.79 ± 0.23 0.86 ± 0.12

T2w FLAIR 0.73 ± 0.30 0.82 ± 0.14 0.84 ± 0.21 0.90 ± 0.08

T1CE 0.74 ± 0.30 0.81 ± 0.15 0.84 ± 0.21 0.90 ± 0.08

T1w 0.74 ± 0.30 0.81 ± 0.15 0.84 ± 0.21 0.90 ± 0.09

Four-input original image
DeepMedic prediction

0.76 ± 0.29 0.86 ± 0.13 0.86 ± 0.20 0.93 ± 0.06

All the dice scores are statistically significant for all tumor sub-regions (p < 0.00083).

Raut et al. 10.3389/fradi.2023.1336902
T1CE–T2w–FLAIR image combination had the highest dice scores

for both individual classes as well as for WT assessment (NC,

0.77 ± 0.28; ED, 0.86 ± 0.12; CET, 0.85 ± 0.20; WT, 0.93 ± 0.06). On

the other hand, predictions using the T1w–T2w–T1CE

combination were observed to have slightly lower dice scores in

comparison to the T1CE–T2w–FLAIR combination, but still the

second best dice score for both WT and tumor sub-region

evaluation using three-input model (NC, 0.76 ± 0.29; ED, 0.81 ±

0.14; CET, 0.85 ± 0.21; WT, 0.90 ± 0.07). One of the average quality

dice scores was acquired with the T1w–T2w–FLAIR image

combination; however, on the contrary, the combination was

surprisingly efficient for WT assessment with dice scores in a

similar range to T1CE–T2w–FLAIR combination (NC, 0.57 ± 0.29;

ED, 0.79 ± 0.15; CET, 0.62 ± 0.23; WT, 0.92 ± 0.07). Another pair

with average dice scores for WT and individual tumor class

regions, especially for NC and CET was the T1w–T1CE–FLAIR

image combination (NC, 0.61 ± 0.24; ED, 0.70 ± 0.12; CET, 0.70 ±

0.19; WT, 0.77 ± 0.07). For visual representation and numerical

interpretation, Figure 5 and Table 6 can be referred to, respectively.
3.4 Comparison of three-input predictions
using original images and synthetic image
predictions

To address the issue of missing input for four-input trained

models, two approaches were implemented to create the

prediction using DeepMedic. The primary method involving the

generation of synthetic images in a four-input DeepMedic model

could provide comparable results for different tumor sub-regions

and slightly improved results for WT. The usage of synthetic

T1w and T2w images in the four-input DeepMedic model was

observed to predict tumor sub-regions of ED and CET

proportionately but notably underpredicted the NC regions. On
Frontiers in Radiology 06
the other hand, predictions based on synthetic FLAIR images

were averagely acceptable for CET and NC but perceived to be

undermining the ED sub-region. The T1CE predictions were

significantly under-evaluated for the NC and CET regions and

had average dice scores for the ED region. On the contrary,

predictions of the WT volume yielded high dice scores for all

synthetically generated images except for FLAIR.

Similar to synthetic images, predictions generated using the

second approach of the three-input trained DeepMedic model

provided similar results to some extent. The predictions with the

highest dice scores were observed for T1w–T2w–T1CE and

T1CE–T2w–FLAIR image combinations, yielding predictions as

close as to the predictions based on the four-input DeepMedic

model of original images, for both individual class and WT. On

the other hand, the T1w–T1CE–FLAIR and T1w–T2w–FLAIR

combinations led to average prediction per class but were

efficient for WT segmentation. The dice scores evaluated for

DeepMedic predictions using synthetic images in the four-input

model were statistically significantly different for all regions (p

<< 0.00083). On the other hand, DeepMedic predictions of the

three-input model for the T1CE–T2w–FLAIR and T1w–T1CE–

FLAIR combinations were found to be not statistically significant

(p > 0.0025) while T1w–T2w–T1CE and T1w–T2w–FLAIR

combinations were observed to be significant for all tumor sub-

region (p << 0.0025).
3.5 Quantitative analysis of synthetic images
and correlation with volumetric prediction

To measure the level of accuracy attained by the generated

synthetic images when compared to their corresponding GT, we

assessed the (MSE) for each synthetic image in a five-fold cross-

validation manner and subsequently averaged it to determine the
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FIGURE 4

Comparison between ground truth (GT) and DeepMedic predicted multi-class segmentations derived from generated synthetic images using multiple
contrasts, superimposed on their respective original and generated synthetic images. Grayscale for normalized generated synthetic images T1w, −3.0
to 9.0; T2w, −1.8 to 6.3; T1CE, −2.5 to 8.5; FLAIR, −2.0 to 6.5.
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overall mean across all subsets. The MSE evaluated for each target

image using different reference images was observed to have

comparable extent of values. A higher MSE suggests a larger

disparity between the synthetic image and GT. In comparison,

the T1CE synthetic images were noticed to have the highest MSE

relative to other synthetic images, while T1w synthetic images

had a slightly lower but second-highest MSE. The synthetic

images of FLAIR and T2w comparatively have lower MSE.

To analyze the impact of synthetic images in deriving multi-

class prediction using the four-input segmentation model, we

evaluated the Pearson and Spearman correlation between the
Frontiers in Radiology 07
MSE of synthetic image and the dice coefficient of its respective

four-input model derived prediction for each class as well as for

WT region. Both methods unanimously indicated the negative

correlation between synthetic images and their respective

predictions suggesting an inverse relationship between these two

variables as expected. The inverse relationship implies that, as the

MSE of synthetic images increases, the dice coefficient of tumors

tends to decrease, suggesting higher errors in the synthetic

images are associated with lower dice, which implies poorer

segmentation accuracy. For numerical interpretation of MSE of

synthetic images and correlation, Table 7 can be referred to.
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TABLE 6 Mean dice scores with SD evaluated for individual tumor sub-
regions and whole tumor for predictions evaluated using a three-input
DeepMedic model with multiple contrast combination of three original
images and four-input DeepMedic prediction derived using original
images for comparison purposes.

Three-input
contrast
combination for
DeepMedic
prediction

Dice ± SD

Necrotic
tumor
core

Edema Contrast-
enhanced
tumor

Whole
tumor

T1w–T1CE–FLAIR 0.61 ± 0.24 0.70 ± 0.12 0.70 ± 0.19 0.77 ± 0.07

T1w–T1CE–T2w 0.76 ± 0.29* 0.81 ± 0.14* 0.85 ± 0.21* 0.90 ± 0.07*

T1CE–T2w–FLAIR 0.77 ± 0.28* 0.86 ± 0.12* 0.85 ± 0.20* 0.93 ± 0.06*

T1w–T2w–FLAIR 0.57 ± 0.29 0.79 ± 0.15 0.62 ± 0.23 0.92 ± 0.07

Four-input original
image DeepMedic
prediction

0.76 ± 0.29 0.86 ± 0.13 0.86 ± 0.20 0.93 ± 0.06

The dice scores statistically not significant for tumor sub-regions are marked with a

“*” sign (p > 0.0025).

FIGURE 5

Predictions generated using a three-input trained DeepMedic model with original image combinations of T1CE–T1w–T2w, T1w–T2w–FLAIR, T1CE–
T1w–FLAIR, and T1CE–T2w–FLAIR superimposed on missing input, presented with GT superimposed on T1CE image for comparison.

TABLE 7 Mean MSE of individual synthetic image calculated for multiple refe
correlation coefficient of synthetic image MSE and dice score of respective f

Target
image

Reference
image

Synthetic
image MSE

Pearson coe

Multi-class
FLAIR T1CE 0.517307 −0.09747

T1w 0.494333 −0.10610
T2w 0.342234 −0.07842

T1CE FLAIR 0.896027 −0.01530*
T1w 1.052703 0.01256*

T2w 0.972855 −0.00596*
T1w FLAIR 0.764378 −0.05202*

T1CE 0.628514 −0.02677*
T2w 0.845746 −0.05245*

T2w FLAIR 0.454605 −0.08700
T1CE 0.383218 −0.11272
T1w 0.439892 −0.12217

The correlation coefficient statistically not significant for tumor sub-regions is marked

Raut et al. 10.3389/fradi.2023.1336902
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4 Discussion

The study mainly focuses on mitigating issues of missing input

channels for automatic segmentation, for which two approaches

were adopted. The primary approach included the generation of

missing input channels for automatic segmentation using a

variant of GAN architecture. Another approach investigated the

existing multi-class segmentation model trained with fewer input

channels, in this case, three input channels.

In the primary approach, we explored the efficiency of synthetic

images generated using the 3D Pix2PixNIfTI algorithm in a single-

input, single-output manner for all available reference images to

determine the best surrogate image for the segmentation model

when certain input is missing. We assessed the outcomes based on

a visual and a quantitative evaluation. In a visual qualitative

assessment of synthetic images, the generated images were
rence images along with evaluated corresponding Pearson and Spearman
our-input model prediction for multi-class and whole tumor sub-region.

fficient Spearman coefficient

Whole tumor Multi-class Whole tumor
−0.07988* −0.17191 −0.22446
−0.08877* −0.15752 −0.15511
−0.00643* −0.15566 −0.20277
0.09458* −0.03816* 0.04452*

0.13154 0.00432* 0.11043*

0.11747* −0.02017* 0.12646

−0.08146* −0.11485 0.00669*

0.02138* −0.02819* 0.09077*

−0.07035* −0.13704 −0.05480*
−0.02092* −0.11868 −0.16521
−0.04269* −0.17125 −0.20306
−0.05132* −0.15581* −0.18053

with a “*” sign (p > 0.05).
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observed to be influenced by the type of input reference image chosen

for synthesis but perceived as nearly indistinguishable. For example,

images generated using FLAIR and T2w were slightly hypointense

while images generated by T1w and T1CE were hyperintense. In a

quantitative assessment, the best image-to-image translation was

observed for synthetic T2w image (T2wT1Cegen dice: NC, 0.74 ±

0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08), following

T1w and FLAIR, though synthetic T1CE image could not be

accepted as a replacement since the dice for NC and CET are most

undermined compared to other synthetic image used evaluated

predictions. Similar observations for synthetic T1CE for single-

input single-output architecture were reported by Sharma and

Hamarneh (21), Lee et al. (22), and Li et al. (23) who used other

variants of the GAN-based algorithm. In our quantitative

evaluation of synthetic images, the findings suggest a higher error

for synthetic T1CE images and slightly less but still comparably

high MSE for synthetic T1w images implying unsatisfactory

synthesis of generated images. On the other hand, synthetic FLAIR

and T2w images indicated lower MSE values, suggesting higher

accuracy in translating original image properties to synthetic images.

In our quantitative assessment, we observed that the choice of

reference image when generating synthetic images for multi-class

prediction delivered ambiguous results, meaning that it is unclear

which reference image should be used and it is contingent on the

specific situation at hand. For T1CE, the prediction using synthetic

T1CE yielded decent dice for the ED region when T1w and T2w were

used as reference images but witnessed severely undermined dice for

CET using T1w as a reference image compared to other images,

while the lowest dice for NC as observed for FLAIR when used as

reference. Therefore, based on the application, the synthetic T1CE

images can be implemented for segmentation. For T2w, the highest

dice scores per class and for WT were found for DeepMedic

predictions using surrogate based on either T1w, T1CE or FLAIR.

These findings suggest that GAN successfully translated the physical

properties to the target image, aiding multi-class automatic

segmentation of tumor with decent dice (NC, 0.74 ± 0.30; ED, 0.81 ±

0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.09). Whereas for T1w, the

evaluated predictions were observed to have a slight declination in

the dice scores per class and for WT compared to synthetic T2w,

especially for the NC region (reduction of dice NC, 10%, ED, 4%;

CET, 5%; WT, 5%). Similarly, DeepMedic predictions using synthetic

FLAIR images had resembling dice scores except for ED and WT,

which were the lowest values observed (NC, 0.70 ± 0.32; ED, 0.49 ±

0.22; CET, 0.80 ± 0.23; WT, 0.64 ± 0.19). Both DeepMedic

predictions using synthetic T1w and FLAIR images were observed to

have relatively low dice scores for the NC and ED, respectively,

interpreting that using the reference contrast image-to-image method

could not entirely translate the tissue properties to the magnitude of

the target image. On the other hand, the predictions making use of

synthetic T1CE were observed most compromising results with the

lowest dice scores for NC and CET while producing decent dice

scores for ED and WT. The image-to-image translation could fairly

synthesize non-enhancing T2–FLAIR hyperintense regions of the

tumor; however, contrast-enhancing and necrotic portions of the

tumor were not translated to a target image. In clinical practice, the

administration of contrast agents enhances the interstitial and
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intravascular properties of the tissue, which theoretically can not be

artificially synthesized or produced by non-contrast imaging

sequences. To assess the impact of synthetic images on segmentation

ability, we conducted a correlation analysis that highlighted the

inverse relationship between the MSE of synthetic images and the

dice score of segmentation model prediction. In our analysis, the

highest MSE was observed for synthetic T1CE, and the lowest dice

scores were also evaluated for synthetic T1CE-derived prediction,

implying the negative correlation that indicates the inverse

relationship between these two variables, suggesting that the presence

of a higher degree of measured error in the synthetic image reflects

poor quality, which greatly affects the segmentation accuracy and

precision and vice versa. The assumption is consistent for other

synthetic images as well, which are observed to have lower MSE but

higher dice for evaluated predictions. Depending on the degree of

error present in the synthetic image proportional segmentation

efficiency would be impacted.

On the contrary, a study conducted by Jayachandran Preetha et al.

(24) suggested that it is possible to generate fair quality post-contrast

images by using single-input and/or multi-input contrast images

and cGAN-based architecture, a variant inspired by pix2pix (12).

Their study explored two architectures and concluded that the

cGAN-based algorithm was superior to the other while including

diffusion-weighted imaging for better results was not found to have

any significance. In the study of Li et al. (23), the feasibility of

generating a post-contrast T1 sequence was tested with two

architectures for a single and multi-input model, out of which the

multi-input trained algorithm performed most well. In regards to

the multi-input model, it is always not feasible for all input images

to be available for the synthesis of the target image, yet for special

cases like T1CE, the method can be adapted using a multi-input

GAN-based model. A comparative study done by Conte et al. (25)

showed the feasibility of a 2D pix2pix model, for generating

synthetic images of FLAIR and T1w images and acquired quite

efficient results for ED and CET region of tumor automatic

segmentation. The study only focuses on generating FLAIR and T1w

images from T2w and T1CE images, respectively, and does not

account for generating other images using different types of

contrasts. Additionally, the efficiency of synthetic images in deriving

automatic segmentation was only tested for ED and CET sub-

regions but the NC and WT portions were left out. Thomas et al.

(26). tested 2D many-to-many mapping approach using a nnUNet

variant as architecture for the synthesis of target images. This

approach was not yet adapted before which includes multiple

combinations of reference images and masks with copies of images

in variation and therefore paved a new way for multi-class

segmentation. However, the study was implemented on a relatively

small sample (n = 231; e.g. using synthetic T2 ED, 0.74; CET, 0.80;

WT, 0.90) excluding assessment of the NC region and was limited to

generating 2D images. Another study by Zhou et al. (27), tested a

U-Net variant as architecture to generate synthetic images. The

study tested two methods of segmentation where replacing missing

input using synthetic images was used as a conventional method

and another method involved correction for a segmentation model

that uses available images by adding components (multi-source

correlation, conditional generator, and generator without condition
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constraint). The resultant outcomewasmeasured for tumor core (TC),

CET, and WT and was observed to be relatively low (e.g., dice of

predictions using synthetic FLAIRT2gen TC, 0.54; CET, 0.68; WT,

0.55) compared to our study (e.g., dice of predictions using synthetic

FLAIRT2gen NC, 0.70 ± 0.31; ED, 0.56 ± 0.21; CET, 0.82 ± 0.22; WT,

0.70 ± 0.17) when missing input channels were replaced with a

synthetic image but were observed to have increased dice scores

when tested with a combination of other components (e.g., dice of

predictions using synthetic FLAIRT2genTC, 0.85;CET, 0.77;WT, 0.84).

In the following stage of the study, we investigated a secondary

approach concerning missing input issues. For this purpose, we

trained a DeepMedic model with three inputs, in which T1w–T1CE–

T2w and T1CE–T2w–FLAIR contrast image combinations produced

similar results to the predictions generated by the four-input

DeepMedic model trained with original images. We noticed that

both combinations had T1CE and T2w as common input channels,

thus indicating that these are essential sequences to derive accurate

multi-class segmentation. The conclusion is further supported by

the observations of reduced dice scores per class for predictions

based on the T1w–T1CE–FLAIR and T1w–T2w–FLAIR image sets,

as the model was trained with an image set carrying either only

T1CE or T2w alone, combining T1w and T2w derivative (FLAIR).

The pair T1w–FLAIR seems inefficient together in the presence of

either T1CE or T2w to draw comparable results for automatic

segmentation. DeepMedic model trained with T1w–T1CE pair and

any other contrast was observed to have a fairly decent estimation

for NC core, again suggesting correlation to the selection of images

(T1w–T1CE) for the training. Fundamentally, T1CE is known for

identifying intrinsic perfusion characteristics of tissue like

permeability indicating active tumor with healthy vascular supply,

while T2w–FLAIR enhances subcutaneous fat and water-based tissue

on the image, reflecting vasogenic or infiltrative nature of the tumor

(edema), and T1w is most sensitive in the detection of damaged

adipose tissue (1). Depending on the choice of combination of

images selected for training of the model, a strong influence was

observed on the generated prediction of the respective model

reflecting tumor properties based on characteristics of the selected

sequence of imaging. For example, DeepMedic prediction generated

by T1w–T2w–FLAIR yielded a higher estimate for ED but a reduced

dice value for other sub-regions comparatively, reflecting that T2w

and FLAIR are important for ED estimation, but not for other sub-

regions. We did not find any study with similar theory and

observation for the DeepMedic algorithm but rather for other

segmentation algorithms (28).

In our study, we found excellent multi-class segmentation results

using three-input DeepMedic models when one of the four input

sequences was missing especially for missing T1w or FLAIR

images. However, if only a four-input segmentation model is

available, synthetic images can also be used to replace a single-

input channel for the prediction of multi-class segmentation or the

WT area, although with slightly underestimated predictions. The

concurrent paragraph summarizes the recommendations based on

our findings. When the T1CE sequence is not available, it is best to

use a three-input model (T1w–T2w–FLAIR), which fairly evaluates

tumor sub-regions but yields a high dice score for the WT region

compared to that with the four-input model (NC, 0.57 ± 0.29; ED,
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0.79 ± 0.15; CET, 0.62 ± 0.23; WT, 0.92 ± 0.07). However, if only a

four-input model is available, either T2w or FLAIR can be used to

generate a synthetic T1CE image, especially for the segmentation of

the ED region. In case of a missing T2w sequence, we recommend

using the four-input segmentation model with a synthetic image

generated using either T1CE, T1w, or FLAIR, as all of them

provided equally high dice scores for different tumor sub-regions

and WT as well (NC, 0.74 ± 0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21;

WT, 0.90 ± 0.09). For a missing FLAIR sequence, a three-input

segmentation model (T1w–T1CE–T2w) performed better in

comparison to a four-input segmentation model for all classes

(NC, 0.76 ± 0.29; ED, 0.81 ± 0.14; CET, 0.85 ± 0.21; WT, 0.90 ±

0.07). However, in the absence of a three-input model, the T2w

image shall be used as a reference for generating a synthetic FLAIR

image for multi-class segmentation. When T1w is missing, we

assessed that a three-input segmentation model (T1CE–T2w–

FLAIR) showed promising results per class and for WT with dice

NC, 0.76 ± 0.29; ED, 0.81 ± 0.14; CET, 0.85 ± 0.21; and WT, 0.90 ±

0.07. If a three-input segmentation model is not available, we

recommend using the T1CE image to generate a synthetic T1w

image for a four-input multi-class segmentation model.

Albeit promising results, there are a few limitations to our study.

We did not test any alternative single-input synthetic image-

generating algorithm to obtain 3D surrogate images and rather

investigated the relatively new variant of the pix2pix algorithm

with promising results to the best of our knowledge. To identify

the true conceivable potential of the Pix2PixNIfTI model in

generating synthetic images further evaluation and optimization

will be needed. Additionally, we abstained from testing multi-input

synthetic image-generating algorithms due to the restricted

feasibility of all input images being available in the clinical

establishment. Moreover, we did not examine other CNN for less

input channels application or using images other than the four

typical contrasts and as such limits its applicability to this purpose.

Furthermore, we did not evaluate the model’s efficiency to

recognize and account for the absence of one of the tumor sub-

regions if were missing. Despite these limitations, our study

investigated the best configuration for multi-class segmentation

using original images for conventional and moderately new

models. As we expected, the DeepMedic model performed quite

well in predicting multi-class segmentation outperforming the

manual method in saving time while delivering comparable

segmentation performance, and the obtained results were

comparable with other studies using the same segmentation model

(16, 29–31). Additionally, we successfully examined which image

combinations complement each other to aid the segmentation of

different tumor sub-regions with an incomplete set of input

channels. Further, our study explored which input contrast

generated the best replica of the target image by training the model

multiple times with various individual input images to acquire a

target synthetic image and investigated its impact on tumor sub-

regions during automatic segmentation.

In summary, we discovered that it is feasible to use a DL-based

model for multi-class segmentation as well as for the generation of

synthetic images. Depending on the choice of available image and

method, fairly accurate segmentation can be achieved either for
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WT, per class, or for both using original images. However, with lesser

input or using a synthetic image for the DeepMedic model, a slightly

reduced dice score per class for evaluated predictions would be

achieved with an exception for synthetic T1CE prediction which

witnessed the most undermined evaluation for individual tumor

regions. Although for global assessment of diseased regions using

WT volume, both methods can be employed with more accuracy

and precision. In the future, we plan to compute the validity of the

DeepMedic model using a high-quality external patient cohort, to

discover the reasonable performance of the model in achieving

multi-class segmentation in the next step of the study as secondary

testing before clinical implementation. Also, new segmentation

models such as nnUNet can be also tested as comparable

segmentation models. Furthermore, we would try to optimize the

existing GAN-based model in generating missing input for the

segmentation model to enhance the results and for the method to

be considered for implementation in the clinical routine.

Additionally, the efficiency of a multi-input approach for

generating comparable T1CE images can also be explored.
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