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The promise and limitations of
artificial intelligence in
musculoskeletal imaging
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With the recent developments in deep learning and the rapid growth of
convolutional neural networks, artificial intelligence has shown promise as a tool
that can transform several aspects of the musculoskeletal imaging cycle. Its
applications can involve both interpretive and non-interpretive tasks such as the
ordering of imaging, scheduling, protocoling, image acquisition, report
generation and communication of findings. However, artificial intelligence tools
still face a number of challenges that can hinder effective implementation into
clinical practice. The purpose of this review is to explore both the successes and
limitations of artificial intelligence applications throughout the muscuskeletal
imaging cycle and to highlight how these applications can help enhance the
service radiologists deliver to their patients, resulting in increased efficiency as
well as improved patient and provider satisfaction.
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Introduction

Radiological imaging has come to play a central role in the diagnosis and management of

different muscuskeletal (MSK) disorders, and both technological improvements and

increased access to medical imaging have led to a rise in the utilization of common MSK

imaging modalities (1, 2). As such, there is a growing need for technical innovations that

can help optimize workflow and increase productivity, especially in radiology practices

that are witnessing higher volumes of increasingly complex cases (3).

Artificial intelligence (AI), or the development of computer systems that can mimic

human intelligence when performing human tasks, is rapidly expanding in the field of

diagnostic imaging and could potentially help improve workflow efficiency (4). AI is a

broad term that encompasses numerous techniques, and recent advances in the field have

transformed this technology into a powerful tool with several promising applications.

Nested within AI is machine learning (ML), a subfield that gives computers the ability to

learn and adapt by drawing inferences from patterns in data without following explicit

instructions (5). ML uses observations from data to create algorithms and subsequently

makes use of these algorithms to determine future output, with the goal of designing a

system that can automatically learn without any human intervention. Deep learning (DL)
Abbreviations

ACL, anterior cruciate ligament; AI, artificial intelligence; AUC, area under the curve; BMD, bone mineral
density; CNN, convolutional neural network; CT, computed tomography; DL, deep learning; DXA, dual-
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FIGURE 1

Schematic representation demonstrating the relationship between artificial intelligence, machine learning, deep learning, and convolutional neural
networks, all subfields of each other.
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is an even more specialized subfield within ML that uses multiple

processing layers to progressively extract higher-level features

from raw input presented in the form of large datasets, and the

recent development of DL with convolutional neural networks

(CNN) is an important technological advancement apt at solving

image-based problems with reportedly outstanding performance

in several key aspects of medical imaging (Figure 1) (6–8).

CNNs are widely used in computer vision; they represent

feedforward neural networks with multiple layers of non-linear

transformations between inputs and outputs and can be

programmed to classify an image or objects according to their

features (output) by means of a training dataset with numerous

images or objects (input) (4).

For AI models to be developed, large data sets with high-quality

images and annotations are needed for both training of a model and

validation of its performance, and, given that developers are usually

not located within medical practices or hospital systems and

therefore do not have access to such data, image sharing between

the two becomes necessary. This multi-step process requires

collaboration between clinicians and developers and, following

approval from the responsible ethical committees, begins with

image de-identification, storage, and resampling of resolutions (9).

Images must then be appropriately labeled with ground truth

definitions, and, depending on the outcome of interest, this can

involve several different steps such as manual labeling of images,

data extraction from medical charts and pathology reports, and

detection of imaging findings from radiology reports or by

radiologists’ re-review of the imaging findings (9). Typically, data

sets used for training are larger than data sets used for validation

and testing, and, although logistically challenging in many cases,

images should ideally be obtained from multiple diverse sources to

increase representation of different populations and ensure

generalizability of the model’s performance (9).
Frontiers in Radiology 02
To understand how images are used for training AI and DL

models, it is important to understand the architecture of the

neural networks often employed in such models. The basic

building block of a deep neural network is a node, which can be

considered analogous to a neuron, and one neural network is

comprised of several weighted nodes arranged into layers and

connected through weighted connections (10). Training data is

fed to a network at an initial input layer and then propagated

throughout all layers of the model: each layer performs both

linear (e.g., weighted additions) and non-linear (e.g.,

thresholding) mathematical computations from input received

from the previous layer and feeds the output to the next layer,

which then performs the same computations until one final

output layer is reached (10). The model then provides a

prediction, which is compared to the ground truth label

previously assigned. Discrepancies between the two are fed back

into the network through backward propagation and gradient

descent: nodal weights and connections are adjusted accordingly,

and the model is refined with every data point from the training

set (Figure 2). Once the model is sufficiently refined, a validation

set is typically used to evaluate the model’s generalizability and

further refine predictions, after which the model is then tested

using a final test set with unseen data to simulate and assess

real-life performance (10). The size of the data sets needed for

training, validation, and testing can vary depending on the

outcome and/or the targeted population (with larger sets needed

for populations with more diversity and heterogeneity) but

generally follows a ratio of 80:10:10 or 70:15:15, respectively (9).

With its rapid and exponential growth, AI has the potential to

significantly strengthen several steps of the MSK imaging value

chain and offer applications that extend beyond imaging

interpretation to assist with non-interpretive tasks such as patient

scheduling, optimal protocoling, image acquisition, and data
frontiersin.org
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FIGURE 2

Schematic representation of deep neural network training. Training data is fed to the network at the initial input layer and propagated through subsequent
layers for a prediction to be made at the final output layer. Prediction is compared to ground truth, and feedback through backward propagation leads to
progressive refinement of weights. Circles represent nodes. Lines connecting circles represent weighted connections, with thickness correlating with
weight magnitude. Dashed arrow represents flow of information through network.
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sharing (11). AI can theoretically improve an MSK radiologist’s

ability to respond to the increasing workload of high-volume

practices and continue delivering high-quality care by allotting

more time for demanding tasks and minimizing time spent on

more routine and less complex functions. However, AI is not

without its pitfalls, and overutilization of this resource can pose

multiple problems relating to medical errors, bias and inequality,

data availability, and privacy concerns (12). The purpose of this

review is to highlight the different applications AI is presently

offering or can potentially offer throughout the MSK radiology

imaging cycle and to discuss risks, limitations, and future

directions of this important technology.
Prominent AI applications

Image appropriateness and protocoling

The first step in the MSK imaging process is to order the

appropriate imaging test, the responsibility of which falls on
Frontiers in Radiology 03
the referring clinician or provider confronted with a wide

range of available modalities. AI, and ML in particular, could

help facilitate the process: ML algorithms could be used to

generate holistic clinical decision support systems that can

consider various aspects from a patient’s medical chart such

as symptomatology, laboratory test results, physical

examination findings, and previous imaging to recommend

the modality best suited to address the clinical query in

question (13, 14).

Protocoling comes next, and once an imaging modality is

chosen, the MSK radiologist or trainee is usually responsible

for ensuring that scans are performed correctly. Choosing the

right protocol is crucial to reaching a proper diagnosis and

optimizing patient care but can prove arduous and time-

consuming for the radiologist tasked with several other

responsibilities; as such, several recent studies have looked into

how DL can be of assistance. Lee assessed the feasibility of

using short-text classification to develop a CNN classifier

capable of determining whether MRI scans should be

completed following a routine or tumor protocol and, after
frontiersin.org
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comparing CNN-derived protocols to those determined by MSK

radiologists, reported an area under the curve (AUC) of 0.977

and an accuracy of 94.2% (15). Similarly, Trivedi et al.

developed and validated a DL-based natural language classifier

capable of automatically determining the need for intravenous

contrast for MSK-specific MRI protocols based on the free-text

clinical indication of the study and reported up to 90%

agreement with human-based decisions (16). Although these

studies show promising results, MSK imaging protocols are

complex and diverse, given that MSK as a field encompasses

localized and systemic diseases from neck to toe. More

investigations could potentially explore the use of other

composite classifiers such as medical history, prior imaging

protocols, scanner-specific data, contrast information, and

radiation exposure to help with protocoling decisions (13).
Scheduling

Given the rise in the use of medical imaging, adherence to

set schedules has become more important for radiology

practices, especially in the MSK setting where advanced and

sometimes lengthy examinations such as MRI and CT are

frequently used. No-shows or appointment cancellations can

be a significant burden on practices and also represent missed

opportunities for other patients to be scanned (17). There has

been a growing interest in how AI can help optimize

scheduling in various medical practices, and ML algorithms

with predictive frameworks have been successfully used to

predict missed appointments in diabetes clinics as well as

urban, academic, and underserved settings (18, 19). Various

ML predictive models have also been used to predict imaging

no-shows effectively (20, 21), and Chong et al. demonstrated

how using a pre-trained CNN with a predictive framework to

predict MRI no-shows and accordingly send out proactive

reminders to patients resulted in a reduced appointment no-

show rate from 19.3% to 15.9% (22). ML could also help

maximize patient throughput; Muelly et al. developed a feed-

forward neural network that can make use of patient

demographics and dynamic block lengths to estimate average

MRI scan durations, resulting in decreased wait times,

improved patient satisfaction, and optimized schedule

fill rates (23).
Image acquisition

Magnetic resonance imaging acquisition
Given the critical need but lengthy nature of MRI scans in

MSK imaging, there has always been an interest in reducing

MRI acquisition times in order to decrease patient discomfort

and improve scanner efficiency. Previous attempts at MRI

acceleration focused on parallel imaging and compressed

sensing, both of which operate by subsampling k-space and

reducing the number of phase-encoding lines acquired during a

scan, ultimately resulting in less data being collected (24, 25).
Frontiers in Radiology 04
While efficient, these two techniques suffer from reduced

image quality and increased artifacts in the reconstructed

images, leading to less diagnostic imaging. ML has been

proposed as a possible solution that can help mitigate the

limitations of accelerated imaging by using subsampled k-space

data to generate up-sampled high-resolution output images

comparable to images generated from otherwise fully sampled

k-space data (26). Using high quality MR images, Wang et al.

trained a CNN to restore fine structural details on brain images

obtained from zero-filled k-space data and were able to

generate images of diagnostic quality comparable to images

from a fully sampled k-space but with a fivefold increase in

acquisition speed (27). Hammernik et al. were able to achieve a

fourfold increase in knee MRI acquisition speed by using a DL

technique that created high-quality reconstructions of under-

sampled data (28), while Chaudhari et al. successfully made

use of a CNN to output thin-slice knee images from thicker

slices, thereby improving spatial resolution and image quality

(29). Similarly, Wu et al. developed an eightfold-accelerated DL

model capable of up-sampling sparsely sampled MRI data to

output images with minimal artifacts and a permissible signal-

to-noise ratio (30). In one study by Roh et al., DL-accelerated

turbo spin echo sequences were assessed for their ability to

depict acute fractures of the radius in patients wearing a splint

and were shown to be effective for both increasing acquisition

speed by a factor of 2 as well as improving image quality when

compared to standard sequences (31). Studies are still ongoing,

with AI-driven 10-fold accelerated MRI increasingly becoming

within reach (32) and other exciting ML applications being

explored such as the production of MR images from CT

images (33) and the post-processing of a single MRI

acquisition to obtain other planes and tissue weightings (34).

One such advance in MSK imaging is the synthetic

construction of fat-suppressed imaging from non-fat-

suppressed imaging (35).
Computed tomography
Unlike MRI, CT exposes patients to ionizing radiation, and

ML has shown promise as a tool that can help reduce the

radiation dose of a CT scan while maintaining a high quality

of images (36). The premise is similar to ML applications for

MRI acquisitions, whereby the goal is to reconstruct images

of diagnostic quality using lower-quality source data or

reduced quantities of source data. Cross et al. demonstrated

how CT images acquired at a low radiation dose and

reconstructed in part using an artificial neural network were

found to be similar to or improved compared to images

obtained using standard radiation doses by more than 90% of

the readers in the study (37). Other AI developments can also

help enhance image quality by decreasing artifacts related to

different factors, as demonstrated in the study by Zhang and

Yu where a CNN trained to merge original- and corrected-

image data was capable of suppressing metal artifacts and

preserving anatomical structural integrity near metallic

implants (38).
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TABLE 1 AI tools in musculoskeletal imaging.

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Chung et al.
(41)

Proximal humerus
fracture detection

CNN Sensitivity/
specificity: 0.99/
0.97
Accuracy: 96%

Olczak et al.
(42)

Ankle, wrist and hand
radiographic fracture
detection

VGG 16-layer
CNN

Accuracy: 83%

Yu et al. (43) Hip fracture detection CNN Sensitivity/
specificity: 97.1%/
96.7%

Tomita et al.
(44)

Osteoporotic vertebral
fracture detection

CNN Accuracy: 89.2%

Cheng et al.
(45)

Hip fracture detection CNN Accuracy: 91%
Sensitivity: 98%

Rajpurkar et al.
(46)

Radiographic
abnormality detection

169-layer
DenseNet

Sensitivity/
specificity: 81.5%/
88.7%

Xue et al. (47) Hip osteoarthritis
detection

CNN Sensitivity/
specificity: 95.0%/
90.7%

Debs and Fayad 10.3389/fradi.2023.1242902
Image presentation

In radiology practices that use a Picture Archiving and

Communication System (PACS), radiologists often spend a

considerable amount of time manipulating image displays and

toggling between sequences and viewing panes to display

different imaging features in several anatomic planes. This is

known as the hanging protocol and constitutes another venue

that can be enhanced through the use of AI to afford radiologists

more productivity and efficiency. A study by Kitamura showed

how ML techniques using DenseNet-based neural network

models can successfully optimize hanging protocols of lumbar

spine x-rays by considering several parameters such as dynamic

position and rotation correction (39). Moreover, one PACS

vendor is currently using ML-based algorithms to learn a

radiologist’s preferences when viewing examinations, record

orientations of the sequences most commonly used, suggest

displays for future similar studies, and incorporate adaptations

following every correction, all in an effort to improve the

workflow in the reading room (40).

Accuracy: 92.8%

Tiulpin et al.
(48)

Knee osteoarthritis
detection

Deep Siamese
CNN

Accuracy: 66.71%

Antony et al.
(49)

Knee osteoarthritis
severity grading

CNN Variable

Pedoia at el.
(50)

Osteoarthritis cartilage
degenerative change
detection and staging

CNN Accuracy: 80.74%,
78.02%, and
75.00% for normal,
small, and complex
large lesions,
respectively

Liu et al. (51) Knee cartilage lesion
detection

CNN Sensitivity/
specificity: 84.1%/
85.2%
80.5%/87.9%
Image interpretation

Although AI can assist MSK radiologists with several steps of

the imaging cycle, it is AI’s ability to help with image

interpretation, arguably a radiologist’s most important

responsibility, that has garnered the most attention in recent

years. The next section discusses different ways AI and ML can

help radiologists with MSK imaging interpretations to diagnose

different conditions with greater efficiency. Table 1 provides a

summary of AI tools with such applications.

Halabi et al.
(52)
Model by
Cicero and
Bilbily

Bone age detection Google
Inception V3
network

Mean absolute
difference from
ground truth: 4.265
months

Tajmir et al.
(53)

Bone age detection CNN Accuracy: 98.6%
within one year

Kim et al. (54) Computer-assisted bone
age detection

Greulich-Pyle
method-based
DL

69.5% correlation
rate with reference
bone age

Thodberg et al.
(55)
Martin et al.
(56)
Maratova et al.
(57)

Bone age detection
software validation

BoneXpert Variable

Yang et al. (58) Bone strength
prediction

Scaling index
method

Root mean square
error: 0.869 ± 0.121
Coefficient of
determination R2:
0.68 ± 0.079

Huber et al.
(59)

Bone biomechanical
property detection

Scaling index
method

Root mean square
error: 1.021

Deniz et al.
(60)

Proximal femur
segmentation

CNN Dice similarity
score: 0.95 ± 0.02

Lee et al. (61) Osteoporosis detection
in panoramic
radiographs

CNN AUC values:
0.9763, 0.9991 and
0.9987

(Continued)
Fractures
Automated fracture detection using AI can be helpful not only

to radiologists but also to other clinicians (such as overnight

emergency department personnel) who might not always have

access to radiology services and would sometimes have to rely on

their own preliminary fracture diagnosis. DL techniques have

been gaining increasing attention over the past few years in their

ability to detect fractures on images, as this can increase

diagnostic reliability and reduce the rate of medical errors.

Some studies have shown that CNNs can outperform

orthopedic surgeons when it comes to the detection of upper

limb and ankle fractures on radiographs (41, 42). Additionally,

multiple studies have shown promise when assessing the

competence of AI in detecting both axial and appendicular

skeletal fractures on radiographic and CT images (26, 43, 44, 97,

98), with one CNN model by Cheng et al. achieving an AUC of

0.98 and an accuracy of 91% for radiographic hip fracture

detection (45). Rajpurkar et al. trained a 169-layer DenseNet

baseline model to detect and localize fractures using a large

dataset of MSK radiographs containing 40,561 manually-labeled

images; when tested on a set of 207 studies, the model

successfully detected finger and wrist abnormalities with an AUC
Frontiers in Radiology 05 frontiersin.org
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TABLE 1 Continued

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Pan et al. (62) Osteoporosis screening
using low-dose chest CT

3D U-net CNN AUC: 0.927 for
detecting
osteoporosis and
0.942 for
distinguishing low
BMD

Jimenez-Pastor
et al. (63)

Vertebrae localization
and identification

Decision forests
and image-based
refinement

Identification rate:
79.6% for the
thoracic and of
74.8% for the
lumbar region

Lessmann et al.
(64)

Vertebrae segmentation
and identification

CNN Dice score: 94.9 ±
2.1% for
segmentation
Accuracy: 93% for
identification

Wimmer et al.
(65)

Vertebral body and
intervertebral disc
localization and labeling

CNN Detection rate:
93.6%

Jamaludin
et al. (66)

Lumbar spine MRI
radiological feature
detection

CNN Accuracy: 95.6%
for disc detection
and labeling

Lu et al. (67) Automating lumbar
vertebral segmentation,
disc-level designation,
and spinal stenosis
grading

U-net CNN Variable

Han et al. (68) Spinal structure
segmentation

Generative
Adversarial
Network

Accuracy:96.2%
Dice coefficient:
87.1%, Sensitivity/
specificity: 89.1%/
86.0%

Pan et al. (69) Radiographic Cobb
angle measurement and
scoliosis detection

Mask R-CNN Sensitivity/
specificity: 89.59%/
70.37%

Weng et al.
(70)

Radiographic sagittal
vertical axis
measurement

ResUNet CNN Median absolute
error: 1.183 ±
0.166 mm

Kim et al. (71) Differentiating between
tuberculous and
pyogenic spondylitis

CNN AUC: 0.802

Acar et al. (72) Differentiating
metastatic and
completely responded
sclerotic bone lesion in
prostate cancer

Textural
analysis, support
vector machine,
K-nearest
neighbor,
ensemble
classifier

Variable

Lang et al. (73) Differentiating spinal
metastases origin cancer

Radiomics,
CNN, CLSTM

Accuracy: 0.71 for
radiomics, 0.71 for
CNN, 8.81 for
CLSTM

Malinauskaite
et al. (74)

Differentiating soft-
tissue lipoma and
liposarcoma

Radiomics and
ML classifier

AUC: 0.926

Zhang et al.
(75)

MRI histopathological
grading of soft tissue
sarcomas

Radiomics,
random forests,
k-nearest
neighbor,
support vector
machine

Accuracy: 0.88

He et al. (76) Predicting recurrence of
giant cell bone tumors

CNN and CNN
regression
models

Accuracy: 75.5%
and 78.6%

(Continued)

TABLE 1 Continued

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Blackledge
et al. (77)

Segmenting and
evaluating soft tissue
sarcomas after
radiotherapy

Logistic
regression,
support vector
machine,
random forest,
k-nearest
neighbor, kernel
density
estimation,
Naïve-Bayes, 20-
node, three-
layer, fully-
connected
neural network

Variable

Bien et al. (78) Detecting various knee
abnormalities

CNN Variable

Liu et al. (79) Diagnosing anterior
cruciate ligament tears

CNN Sensitivity/
specificity: 96%/
96%
AUC: 0.98

Ma et al. (80) Diagnosing meniscal
injuries of the knee

CNN Average accuracy:
89.8%

Chang et al.
(81)

Detecting complete
anterior cruciate
ligament tears

CNN Accuracy: 96%

Couteaux et al.
(82)

Detecting meniscal tears
of the knee

Region-based
CNN

AUC: 0.906

Roblot et al.
(83)

Detecting meniscal tears
of the knee

CNNs AUC: 0.90

Liu et al. (84) Segmenting knee
cartilage and bone

CNNs Variable

Norman et al.
(85)

Segmenting knee
cartilage and menisci

CNNs Variable dice
scores, ranging
between 0.770 and
0.878 for cartilage
and 0.809 and
0.753 for menisci

Balsiger et al.
(86)

Peripheral nerve
segmentation

CNN Dice scores of
0.859 and 0.719

Kemnitz et al.
(87)

Thigh muscle and
adipose tissue
segmentation

U-Net CNN Dice score: 0.96

Yin et al. (88) Differentiating sacral
chordoma from sacral
giant cell tumor

Radiomics ML
classifiers

Variable

Gitto et al. (89) Classifying deep-seated
lipomas and atypical
lipomatous tumors of
the extremities

Radiomics-based
ML

Sensitivity/
specificity: 92%/
33%

Pfeil et al. (90) Joint-space analysis for
rheumatoid arthritis
detection

Computer-aided
joint space
analysis

Variable

Langs et al.
(91)

Erosion spotting and
visualization in
rheumatoid arthritis

Generative
appearance
model

Sensitivity/
specificity: 85%/
84%
AUC: 0.92

Liu et al. (92) Epidural mass detection Gaussian
Mixture Model

Accuracy: 82%

Stotter et al.
(93)

Radiographic
measurements of the
pelvis and hip

CNN Variable

Etli et al. (94) Sex estimation from
sacrum and coccyx

Univariate
discriminant

Accuracy: 67.1%
for univariate

(Continued)
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TABLE 1 Continued

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

analysis, linear
discriminant
function
analysis,
stepwise
discriminant
function
analysis,
multilayer
perceptron
neural networks

discriminant
analysis, 82.5% for
linear discriminant
function analysis,
78.8% for stepwise
discriminant
function analysis,
and 86.3% for
multilayer
perceptron neural
networks

Yune et al. (95) Predicting sex from
hand radiographs

CNN Agreement with
phenotypic sex:
77.8%

Bowness et al.
(96)

Identifying anatomical
structures on ultrasound

U-Net CNN mean highlighting
scores ranging
from 7.87/10 to
8.69/10

AUC, area under the curve; BMD, bone mineral density; CLSTM, convolutional long

short-term memory; CNN, convolutional neural network; CT, computed

tomography; DL, deep learning; ML, machine learning; MRI, magnetic resonance

imaging; VGG, visual geometry group.

Debs and Fayad 10.3389/fradi.2023.1242902
of 0.929 but was less competent at detecting abnormalities of the

shoulder, humerus, elbow, forearm, and hand (46). Since then,

their large dataset was made publicly available under the name

MURA to encourage public submissions and improve fracture

detection rates of the original study (99). With all the collective

efforts being made to improve AI-assisted fracture detection,

models are no longer just objects of research studies but have

been implemented into clinical practice. Presently, Gleamer

BoneView (Gleamer, Paris, France) is an FDA-approved

commercially available software that can help detect fractures on

radiographs and is the only AI fracture detection software to

have FDA clearance for use in both adults and pediatric patients

over two years of age (100).

However, despite all these promising applications, AI-assisted

fracture detection still has a key limitation: each CNN model

must be specifically trained on the body part being assessed

using large numbers of properly labeled images, whereas humans

can transfer their knowledge of one body part to another.

Moreover, models can be less reliable when trying to detect less

obvious fractures such as a non-displaced femoral neck fracture

(98), and most models report the output in a binary fashion

(fracture present or not present) without providing an in depth

description of the lesion or other related findings.
Osteoarthritis

Several studies have looked into how AI can assist radiologists

in evaluating images for the presence and grading of osteoarthritis.

Xue et al. fine-tuned a CNN model using a set of 420 hip

radiographs to detect hip osteoarthritis using a binary system

and reported a performance akin to that of a radiologist with ten

years of experience (47). Tiulpin et al. took advantage of the
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Multicenter Osteoarthritis Study (MOST) datasets to train and

test a CNN model to automatically score knee osteoarthritis

severity using to the Kellgren-Lawrence grading scale and

reported promising results with an AUC of 0.80 (48).

Interestingly, the probability distribution of KL grades was also

reported to show when predicted probabilities may be

comparable across two contiguous grades, rendering the model’s

performance more illustrative of real-life practice where arthritis

severity may represent the transition between two adjacent

grades instead of being neatly tiered at one single level. This was

also done in a study by Antony et al. where, in an attempt to

circumvent the limitation of a finite and discreet scale, knee

osteoarthritis grading was redefined as a regression with

continuous variables (49). Although osteoarthritis assessment has

been traditionally done using radiographs, AI can also augment

the quantitative and qualitative assessment of cartilage on MRI

to render the evaluation of osteoarthritis more accurate, and

several studies have worked on developing models capable of

successfully detecting cartilage lesions and staging cartilage

degenerative changes (50, 51).
Bone age
Radiographic assessment of bone age is important for

pediatricians to assess the skeletal maturity and growth of a

child, and efforts have been put into using AI to automate bone

age assessment and avoid the use of the inflexible and error-

prone traditional methods such as the Greulich-Pyle atlas and

the Tanner-Whitehouse method (101, 102). The Radiological

Society of North America Pediatric Bone Age Machine Learning

Challenge freely provided ML developers with a dataset

containing over 14,000 hand radiographs and used competitions

to promote collaborative effort into designing tools competent

at automating bone age assessment (52). With over 100

submissions, the winning algorithm was designed by the

University of Toronto’s Cicero and Bilbily who used Google’s

Inception V3 network for pixel information, concatenated the

architecture with sex information, and added layers after

concatenation for data augmentation (52). The ultimate goal

would be to provide radiologists with a tool that can help them

assess bone age rather than perform the task independently.

Tajmir et al. revealed how radiologists assisted by AI software

when assessing bone age perform better than an unaided AI

model, a single radiologist working independently, and a group

of expert radiologists working together (53). Moreover, Kim

et al. showed how the use of AI software can reduce reading

times by approximately 30%, from 1.8 to 1.38 min per study

(54). Presently, BoneXpert is a commercially-available widely-

used software developed by Visiana that provides automated

bone assessment by delineating the distal epiphyses of several

hand bones, with at least eight needed for computation (55).

Using the Greulich and Pyle or Tanner-Whitehouse standards,

skeletal maturity is assessed with a precision of 0.17 years,

reportedly nearly three times better than human performance

(14, 56, 57).
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Bone fragility
Imaging is often used for the evaluation of osteoporosis, a bone

disorder characterized by a decreased bone mineral density (BMD),

as bone strength assessment is fundamental for clinical decision

making and therapy monitoring. Several studies have coupled ML

support vector machines with methods of evaluating trabecular

bone microarchitecture to automate and improve quantitative bone

imaging and assessment (58, 59). In one study, Yang et al. used

DL algorithms to combine BMD data from dual-energy x-ray

absorptiometry (DXA) with bone microarchitecture data from

multi-detector CT in an attempt to predict proximal femur failure

loads; analysis revealed that trabecular bone characterization and

ML methods, when coupled with conventional DXA BMD data,

can appreciably enhance biomechanical strength prediction (58).

Huber et al. applied similar ML methods to predict proximal tibial

trabecular bone strength using MRI data instead and concluded

that combining ML techniques with data on bone structure can

enhance MRI assessment of bone quality (59).

In the same vein, ML algorithms have been employed in an

attempt to predict osteoporotic fractures from MRI data (103), with

one study making use of a CNN to automate segmentation of the

proximal femur and facilitate the measurement of bone quality on

MRI (60). Research has also focused on developing tools that can

offer opportunistic screening and assessment of bone fragility, with

one study looking at a system that can evaluate bone quality on

dental panoramic radiographs (61) and another describing a DL

system that can measure BMD on low-dose chest CT performed

for lung cancer screening (62). With all those recent developments,

AI is showing promise as a tool that can help with osteoporosis

diagnosis; however, further refinement of such models is still

needed to better automate the objective assessment of osteoporosis,

its progression, and its response to therapy (104).
Spine imaging
Given that MSK radiologists spend a considerable amount of

time looking at spine imaging, efforts have been made to develop

ML algorithms that can automate tasks related to spine imaging

interpretation and decrease the amount of time needed to

interpret individual scans (105). Multiple studies have presented

AI tools that can successfully detect and label spinal vertebrae as

well as intervertebral discs on MRI and CT images (63–65),

obviating the need for human manual labeling and streamlining

the review of images. Information from these models can be used

to automate other processes, as demonstrated by Jamaludin et al.

who, after presenting a model that could label vertebral bodies

and intervertebral discs on MRI with a 95.6% accuracy, used a

CNN to successfully provide radiologist-level assessment of

several other findings such as disc narrowing, central canal

stenosis, spondylolisthesis, and end plate defects (66).

In addition to that, researchers have focused on designing

models that can automate segmentation of the vertebrae, with

one study making use of a U-Net architecture to segment the six

lumbar intervertebral disc levels (67) and another adopting an

iterative instance approach whereby information on one

segmented vertebra is used to iteratively detect the following one
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(64). In the former study, Lu et al. also trained their model to

automate spinal and foraminal stenosis grading using a large

dataset obtained from 4,075 patients and reported an accuracy of

80% for grading spinal stenosis and 78% for grading neural

foraminal stenosis (67). To increase concordance between

automated segmentation outputs and ground truth labels,

generative adversarial networks have also been used, with one

resultant model concurrently segmenting the neural foramen, the

vertebral bodies, and intervertebral discs (68).

Advancements in this line of research are ongoing, supported by

large publicly available datasets such as SpineWeb and the MICCAI

2018 Challenge on Automatic Intervertebral Disc Localization and

Segmentation dataset. The Pulse platform (NuVasive, San Diego,

California, USA) is a recent FDA-approved spinal surgical

automation platform that combines multiple technologies to

provide intraoperative assessment during spine surgeries and can

help with tasks such as neuromonitoring of nerves, improvement

of screw placement, and minimizing intraoperative radiation

exposure (106). Other spine imaging applications could include

automating radiographic measurements of spinal alignment (69,

70) and using CNNs to distinguish tuberculous from pyogenic

spondylitis (71). However, despite the promising results of all these

recent developments, further research is still needed, and studies

are often hindered by several limitations such as the lack of a

consistent gold standard for entities where radiologists may exhibit

high variability in interpretation (107).

Muscuskeletal oncology
AI can potentially have several applications in MSK oncology and

may be able to help radiologists detect metastatic bone lesions,

determine their origin, and assess progression and treatment

response. Using CT texture analysis, Acar et al. developed an ML

model with an AUC reaching up to 0.76 when differentiating

metastatic bone lesions from sclerotic bone lesions with complete

response in patients with prostate cancer (72). To determine tumor

origin on contrast-enhanced MRI, Lang et al. used DL methods

and radiomics to devise a model that successfully differentiated

between spinal metastatic lesions from the lung and other origin

sites with a high accuracy reaching 0.81 (73). In addition, AI can

potentially help with the assessment of primary musculoskeletal

tumors. For example, two studies making use of ML techniques

and radiomics demonstrated how lipoma and liposarcoma could be

differentiated on MRI with expert-level performance (74) and how

the histopathological grades of soft tissue sarcomas can be pre-

operatively and non-invasively predicted on fat-suppressed T2-

weighted imaging with an accuracy reaching 0.88 (75). AI might

also serve other proposed roles, such as assisting clinicians in

predicting tumor recurrence as well monitoring post-treatment

tumor changes on imaging (76, 77).

Cruciate ligaments and menisci
Several studies have evaluated the performance of AI models

when detecting meniscal injuries and ligamentous tears of the

knee. Bien et al. trained a CNN model using a set of 1,130

training and 120 validation MRI exams to recognize meniscal

and anterior cruciate ligament (ACL) tears, reporting an AUC of
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0.847 for meniscal tears and an AUC of 0.937 for ACL tears on the

internal validation set and 0.824 on the external validation set (78).

Using arthroscopy as the reference, Liu et al. trained a CNN to

isolate ACL lacerations with an AUC of 0.98 and a sensitivity of

96% (51, 79), and Ma et al. trained a CNN to diagnose meniscal

injury, reporting a an accuracy of 85.6% for anterior horn injury

detection and 92% for posterior horn injury detection, a

performance comparable to a chief physician (80).

Isolation of individual joint structures might help enhance

model performance, as demonstrated by Chang et al. who, after

isolating the ACL on coronal proton density 2D MRI using CNN

U-Net, subsequently used a CNN classifier to evaluate the

isolated ACLs for the presence of pathology and reported an

AUC of 0.97 and a sensitivity of 100% (81). When testing a

CNN model for meniscal segmentation on fat-suppressed MRI

sequences, Pedoia et al. reported a sensitivity reaching 90%, a

specificity reaching 82%, and an AUC reaching 0.89 (50).

Likewise, Couteaux et al., Roblot et al., and Lassau et al. all

reported similar performances, with AUC values for meniscal

tear detection reaching 0.9 in all three studies (82, 83, 108).

Quantitative analysis: segmentation and radiomics
Segmentation, or the process of delineating anatomic

structures, can be time-consuming but is nevertheless important

for evaluating the potential degeneration of or damage to

segmented structures and the resultant decline in their

functionality. Semi-automated segmentation software are

currently being applied in clinical cardiac and prostate MRI, but

such software make use of algorithms with manually designed

hand-engineered features and thus require manual adjustments

to the computer-generated contours (26). As such, interest has

shifted to fully automating segmentation processes using CNN,

which can have a profound impact on a radiologist’s

functionality and efficiency in the reading room. Performance of

segmentation algorithms is often assessed with a dice coefficient

to assess the similarity of a segmentation to its ground truth by

reporting the percentage overlap between the two regions, and a

dice score of 0.95 is usually indicative of a successful algorithm

(109). Recent research has heavily focused on knee segmentation,

with Liu et al. designing a model that successfully segmented the

different structures of the knee using a CNN combined with a

3D deformable modeling approach (84). Using both T1-rho

weighted and 3D double-echo steady-state images, Norman et al.

also evaluated a DL model for automated segmentation of knee

cartilage and menisci but with simultaneous evaluation of

cartilage relaxometry and morphology; they found the model to

be adept at generating accurate segmentations and morphologic

characterizations when compared to manual segmentations (85).

DL techniques can have applications outside the knee as well, as

demonstrated by Deniz et al. who used similar methods but

shifted attention to the segmentation of the proximal femur,

reporting a CNN algorithm with a dice similarity score reaching

0.95 (60). Other venues are also being explored, with AI tools

showing promise in neurography segmentation (86) as well as

muscle segmentation in osteoarthritis patients to help with

muscular trophism evaluation (87).
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Besides segmentation, AI may also have applications in

radiomics, which is an emerging field in medicine that treats

medical images not only as pictures intended solely for visual

interpretation but also as a source of diverse quantitative

characteristics extracted as mineable data that can be used for

pattern identification to eventually assist with decision support,

characterization, and prediction of disease processes (110).

Spatial distribution of signal intensities and information on pixel

interrelationships are mathematically extracted to provide and

quantify textural information, which in turn can be used for

quantitative imaging biomarker discovery and validation for a

number of different conditions such as acute and chronic

injuries, spinal abnormalities, and neoplasms (111). By

uncovering imperceptible patterns in medical imaging, radiomics-

bases predictive models can play different roles such as providing

a detailed description of disease burden, identifying relationships

between phenotypes and outcomes, and predicting diagnosis and

prognosis for certain diseases, ultimately playing a key role in

improving precision medicine and personalized patient

management (112). ML models can identify and gather imaging

characteristics such as the distribution of signal intensities and

the spatial relationship of pixels that are not easily discernible

with visual interpretation and that can help improve clinical care

(113, 114). When testing different ML-augmented radiomics

models for preoperative differentiation of sacral chordomas from

sacral giant cell tumors on 3D CT; Yin et al. found contrast-

enhanced CT features more optimal than non-enhanced features

for helping identify the histology of the sacral tumor in question

(88). In one retrospective study, Gitto et al. assessed the

diagnostic performance of ML-enhanced radiomics-based MRI

for the classification and differentiation of atypical lipomatous

tumors of the extremities from other benign lipomas, reporting a

sensitivity of 92%, a specificity of 33%, and no statistically

significant difference when compared to qualitative image

assessment performed by a radiologist with 7 years of experience

(89). Research into the field is ongoing, and although radiomics

has shown promise as a powerful and innovative tool that can

help with the evaluation of different types of cancers, more

research is needed to fully explore the full scope of its

applications (115).

Other miscellaneous applications
Several research studies have looked into other potential

applications of AI such as joint space evaluation in rheumatoid

arthritis (90, 91), epidural mass detection on CT scans (92),

rotator cuff pathology detection (116), femoroacetabular

impingement and hip dysplasia detection (93), sex determination

using CT imaging of the sacrum and coccyx (94) or hand

radiographs (95), and assessment of Achilles tendon healing

(117). In addition to that, AI applications can have multiple

applications in MSK ultrasound (US), including but not limited

to segmentation of US images (96), quantitative analysis of

skeletal muscles (118), and detection of pediatric conditions such

as wrist fractures and developmental dysplasia of the hip (4,

119). Research is still ongoing, and additional repetitive and

time-consuming tasks might be tackled in coming years in an
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attempt to automate more processes and thus accelerate the process

of imaging interpretation.
Results reporting

AI can have several applications that can revolutionize the

production of radiology reports and the communication of

findings between physicians. Speech recognition, which has

already transformed the writing of reports, could be further

optimized with DL methods (120). Language processing systems

can also be applied, as shown by Do et al. who presented a

system capable of recognizing anatomy data from reports

generated with speech recognition software to concurrently

extract information on possible fractures (121) and Tan et al.

who presented a system capable of scanning x-ray and MRI

radiology reports to identify lumbar spine imaging findings that

could be related to low back pain (122). Natural language

processing (NLP) refers to the use of a computer to analyze and

interpret human language. Although NLP systems are not

entirely novel, recent advances in ML and neural networks have

revolutionized this technology, subsequently turning it into a tool

that can help with data extraction from radiology reports (123).

At their core, NLP systems operate using a multistep approach,

beginning with a preprocessing step whereby reports are broken

down into different subsets and processing steps during which

text from specific sections or differently-weighted sections is split

into sentences and words (a process known as tokenization)

(124). Word normalization and syntactic analysis follow, whereby

spelling mistakes are fixed, medical abbreviations are fully

expanded, and word roots are identified with the goal of

determining grammatical structures and linking words to

semantic concepts (such as symptom or disease), thus assigning

meaning to the data (124). The textual features extracted are

then processed by an automatic classifier using ML applications

to solve the ultimate task assigned to the system (such as

information extraction from reports), and ML applications have

to be trained on a set of manually-annotated reports, which can

be split into a training set and a validation set, both of which are

needed to develop the system and assess its performance (124).

Such tools could play a number of roles, such as suggesting

management recommendations to radiologists during the

dictation of a report or assisting with research purposes by

establishing links between different radiological findings and

resultant symptomatology or prognosis. Additionally, ML

applications may extend to extracting follow-up

recommendations from reports, thus ensuring the adequate

management of reported key findings (125).
Limitations

Although AI shows several promising applications across the

entire MSK imaging cycle, this technology is still facing a

number of challenges and limitations when it comes to both

development of AI tools and implementation into clinical
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practice. Large datasets are needed to develop successful DL

tools: tasks or diagnoses for which such datasets are not available

might be challenging to automate, and data can be fragmented

across many different systems, thus increasing the risk of errors,

decreasing the comprehensiveness of datasets, and increasing the

expenses of gathering complete data. Moreover, challenges in

establishing reference standards, such as irregularities in

contouring lesions, diagnostic uncertainties, as well as

inconsistencies in human performance and labeling, can all

reduce performance and hinder development. DL models being

developed are usually trained to perform one single task, whereas

patients seen clinically might have a number of etiologies and

conditions that require complex simultaneous interpretations.

Given that large amounts of data need to be collected for the

development of successful algorithms, issues pertaining to

privacy and ownership of such data arise: patients may be

concerned that collection of such data is a violation of privacy,

especially if an AI model can predict private information about a

patient without having received that information and

subsequently make it available to third parties (such as life

insurance companies). Large datasets can be problematic in a

different way: they may be more representative of a specific

subset of the population rather than the whole population and

could also reflect underlying biases and inequalities in the health

system. As such, algorithms trained using such datasets may

propagate systemic biases and inequalities that are already

present and may not be suitable for treating all patients but

rather the subset with the most representation in the training

dataset.

Evidently, AI models can and will make mistakes, resulting in

errors and injuries to patients being treated using the model.

Although medical errors are sometimes inevitable in the medical

field and can occur irrespective of the use of AI, the danger of

AI-related mistakes is that an underlying problem in one system

might result in injuries to thousands of patients if that system

becomes widespread (whereas errors from a single human

provider will affect the limited number of patients being treated

by that provider). Additionally, with errors arises the issue of

accountability: models often do not disclose the statistical

rationale behind the elaboration of their tasks, making it hard to

identify the cause of the error or understand the rationale behind

the final output of an algorithm and limiting implementation

into medical settings. To catch errors and refine algorithms,

post-implementation evaluation, maintenance, and performance

monitoring of implemented AI tools is just as vital as pre-

implementation development processes to the success of a model.

However, such monitoring can prove to be labor-intensive,

especially for smaller practices that will inevitably experience

workflow disruptions due to a lack of dedicated informatics

resources and an increase in the radiologists’ burden (126).
Conclusion

AI, ML and DL have the potential to significantly augment

several aspects of the MSK imaging chain, with applications in
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the ordering of imaging, scheduling, protocoling, acquisition and

presentation, image interpretation, as well as report generation

and communication of findings. Although research into this

technology is showing very promising results, development of

tools still faces a number of challenges that impede successful

implementation into clinical practice. The ultimate goal is not to

design a completely independent system that replaces the need

for human expertise but rather to equip radiologists and medical

professionals with tools that can automate certain functions and

thus alleviate some of the increasing responsibilities radiologists

face, affording them more time to focus on more demanding and

complex tasks. Radiologists and AI algorithms working hand in

hand have the potential to increase the value provided to patients

by improving imaging quality and efficiency, patient centricity,

and diagnostic accuracy, all of which can greatly enhance both

patient and provider satisfaction.
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