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Retrospective T2 quantification
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Purpose: To develop a deep learning-based method to retrospectively quantify T2
from conventional T1- and T2-weighted images.
Methods: Twenty-five subjects were imaged using a multi-echo spin-echo
sequence to estimate reference prostate T2 maps. Conventional T1- and T2-
weighted images were acquired as the input images. A U-Net based neural
network was developed to directly estimate T2 maps from the weighted images
using a four-fold cross-validation training strategy. The structural similarity index
(SSIM), peak signal-to-noise ratio (PSNR), mean percentage error (MPE), and
Pearson correlation coefficient were calculated to evaluate the quality of
network-estimated T2 maps. To explore the potential of this approach in clinical
practice, a retrospective T2 quantification was performed on a high-risk prostate
cancer cohort (Group 1) and a low-risk active surveillance cohort (Group 2).
Tumor and non-tumor T2 values were evaluated by an experienced radiologist
based on region of interest (ROI) analysis.
Results: The T2 maps generated by the trained network were consistent with the
corresponding reference. Prostate tissue structures and contrast were well
preserved, with a PSNR of 26.41 ± 1.17 dB, an SSIM of 0.85 ± 0.02, and a Pearson
correlation coefficient of 0.86. Quantitative ROI analyses performed on 38
prostate cancer patients revealed estimated T2 values of 80.4 ± 14.4 ms and
106.8 ± 16.3 ms for tumor and non-tumor regions, respectively. ROI
measurements showed a significant difference between tumor and non-tumor
regions of the estimated T2 maps (P < 0.001). In the two-timepoints active
surveillance cohort, patients defined as progressors exhibited lower estimated T2
values of the tumor ROIs at the second time point compared to the first time
point. Additionally, the T2 difference between two time points for progressors
was significantly greater than that for non-progressors (P= 0.010).
Conclusion: A deep learning method was developed to estimate prostate T2 maps
retrospectively from clinically acquired T1- and T2-weighted images, which has
the potential to improve prostate cancer diagnosis and characterization without
requiring extra scans.
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1. Introduction

Prostate cancer (PCa) is one of the most common cancer types

in men. According to Global Cancer Statistics (1), PCa accounts for

the second highest incidence of cancer among men and remains a

leading cause of mortality. And the majority of new low-risk

prostate cancer diagnoses will be managed with active

surveillance (AS). In recent years, multiparametric MRI

(mpMRI) has been recommended as a noninvasive imaging tool

to improve the diagnostic pathway for PCa. mpMRI combining

T2-weighted, diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced (DCE) imaging has shown excellent clinical

value in cancer detection, biopsy targeting, risk stratification,

staging, and treatment planning of PCa (2–4). Current clinical

guidelines adopt mpMRI as the primary noninvasive diagnostic

tool for PCa (3, 5). However, limitations of mpMRI exist in

several aspects, including low sensitivity for low-grade cancer

detection (6, 7); a false negative rate of 10%–20% for diagnosing

high-grade tumors (8); and interobserver variability among

readers of varying levels of experience (9, 10).

Recently, quantitative MRI has been shown to improve PCa

diagnosis and characterization compared to standard mpMRI (11–

14). In contrast to the qualitative weighted images included in

mpMRI, quantitative maps are more objective representations of

the intrinsic physical properties and have higher repeatability and

reproducibility. This helps to reduce the variations from both the

observers (inter- and intra-) and scanners (15, 16). With these

advantages, the measurable differences in relaxation times between

normal and tumor tissue have been shown to improve prostate

lesion characterization (17–19). And T2 maps are especially

helpful in differentiating cancer from normal prostate tissue and

determining its aggressiveness (12, 13, 20, 21). More recently,

Hepp et al. showed that T2 mapping has high diagnostic accuracy

for differentiating between PCa and chronic prostatitis,

comparable to the performance of ADC values (21). However, one

main challenge for quantitative MRI is the limited clinical

availability, since acquiring quantitative maps requires additional

pulse sequences that are either time-consuming (traditional

protocols) or not widely available [advanced multiparametric

mapping techniques, for example, MR fingerprinting (11)].

Deep learning-based methods are increasingly used in MR

image synthesis, including as a translation approach between

qualitative weighted images and quantitative maps (22). Several

studies in brain have shown the potential of convolutional neural

networks (CNN) in quantitative MRI estimation from

conventional weighted images. Wu et al. (23) used self-attention

deep convolutional neural networks to estimate T1, proton

density, and B1 maps from T1-weighted images. Moya-Sáez et al.

(24) and Qiu et al. (25) used CNN approaches to compute

quantitative T1 and T2 maps in the brain using clinical contrast-

weighted images as inputs. These deep learning approaches do

not require additional quantitative MRI scans and have the

potential to improve the availability of quantitative information.

In this study, we developed a deep learning-based method to

directly estimate T2 maps of the prostate from clinically acquired

T1- and T2-weighted images. Because of the potential motion-
Frontiers in Radiology 02
induced position mismatch between different image sets in

prostate imaging, various specific preprocessing steps, such as

mask generation and deformable registration were applied to

address this challenge. The proposed network was trained and

validated using in vivo prostate MR scans from both PCa

patients and healthy volunteers, followed by a retrospective T2

quantification on two patient groups, prostate cancer cohort and

AS cohort, to further explore the potential of this approach in

clinical practice.
2. Materials and methods

2.1. Study subjects and dataset

In vivo studies were approved by the institutional review board

of Cedars-Sinai Medical Center. Informed consent was obtained

from all study subjects before enrollment. Three groups of

subjects were scanned on a 3 T clinical scanner (Biograph mMR;

Siemens Healthineers, Erlangen, Germany) as listed below.

Detailed MRI parameters of implemented protocols are listed in

Table 1.

2.1.1. Group 1a (w/reference T2)
It contains twenty-five subjects, including seventeen confirmed

PCa patients and eight healthy volunteers. For each subject,

conventional weighted images were acquired, including T1-, T2-

weighted images, DWI and DCE. Reference T2 maps were

acquired using a multi-echo spin-echo sequence and then

generated by exponential fitting without the image of the first echo.

2.1.2. Group 1b (w/o reference T2)
It contains twenty-four confirmed PCa patients scanned on the

same scanner with the identical protocol settings as Group 1a,

except without reference T2 map.

2.1.3. Group 2 (as cohort)
It consists of forty-two patients with low or low-intermediate

risk prostate cancer undergoing AS. At two different time points,

two conventional multiparametric MRIs were approximately 12

months apart (10.7 ± 2.2 mo). Each MRI was followed by a

prostate biopsy conducted between September 2017 and

December 2022. Progression criteria were defined based on

biopsies as adverse histology presence (Gleason score ≥7) or an

increase of 3 or more positive cores examined. Lesions with

histopathologic diagnoses other than suspicious peripheral zone

lesions were excluded from quantitative ROI analysis (Figure 1).
2.2. Data preprocessing

The workflow of preprocessing for Group 1a includes two

parts, conventional weighted image preprocessing and T2 map

image preprocessing. For the conventional weighted images,

both T1- and T2-weighted images were first resampled to match

the spatial resolution of T2 maps. Then the weighted images
frontiersin.org
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TABLE 1 Protocol parameters of the acquisitions in all groups included in this study (group 1 and 2).

Group 1a

Group 1b and 2

T1w (FLASH) T2w (TSE) DWI (EP) DCE (GRE) T2 map (multi-echo spin-echo)
TE (ms) 2.03 108 95 1.07 10.5, 21.0, 31.5, 42.0, 52.5, 63.0, 73.5, 84.0

TR (ms) 250 3,000 6,500 3.02 4,980

α (°) 48.0 140 90 10 180

# Slices 40 (axial) 40 (axial) 29 (axial) 31 (axial) 30 (axial)

Thickness (mm) 6 6 3 3 3

Resolution (mm²) 1.125 × 1.125 1.125 × 1.125 0.781 × 0.781 1.250 × 1.250 1.172 × 1.172

FOV (mm2) 225 × 360 292 × 360 200 × 200 160 × 160 300 × 300

Temporal Res (s) – – – 20

b-value (s/mm2) – – 50, 800, 1,400 –

Scan time (min) 0.5 1.0 6.4 8.2 ∼ 12.0

Conventional multiparametric MRI was acquired in all groups. Additional T1 mapping reference was acquired in group 1a.
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and T2 map images were cropped to a smaller field of view to avoid

artifacts caused by the saturation band used during T2-weighted

scanning. All conventional weighted images were

deformable-registered to one echo time image from the T2

mapping sequence (TE = 84.0 ms, the closest TE to the

conventional T2-weighted images), taking advantage of their

similar contrast. For Group 1b and Group 2 datasets, spatial

resolution correction was first implemented, then co-registration

was only implemented between the weighted images. After

cropping all the images to the same size to cut off the zero-value
FIGURE 1

The inclusion workflow of the group 2 dataset (AS cohort). Patients who were
progressor criteria were included in the progressor set (n= 11), whereas othe
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pixels caused by the alignment transform using ANTsPy (26), 24

slices were available for each subject.

A morphological image processing algorithm was developed to

generate the bladder mask based on the T1-weighted image,

followed by manual correction. For each subject, conventional

weighted images were normalized by the mean plus three times

the standard deviation of the whole 3D image volume, excluding

the bladder pixels. T2 maps were scaled by 400 ms, since the

range of 0–400 ms covers most pelvis tissue. Extreme value

masks (T2 value larger than 400 ms) were generated in order to
identified by the radiologist to have peripheral zone tumor and meet the
rs were included in the non-progressor set (n= 31). PZ = peripheral zone.
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FIGURE 2

Deep-learning network structure. A 2D U-Net-based architecture consisted of four down-sampling steps and four up-sampling steps was implemented.
Each encoder stage was followed by 2 × 2 max-pooling for down-sampling, and each decoder stage was followed by 2 × 2 up-sampling convolutional
layers. Every stage incorporated two series of 3 × 3 2D convolutions, batch normalization, and rectified linear units (ReLU). Input images included T1- and
T2-weighted images concatenated as two channels. The output image was an estimated T2 map. An L1 loss function was used.
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avoid spurious high-intensity pixels in the T2 maps, which would

otherwise affect both the network training and evaluation.
2.3. Deep learning network training

A2DU-Net-based networkwas trained to estimate T2maps from

T1- and T2-weighted images, which were concatenated as 2-channel

inputs. The detailed network architecture is illustrated in Figure 2.

The model consisted of a four-step contraction path that encoded

high-resolution data into low-resolution representations and a four-

step expansion path that decoded such encoded representations

back to high-resolution images. Both the encoder and decoder parts

were modified based on the U-Net structure (27), where each stage

consisted of two series of 3 × 3 2D convolutions, batch

normalization, and rectified linear units (ReLU). In the encoder

part, each stage was followed by a 2 × 2 max-pooling for down-

sampling, while for the decoder part, four 2 × 2 up-sampling layers

converted low-resolution representation back to high resolution.

A four-fold cross-validation was implemented on Group 1a

dataset (twenty-five subjects) with a training:validation:testing

split of 19:2:4. This strategy covered all the PCa subjects in testing

and the inference results would be used for evaluation. An L1 loss

function between the network outputs and the reference maps was

minimized with the ADAM optimizer (28), as L1 loss is more

robust to potential misregistration. The model was implemented

using PyTorch with CUDA-11.6, NVIDIA RTX 1080-TI GPU.
2.4. Evaluation

2.4.1. Global analysis
Image-based error evaluation was performed on the inference

results from the seventeen suspected PCa patients in Group 1a

dataset, which have acquired T2 maps as references. Mean

percentage error (MPE), peak signal-to-noise ratio (PSNR), and

structural similarity index (SSIM) were calculated to assess the

error at both the voxel level and structure level. The Pearson
Frontiers in Radiology 04
coefficient was also calculated to assess the correlation between

the estimated T2 values and the reference T2 values. All the

metrics were evaluated slice by slice while masking out the

bladder region and the extreme value pixels.

To assess the effectiveness of the designed processing pipeline, the

metrics were also calculated using similar deep learning approaches

but without deformable registration and/or bladder masking. The

results were compared with the proposed approach.

2.4.2. Regional analysis
For Group 1a, an experienced radiologist provided both tumor

and non-tumor ROI labeling for the T2-weighted image and T2

map ground truth respectively using ITK-SNAP (www.itksnap.

org) (27). Tissue segmentation was informed by the standard

clinical reading workup based on mpMRI and PSMA-PET (when

available). The independent ROI labels drawn on each

acquisition can represent the tumor and non-tumor regions more

accurately since the deformation of the prostate in different

image sequences cannot be avoided or eliminated. Same tumor

and non-tumor ROIs labeling have been performed on the T2-

weighted images of Group 1b dataset; only tumor ROIs have

been labeled on the T2-weighted images of Group 2 dataset.

For the fourteen suspected PCa patients in Group 1a dataset,

mean T2 values were calculated in the ROI labels for each tumor

and non-tumor region. Comparisons were performed between

the estimated T2 map and the T2 map ground truth. Paired

t-tests with a significance level of P = 0.05 were performed to test

whether there are significant differences between the estimated

T2 values and the reference T2 values of both tumor and non-

tumor regions. Also, paired t-tests were conducted between the

tumor and non-tumor regions to evidence that the network can

improve PCa diagnosis and characterization potentially. To

further test the network performance in T2 quantification of PCa

(focusing on peripheral zone lesion), Group 1b dataset without

corresponding T2 maps were also input to the trained network.

And the estimated T2 maps were used to calculate the mean T2

value of the tumor and non-tumor ROIs then followed by a

paired t-test with a significance level of P = 0.05. Statistical ROI
frontiersin.org
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analysis was also performed on the estimated T2 maps of the

thirty-eight cases of Group 1 in total.

For the Group 2 dataset, T1-weighted and T2-weighted images

from two time points were used to generate estimated T2 map using

the same trained network. Quantitative analysis was conducted by

comparing the mean estimated T2 values of the same tumor ROIs

between the two time points. The differences between the two time

points were denoted as deltaT2 (timepoint 2 min timepoint 1).

Paired t-tests were performed separately for the progressor and non-

progressor sets between timepoint 1 and timepoint 2. Un-paired t-

tests were also carried out on the same time points for progressor

and non-progressor sets, as well as on the deltaT2 values for both sets.
3. Results

3.1. Global analysis

The resulting estimated T2 maps are visually similar to the

ground truth. Figure 3 shows four representative slices from two

PCa patients. Tissue structures and contrast are well preserved

with high similarity to the T2 map ground truth. Also, the
FIGURE 3

Representative slices of the estimated T2 maps and the corresponding groun
references, and the second and fourth rows are the estimated T2 maps ge
slices which include prostate glands. DL, deep learning.
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results generated by the trained network are smoother and do

not contain pixels that have extremely high intensity.

Table 2 shows the quantitative analysis results of the proposed

method as well as the alternative approaches where deformable

registration and/or bladder masking were not included.

Compared with the first row which shows the performance of

the basic U-Net model, the second and third rows show

improved performance of the network after adding deformable

registration or bladder masking approach.

The quantitative analysis results of the proposed approach are

listed in the last row. Compared with the T2 map references, the

estimated T2 maps yielded a PSNR of 26.41 ± 1.17 dB, an SSIM

of 0.85 ± 0.02, and an MPE of 17.78%. In addition, the

correlation analysis showed a strong relationship between the

estimated maps and the corresponding ground truth, with a

Pearson correlation coefficient of 0.86.
3.2. Regional analysis

Among the PCa patients in the testing set of the Group 1a

dataset which has corresponding T2 maps as references, fourteen
d truth from two PCa patients (A,B). The first and third rows are the T2
nerated by the deep learning network. The two columns represent two
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TABLE 2 Quantitative analysis results of the estimated T2 map of the
seventeen PCa patients in group 1a on the whole image level with
different approaches.

Method PSNR SSIM MPE (%) Pearson
correlation
coefficient

U-Net 24.92 ± 2.00 0.81 ± 0.04 22.34 ± 4.96 0.77

U-Net +
Deformable registration

25.77 ± 1.73 0.84 ± 0.03 18.55 ± 2.55 0.82

U-Net + Bladder
masking

25.25 ± 1.39 0.81 ± 0.05 21.09 ± 4.58 0.81

U-Net + Deformable
registration + Bladder
masking

26.41 ± 1.17 0.85 ± 0.02 17.78 ± 1.81 0.86

The first row shows the performance of the basic U-net model. The second and

third row show the quantitative analysis results with deformable registration or

bladder masking in the prostate T2 estimation process. The last row shows the

finial performance of the proposed method.

TABLE 3 T2 ROI measurements on tumor and non-tumor regions in
thirty-eight PCa patients (group 1).

Group 1a
(N = 14)

DL estimation Reference P value

T2 (ms) Non-Tumor region 111.9 ± 14.2 128.1 ± 23.9 0.045*

Tumor region 83.7 ± 16.5 82.1 ± 13.5 0.788

P value <0.001*** <0.001***

Group 1b (N = 24)
T2 (ms) Non-Tumor region 103.8 ± 16.5

Tumor region 78.4 ± 12.6

P value <0.001***

Group 1 all (N = 38)
T2 (ms) Non-Tumor region 106.8 ± 16.3

Tumor region 80.4 ± 14.4

P value <0.001***

DL, deep learning.

Two series of paired t-tests were included in the analysis: one is between deep

learning estimation and ground truth (only on Group 1a), and the other is

between tumor and non-tumor regions with the significance level of *P < 0.05;

***P < 0.001.

Sun et al. 10.3389/fradi.2023.1223377
of them have lesions located in the peripheral zone of the

prostate included in the ROI analysis. Figure 4 shows

zoomed-in view of the prostate gland of two representative

PCa patients, with the tumor region outlined yellow while the

non-tumor region outlined in green. The different signal

intensity of the tumor and non-tumor region was accurately

estimated by the network consistent with the trend reported in

literature (14, 17, 20, 29).

Table 3 shows the T2 ROI measurements for the tumor and

non-tumor regions of thirty-eight PCa patients. For Group 1a,

the estimated T2 value of tumor region had a mean of 83.7 ±

16.5 ms, which was not significantly different from the reference

T2 value of 82.1 ± 13.5 ms, while the estimated T2 value of

non-tumor region was 111.9 ± 14.2 ms, a 16 ms underestimation

(P = 0.045) compared to the reference 128.1 ± 23.9 ms. In

addition, a clear pattern emerged that T2 values of the tumor

region were lower than the non-tumor region, which was

consistent with the T2 map ground truth. Both the estimated T2

values and the reference showed a significant difference between
FIGURE 4

Zoomed-in view of representative slices of the estimated T2 maps and the corr
tumor (yellow) and non-tumor (green) regions were outlined on the peripher
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tumor and non-tumor. Figure 5 shows the Bland-Altman plots

for the T2 values of tumor and non-tumor regions. The mean

difference was smaller than ±1%, and the limits of agreement

were within ±10% for the tumor regions. For the non-tumor

regions, the mean difference was smaller than ±5%, and the

limits of agreement were around +5% and −15%.
To further evaluate the trained network, ROI analysis was also

performed on the estimated T2 maps of Group 1b dataset. As

shown in Table 3, a significant difference between the tumor and

non-tumor regions was observed from the twenty-four estimated

T2 maps, with a mean T2 value of 78.4 ± 12.6 ms of the tumor

regions and a mean T2 value of 103.8 ± 16.5 ms of the non-

tumor regions, which consistent with the results from Group 1a.

Quantitative ROI analyses performed on the whole Group 1

dataset showed an estimated T2 values of 80.4 ± 14.4 ms and

106.8 ± 16.3 ms for tumor and non-tumor regions with a

significant difference level of P < 0.001.
esponding ground truth from two PCa patients (A,B) with ROI labeled. Both
al zone of the prostate gland. DL, deep learning.
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FIGURE 5

Bland-Altman plots of tumor (left, red) and non-tumor (right, blue) regions in 14 PCa patients (group 1a). DL, deep learning.
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For the Group 2 dataset, the AS data cohort, the ROI analysis

results are presented in Figure 6. The estimated T2 maps generated

by the proposed method were measured for both progressor and

non-progressor tumor ROIs. The estimated tumor T2 values in

the progressors and non-progressors were 82.1 ± 12.1 ms and

82.6 ± 15.8 ms, respectively, for timepoint 1; and 71.4 ± 6.1 ms

and 85.9 ± 19.2 ms for timepoint 2. The differences in tumor T2

between the two timepoints, calculated as timepoint 2 min

timepoint1, were denoted as T2delta. The mean estimated T2

delta for the progressor and non-progressor were −10.7 ± 14.2 ms

and 3.4 ± 14.5 ms, respectively. The distributions of timepoint 1,

timepoint 2 and the corresponding T2 delta were depicted as

box-and-whisker plots in Figure 6A. For the progressor set,

timepoint 2 showed a relatively lower T2 value compared to

timepoint 1, while the T2 values of the non-progressor set

overlapped between the two timepoints. The 25th to 75th
FIGURE 6

Quantitative analysis results of aS dataset (group 2). (A) Box and whisker plot of
(blue) and the corresponding T2 delta (orange) of progressor and non-progre
curve of the delta T2 value between timepoint 1 and timepoint 2. The boxes
within boxes represent median value. The whiskers represent measurement
times the interquartile ranges.
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percentiles of T2delta for the progressor were distributed below

zero, whereas those for the non-progressor were centered around

zero. Paired t-tests only revealed a significant difference between

the two time points for the progressor (P = 0.039). Un-paired

t-tests showed significant differences between the two groups for

timepoint 2 (P = 0.021) and for the T2deltas of progressors and

non-progressors (P = 0.010). No significant difference was

observed between the two groups at timepoint 1. The ROC curve

of using T2delta values for classifying progressors from non-

progressors shows an AUC of 0.74.
4. Discussion

In this work, a deep learning-based approach was developed to

estimate T2 values from clinical T1- and T2-weighted images. The
the mean estimated T2 value of ROIs. Timepoint 1 (light blue), timepoint 2
ssor were shown separately with significance level of *P < 0.05; (B) ROC
represent the interquartile range between 25–75th percentiles. The lines
s 1.5 times interquartile range. The points represent outliers beyond 1.5
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estimated T2 maps showed a similar image contrast compared with

the T2 map ground truth while preserving the pelvic tissue structure

details with high agreement to the reference. The quantitative

metrics demonstrated the feasibility of the proposed method in

estimating T2 maps. The ROI analysis results provided further

evidence of the effectiveness of the proposed approach in T2

quantification, as well as the differentiation ability between tumor

and non-tumor regions also the progressor and non-progressor.

This is the first deep learning-based prostate T2 estimation based

on conventional contrast-weighted images. The information from

multiple contrast-weighted images is merged with a neural network,

where the prostate MRI data presents specific challenges because of

the deformation between different acquisitions. For prostate

imaging, bladder filling makes the deformation problem complex

and unavoidable. To address the issues, our developed pipeline

includes optimized preprocessing steps. Deformable registration

between weighted images and T2 references contributed to

establishing spatial correspondences between the difference image

acquisitions. Special care was also taken on bladder regions, in the

proposed processing, masking out the irrelevant information carried

by the bladder area improved both the normalization of input

weighted image and the training of the network.

For the ROI analysis of tumor and non-tumor regions, the

estimated T2 maps showed lower T2 values in tumor regions than

in non-tumor regions in PCa patients, which is a trend consistent

with the findings reported in recent clinical papers using dedicated

T2 mapping sequences (12, 29). No significant difference in tumor

T2 was observed between the proposed method and the reference

method. A small bias (16 ms) was observed in the non-tumor

regions between the estimated T2 values and the reference. This

may be related to the mismatch in some cases with extreme values.

For these cases, the reference T2 maps showed extremely high T2

values (e.g., 250 ms) in the non-tumor region, while the estimated

T2 values were stable and lower than the reference ones. This

mismatch may be due to the low occurrence of the pixels with

extreme values in the training data. Enlarging the dataset to

include a wider range of weighted images with corresponding

references may increase the dynamic range of the output.

The majority of men with low-risk prostate cancer are managed

through AS, and mpMRI has been explored for identifying and

monitoring AS patients (30–32). Previous investigations have shown

high diagnostic accuracy of T2 relaxometry in predicting prostate

cancer aggressiveness, comparable to the performance of ADC values

(22). In this study, quantitative analyses were performed on AS

patient cohort. For the progressor set, the estimated T2 values of the

tumor decreased from timepoint 1 to timepoint 2, while no

significant difference was observed in the T2 values of the tumor

between the two time points. The T2 delta between the two time

points for progressors was significantly different from that for non-

progressors. The estimated T2 value holds the potential to increase

the predictive value of mpMRI for progressive prostate cancer.

In this work, only prostate T2 was retrospectively quantified, as

its value has been extensively investigated for prostate disease

diagnosis. T1-weighted imaging, on the other hand, has not been

used routinely for clinical decision-making. If needed, the

proposed approach may be adapted to quantify T1 in the future.
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The current study has several limitations. There was a slight level

of visible blurriness in the estimated T2 maps compared with the

reference T2 maps. One possible reason is that the input T1 and T2

weighted images have lower resolution than the T2 maps. Despite

the use of bladder masking and deformable registration, there is still

residual misregistration between the input images, which could

contribute to the reduction in image sharpness. Registration

methods that are more robust than the current pairwise deformable

registration performed by ANTs will be further explored. Also, the

dataset used in this study was of limited size: there were only 600

slices in total available from eight healthy volunteers and seventeen

suspected PCa patients. Among the seventeen PCa patients, only

fourteen of them had peripheral zone lesions, whereas lesions of the

other three cases are located at the transition zone. In the future, a

larger data set with references should be included to improve the

supervised network performance. Moreover, an inclusion of a

greater number of patients with transition zone tumors would

advance the exploration of potential application. In addition,

further tuning of the implemented CNN, or experimenting with

other more sophisticated networks [for example, generative

adversarial networks (33) and Transformers (34)], has the potential

to further improve T2 mapping performance. Moreover, this is a

retrospective study, the imaging protocols were set up with specific

spatial resolution and echo times on one 3 T scanner. The

conventional weighted images used to develop the network have a

limited spatial resolution with a larger FOV compared with the

current international guidelines (35). Future work should include

data from multi-center, and different scanners and protocols to test

and improve the generalizability of the proposed method.
5. Conclusion

Quantitative T2 maps of the prostate can be estimated from

clinical contrast-weighted images using a deep learning neuro

network with a high level of agreement with prospectively

acquired reference. Preliminary studies in prostate cancer patients

showed a significant difference in estimated T2 values between

tumor and non-tumor regions using the estimated T2 maps. In

patients on active surveillance, estimated T2 difference at two

points showed lower value in progressors than the non-

progressors. Upon further validation, this method has the

potential to retrospectively derive T2 values from standard

clinical MRI for more accurate PCa diagnosis and characterization.
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