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Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex 
limitations as reported by the World Health Organization (WHO). The significant 
drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk 
factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco 
smoking, and a lack of physical activities), have also been linked to an elevated 
risk of cardiovascular disease. Lifestyles and environmental factors are known key 
variables in cardiovascular disease. The familiarity with smoke goes along with the 
contact with the environment: air pollution is considered a source of toxins that 
contribute to the CVD burden. The incidence of myocardial infarction increases 
in males and females and may lead to fatal coronary artery disease, as confirmed 
by epidemiological studies. Lipid modification, inflammation, and vasomotor 
dysfunction are integral components of atherosclerosis development and 
advancement. These aspects are essential for the identification of atherosclerosis 
in clinical investigations. This article aims to show the findings on the influence 
of CVD on the health of individuals and human populations, as well as possible 
pathology and their involvement in smoking-related cardiovascular diseases. 
This review also explains lifestyle and environmental factors that are known to 
contribute to CVD, with indications suggesting an affiliation between cigarette 
smoking, air pollution, and CVD.
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1 Introduction

Air contamination or pollution is the foremost environmental risk factor, accounting for 
roughly 1/9th of all fatalities worldwide according to the World Health Organization (WHO) 
(1). In the air, the PM2.5 (particulate matter with a diameter of 2.5 μm or less) has a strong link 
to vascular effects that contribute to myocardial infarction (MI), ischemia, strokes, and 
additional cardiovascular diseases (CVDs) (2–4). The influence of air quality on cardiovascular 
health is comparable to pulmonary problems (3, 5), as found the lung cancer (6). Epidemiological 
studies describe that contact with particulate substances in the atmosphere may increase CVDs 
(7). According to epidemiological studies, cigarette smoking is the leading cause of fetal coronary 
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artery disease (CAD) and myocardial infarction (MI) (8). Studies 
show that passive smokers having excessive exposure to the tobacco 
smoke environment (1/100th) have approximately 30% more risk 
factors for CAD as compared to active smokers (80%) (9). 
Furthermore, passive smoking (ambient tobacco exposure) is 
connected to a 30% rise in the risk of coronary artery disease, 
comparable to 80% rise in active smokers (10, 11). Thus, while there 
is strong evidence relating cigarette smoke exposure to cardiovascular 
disease, the elements of cigarette smoke and the pathways that 
underpin such a relationship are still unknown. The main aim of the 
current study is to demonstrate the findings on the effect of CVD on 
the health of individuals and human populations, possible pathology, 
and their involvement in smoking-related cardiovascular diseases. 
This review also explains environmental factors and lifestyle that are 
known to contribute to CVD, with evidence indicating a link between 
air pollution, cardiovascular disease, and cigarette smoking.

2 The burden of cardiovascular 
diseases

A significant health concern worldwide is CVD, responsible for 
30% of all deaths (12). CVD was accountable for 17.5 million of the 
58 million deaths from all causes globally in 2005, three times the 
number of fatalities caused by infectious illnesses like tuberculosis 
(TB), HIV/AIDS, and malaria (13–15). In 2030, non-communicable 
diseases are expected to be responsible for more than three-quarters 
of all fatalities, and CVD fatalities will increase to 23.4 million, almost 
37% higher than the 2004 rates. In addition, cerebrovascular disease 
(stroke) and ischemic heart disease (IHD), both components of CVD, 
are expected to be the leading cause of death worldwide in 2030 (14).

CVD has no boundaries in terms of geography, socioeconomic 
status, or gender, according to the WHO. CVD is expected to be the 
most significant cause of mortality in emerging nations, indicating 
that it is not limited to the most developed. Nearly 80% of fatalities 
from CVDs occur in low- and middle-income nations (15). Lower 
socioeconomic groups in developed countries have a higher frequency 
of risk factors, a greater incidence of illness, and a higher death rate. 

The higher incidence of the disease will transfer to lower 
socioeconomic groups as the CVD epidemic evolves in emerging 
nations (15). It is reported that CVD is also the major cause of death 
in women around the world (16).

CVD is a main source of early death and growing healthcare 
costs (13, 14). The main drivers of CVD are cardio-metabolic, 
behavioral, environmental, and social risk factors. However, some 
important risk factors for CVD (such as tobacco smoking, poor diet, 
and lack of physical exercise), and environmental pollution have also 
been linked to an elevated risk of cardiovascular disease. Identifying 
and understanding the effects of such toxins will improve our 
understanding of the mechanisms of disease progression, which 
should lead to improved interventions to reduce CVD in human 
populations. Thus, CVD is a public health issue that demands a 
global prevention method. Because of a lack of financial resources 
and professionals with expertise in CVD prevention and 
management, its influence is highest in developing countries. Global 
prevention actions need to consider phases of development in nations 
and areas.

3 Lifestyle and environmental factors 
contribute to cardiovascular disease

Lifestyles and environmental factors are known key variables in 
cardiovascular disease. Accumulating evidence indicates that exposure 
to toxins and chemicals may raise CVD risk. Exposure to tobacco 
smoke and the environment: air contamination is considered the 
source of toxins that contribute to the CVD burden.

3.1 Cigarette smoke exposure and its effect 
on cardiovascular physiology

Epidemiological research suggested that cigarette smoking is the 
foremost reason for fatal coronary artery ailment (CAD) and MI (8). 
Compared to non-smokers, low-tar cigarettes and smokeless tobacco 
have been linked to an increased risk of cardiovascular events (9). 
Studies show that passive smokers having excessive exposure to 
tobacco smoke environment (1/100th) has approximately 30% risk 
factors of CAD as compared to active smokers (80%) (9). Therefore, 
evidence is present that connects the consumption of cigarettes to 
several CVDs. However, the same ingredients of cigarette smoke and 
the pathways accountable for this relationship have not been openly 
articulated. Figure 1 shows some recent clinical and experimental 
findings that are responsible for the disease pathology of 
smoking-related.

3.1.1 Chemical and physical characteristics of 
cigarette burn

The constituents of cigarette smoke may be classified into two 
stages: tar and gas. The substance, the tar or particle phase, contains 
>1017 free radicals/puff that are generated from the ash of the 
tobacco (stream of smoke) and passed by the cigarette filter 
(Cambridge-fiber filter) that contains all of the suspended 
particulate matter (99.9%) having a particle size range > 0.1 μm 
(17). On the other hand, the gas phase is the substance that 
contains >1015 free radicals/puff that passes through the filter and 
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remains active for a shorter time than the tar phase free radical 
(17, 18).

Mainstream smoke is known as cigarette smoke, which is 
produced from tobacco through an active smoker’s mouth. Side-
stream cigarette smoke is made from the burning end of a cigarette. 
8% of tar and 92% of gaseous elements are composed of mainstream 
cigarette smoke (17). Environmental tobacco smoke is primarily made 
up of 85 percent side-stream smoke and a small percentage of 
aspirated mainstream smoke from consumers (19). A rise in the 
intensity of the noxious gaseous constituent is found in side-stream 
cigarette smoke compared to mainstream cigarette smoke. Nicotine, 
which is a component of the tar phase, is the most dangerous of all the 
identified elements of cigarette smoke (20).

3.1.2 Smoking cigarettes and atherosclerosis
Cigarette smoking (CS) causes a range of therapeutic 

atherosclerotic syndromes, such as acute coronary syndromes, stable 
angina, stroke, and premature mortality. Atherosclerosis of the aortic 
and peripheral arteries is also increasing, resulting in claudication and 
gastrointestinal aortic aneurysms regularly (21).

The link between CS and atherosclerosis has been studied 
using a variety of clinical imaging techniques. Initial research 
attributed the pack smoking period to the magnitude of 
angiographic atherosclerosis (22). Other techniques precisely 
predict the atherosclerotic changes related to cigarette smoke 

contact. Angiography is an inadequate parameter of the quantity 
or development of atherosclerosis. As evaluated by transesophageal 
echocardiography (ECG), thoracic aortic atherosclerosis (TAA) 
was enhanced in cigarette smokers (23). Moreover, it has also been 
demonstrated that a continuous rise in intimal-medial carotid 
artery thickness, as measured by carotid ultrasonography, is 
caused by both active and passive smoking (24). Lipid 
modification, inflammation, and vasomotor dysfunction are 
integral components of atherosclerosis development and 
progression. These constituents appear as the superficial 
clinicopathological and structural indicators of atherosclerotic 
(21). The present information about the impact of CS on these 
constituents of atherogenesis is discussed further in the 
following sections.

3.1.2.1 Alteration of the lipid profile due to cigarette 
exposure

Smoking cigarettes may encourage atherosclerosis, partly, due to 
its impacts on lipid profiles. Smokers with a long history of smoking 
have slightly higher serum cholesterol, triglycerides (TG), and 
low-density lipoprotein (LDL). The distinguishing feature in such 
analyses is the high-density lipoprotein (HDL) exclusively found in 
smokers (25). However, the mechanical details are not adequately 
explained, and it is also uncertain how important the dietary 
differences between smokers and nonsmokers. Insulin resistance has 

FIGURE 1

Cigarette smoking exposure and its mechanism for cardiovascular dysfunction.
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recently been linked to HDL/triglyceride changes. Insulin resistance, 
in particular, has been identified as a possible key link between CVD 
and CS (26).

Furthermore, the oxidative state of LDL increases with CS. Such 
an increase in oxidation state profoundly alters the circulating 
metabolites of lipids and autoantibodies responsible for LDL oxidation 
(27). It was found that overexposure to cystathionine γ-lyase (CSE) 
results in the modification of LDL. The macrophages preferred this 
modified LDL and consumed it when forming foam cells in culture 
(28). Similarly, the exposure of the gas phase of cigarettes to human 
plasma cells results in the alteration of LDL in plasma (29).

Additionally, compared to HUVECs not available to non-smokers, 
HUVECs increasingly derived from smokers significantly elevated the 
oxidative alteration of LDL (30). The plasma activity of paraoxonase, 
an enzyme that inhibits LDL oxidation, may decrease with exposure 
to cigarette smoke.

3.1.2.2 Inflammation due to cigarette exposure
The inflammatory reaction is an integral part of atherosclerosis 

development and progression. Several studies have observed that CS 
induces the peripheral blood leukocyte count to rise by around 
20–25% (31). CS is associated with greater levels of inflammatory 
markers such as interleukin (IL)-6, C-reactive protein (CRP), and 
tumor necrosis factor (TNF)-αin smokers in both sexes (32, 33).

On the surface of endothelial cells, the activation of leukocytes is 
characterized by atherosclerosis. Numerous proinflammatory 
cytokines have advanced, increasing leukocyte-endothelial cell 
involvement and therefore leukocyte recruitment. Smokers have 
higher amounts of the intercellular adhesion molecules ICM-1, 
E-selectin, and vascular cell adhesion molecule (VCAM)-1 (34, 35). 
CS also induces the discharge of pro-atherogenic molecules, 
contributing to the alteration of cell–cell communications. CS 
treatment was linked to an increase in observation rates (70–90%) 
among HUVECs and human monocytes in culture due to the 
augmented initiation of adhesion molecules on the surfaces of both 
HUVECs and monocytes (32, 33). CSE boosted the rate of vascular 
endothelial cells relocation of monocyte-like cells along a HUVEC 
surface by 200%. The integrin CD 11b/CD 18 was greater in smokers’ 
monocytes, which increased monocyte adherence to HUVECs in 
culture. Likewise, Adams et  al. discovered a significant growth in 
adhesion between HUVECs and human monocytes after exposing 
them to smokers’ serum, which was linked to enhanced ICAM-1 on 
HUVECs (32, 33). Thus, CS adds fuel to the fire of inflammation at 
the vessel wall and in the blood.

3.1.2.3 Vasomotor dysfunction due to cigarette exposure
One of the initial atherosclerotic modifications in a vessel is 

vasodilatory function impairment. Several kinds of research have 
shown in animal and human models that cigarette smoke 
consumption, both passive and active, is linked to a reduction in its 
vasodilatory role. Smoking cigarettes damages endothelium-
dependent vasodilation (EDV) in the brachial and coronary arteries, 
as well as other macro- and microvascular beds in humans (36, 37).

The endothelium’s vasodilatory activity is principally mediated by 
a free radical, which is nitric oxide (NO) (38). Utilizing isolated 
components like nicotine or cigarette smoke extract (CSE), it has been 
discovered that CS inhibits NO production in vitro (21, 39). Because 
the metabolic fate of several documented and unidentified cigarette 

smoke components in human is uncertain, a suitable in vitro CS 
exposure model must be  developed. Our team has fostered 
endothelium cells with smokers’ sera to generate a more physiologic 
in vitro model. Barua et al., using this model (40, 41) found that by 
modifying the endothelium’s NO synthase enzyme’s expression and 
activity, exposure to smokers’ sera reduced the availability of NO from 
human coronary artery endothelial cells (HCAEC) and HUVECs. In 
HUVECs exposed to the same individuals’ serum in culture, there was 
a significant link between circulation brachial artery EDV and NO 
availability (40). Similarly, other studies using NG monomethyl-L-
arginine (L-NMMA) in vivo infusion have ultimately found that the 
reduced smoking-related EDV was responsible for reduced NO 
production (42).

NO is a vaso-regulatory molecule that also helps in regulating 
thrombosis, platelet activation, leukocyte adhesion, and inflammation 
(38). Therefore, modifications in NO production may have both 
primary and secondary impacts on the development and progression 
of atherosclerosis as well as thrombotic events.

3.1.3 Cigarette smoking and thrombosis
An increased frequency of acute MI is associated with cigarette 

smoking. In the first 1–3 years after giving up, this risk is greatly 
reduced, and after 5 years, the risk approaches that of an ex-smoker 
(43, 44). The latest results suggest that thrombotic incidents of 
smoking abstinence are immediately reduced. Preliminary oral 
presentation research recorded that over 6 months in Helena, 
Montana, a citywide smoking ban in public places minimized the 
frequency 60% of severe MI. In men, CS also raises the hazard of 
plaque rupture as well as severe thrombosis of a lipid-rich, thin-
capped Roma; plaque erosion with superimposed thrombosis was the 
primary mechanism in smokers (45). Acute cigarette smoke exposure 
can reduce coronary blood flow and increase vascular coronary artery 
resistance. The risk factor for coronary vasospasm could also 
be smoking (46).

It has been consistently shown that cigarette smoke exposure’s 
prothrombotic effects induce modifications in fibrinolytic factors, 
antithrombotic/prothrombotic factors, and platelet function. The 
current information on these effects is discussed in the 
following sections.

3.1.4 Fibrinolysis modification due to cigarette 
exposure

A substantial decrease in the t-PA/PAI molar ratio and significant 
reductions in both baseline and substance-P-stimulated t-PA 
discharge were observed in HUVECs exposed to chronic serum 
smokers (47). After pharmacologic activation, samples isolated from 
coronary and brachial arteries revealed lower activity in smokers and 
plasma t-PA antigen (48).

As a result, CS is linked to malfunctioning thrombo-hemostatic 
systems that aid in the onset and dissemination of thrombus formation.

3.1.4.1 Platelet dysfunction due to cigarette smoke
An enhanced stimulatory and spontaneous aggregation of 

platelets isolated from smokers was observed (49). Platelets evaluated 
from non-smokers showed hyperaggregability after exposure to 
smokers’ serum (50). CS can reduce the accessibility of NO derived 
from platelets and decrease the sensitivity of platelets to exogenous 
NO, resulting in increased activation and permeability (51).

https://doi.org/10.3389/fpubh.2023.967047
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mallah et al. 10.3389/fpubh.2023.967047

Frontiers in Public Health 05 frontiersin.org

3.1.4.2 Modification of antithrombotic/prothrombotic 
factors due to cigarette exposure

There are higher fibrinogen levels in active smokers associated 
with the number of cigarettes consumed. Ex-smokers have a 
comparable amount of fibrinogen as non-smokers. Increases in TF 
pathway inhibitor (TFPI)-1 and tissue factor (TF) have also been 
documented, along with an increase in thrombotic capability. 
HUVECs uncovered in chronic smokers’ serum showed a significant 
drop in TFPI-1 and a moderately noteworthy but quasi-rising TF level 
(47). Increased TF immunoreactivity and action were seen in the 
atherosclerotic plaques of apoE mice exposed to half of a non-filtered 
study cigarette 5 days per week for 8 weeks (52). An increase in 
circulatory TF action has been observed in human plasma after 
consuming two cigarettes within 2 h (53). In comparison, the 
prothrombotic process related to smoke exposure is potentiated by 
elevated hematocrits, blood viscosity, red blood cell counts, and a 
continuing inflammatory mechanism (31).

3.1.5 Factors and mechanisms of vascular 
dysfunction caused by cigarette exposure

In cigarette smoke, there are about 4,000 identified components, 
although only a few have been investigated in isolation. One such 
variable is carbon monoxide (CO), yet its implications on 
atherothrombotic ailment have been ambiguous. Previous research 
proposed that CO might be accountable for cardiovascular changes 
associated with smoking (54). However, more recent findings show 
that cigarette smoke’s CO is an unusual source of thrombus or 
atherosclerosis (39, 55).

The most studied factor is the potential presence of nicotine in 
cigarette smoke. Although nicotine has a substantial impact on 
alterations in heart frequency, blood stress, and cardiac output caused 
by smoking, its involvement in atherothrombotic illness related to CS 
is still debated (56). Exposure to nicotine alone was stated to cause no 
variation, increase, or decrease in the supply of NO or EDV (57). 
While high dosages of nicotine support atherogenic improvements in 
several models, most existing research shows that nicotine has a slight 
impact on the onset or spread of atherosclerosis at concentrations 
comparable to those of a smoker’s blood level (31, 57). Similarly, in the 
context of smoking, nicotine appears to have no effect on thrombo-
hemostatic features such as platelets or t-PA, PAI-1, or fibrinogen (31, 
58). As previously mentioned, nicotine is a recognized addictive 
constituent of cigarette smoke, addiction to it is likely to spread to 
other, riskier components.

In the development of atherosclerosis, free radical-mediated 
oxidative stress is emerging as a critical phase (59, 60). Free radicals 
could arise in a CS setting from: (1) the gaseous phase of the CS; (2) 
migrating or in situ-stimulated neutrophils and macrophages; and (3) 
natural means producing reactive oxygen species (ROS) like the 
mitochondrial electron transport chain (ETC), derived endothelial 
nitric-oxide synthase (eNOS) and xanthine oxidase (61–63). Cellular 
oxidative stress increases due to interaction among free radicals like 
superoxide and NO, which creates peroxynitrite (64). Enhanced 
oxidative stress shifts cellular stability into a proatherogenic and 
prothrombotic state without the protective influence of NO (65, 66). 
A number of the abnormalities mentioned above, such as 
proinflammatory consequences on the vessel wall, prothrombotic 
effects such as augmented platelet reactivity, decreased endogenous 
fibrinolysis, lipid peroxidation (LPO), and endothelial dysfunction, 

can all be explained by elevated oxidative stress (67–69). Additionally, 
CS’s proatherogenic, prothrombotic, and proinflammatory properties 
have been found to augment or reverse antioxidants or treatments that 
reduce oxidative stress or increase NO availability (41, 70).

3.1.6 Smoking’s non-linear dosage effect on 
cardiovascular dysfunction

While the link between CS and CVD risk has been documented, 
the query of whether or not there is a direct dose effect remains 
unanswered. A dose-dependent, solid relationship between CVD risk 
and the total amount of cigarettes consumed or the number of 
exposure years in a pack has not been recognized in many recent 
major epidemiologic studies, indicating a tendency toward more 
cardiovascular events in heavier, active smokers (71). Following that, 
both heavy and light active smokers found consistent reductions in 
EDV, and NO production anomalies in the brachial artery (72). 
Similarly, specific atherothrombotic indicators, a lower EDV and even 
increased platelet activation with passive smoking were comparable to 
active smoking (71). The mentioned findings recommend that tiny 
doses of noxious tobacco smoke elements can cause the major 
biochemical and cellular progressions to become saturated on 
cardiovascular function, resulting a non-linear dose response. The 
particular appliances they comprise need to be investigated further.

3.2 Environmental exposures: air pollution

Notably, while airborne chemicals can potentiate CVD risk 
factors, noise exposure, for example, are non-chemical environmental 
variables; temperature, occupational dangers, socioeconomic factors, 
electromagnetic fields, mental/psychosocial stress, agricultural 
practices, built environments, and changes in the artificial climate and 
ecosystem can all interact with air pollution, potentially amplifying 
the link between the two (73).

3.2.1 Chemistry, composition, and sources of air 
pollution

Polluted air is a constantly changing combination of particle and 
gaseous phase components that vary in location and time (3, 74, 75). 
The effects of air pollution on the environment are a utility of 
chemistry, and simplistic arrangements give an imperfect image 
centered on single contaminants, mass, or size. The atmospheric PM 
is a complex mixture of particulates and liquid droplets with a broad 
range of chemical composition (76). PM is categorized based on 
particle size, with coarse particles (diameter between 2.5 and 10 μm) 
primarily originating from construction and demolition, mining, 
agriculture, tire destruction and road dust. Fine particles 
(diameter ≤ 2.5 μm; PM2.5) and ultrafine particles (also known as 
nanoparticles; diameter ≤ 0.1 μm) come from both natural and 
anthropogenic sources. For convenience, the proportion of air 
emission particulate matter (PM) is generally defined by aerodynamic 
thickness: <10 μm [thoracic particles (PM10)], <2.5 μm [fine particles 
(PM2.5)], <0.1 μm (ultrafine particles), and between 2.5 and 10 μm 
[coarse (PM2.5–10)]. PM is measured per cubic meter (μg/m3) by the 
particles (mass) produced. In metropolitan areas, however, gasses/air, 
or vapor-phase chemicals, such as volatile organic carbons, make up 
approximately 90% of the contaminants in the air we breathe (3). In 
addition to various organic and inorganic acids, semi-volatile organic 

https://doi.org/10.3389/fpubh.2023.967047
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mallah et al. 10.3389/fpubh.2023.967047

Frontiers in Public Health 06 frontiersin.org

compounds, and volatile organic compounds that are present in both 
the gas phase and particle phase, the most predominant secondary 
contaminant is ozone. While a growing body of studies has shown the 
danger of coarse PM and possibly ultrafine PM (77–79), the vast 
majority of confirmation disproves PM2.5 as the main air contaminant 
causing the utmost damage to the well-being of the world’s inhabitants.

3.2.1.1 Air adulteration from household
Often seen in low–middle-income countries, household air 

pollution levels can be an order of magnitude higher remarkable in 
the same geographic area than atmospheric outdoor levels due to 
gradients between indoors and outdoors (80). For example, mean 
indoor 24-h PM10 levels ranging from 200 to 2000 μg/m3 are relative. 
Peak exposures >30,000 μg/m3 have been recorded during cooking 
cycles offering lower biomass fuel combustion (80, 81). In comparison 
to a decade ago, the drop in household air pollution’s contribution to 
world morbidity and mortality is promising.

3.2.1.2 Dust involvement from natural sources
Elements from natural phenomena such as explosions, volcanic 

eruptions, and desert sands have been shown to have negative health 
effects, and have recently been called to attention. Natural dust 
accounts for 18% of all early deaths caused by polluted air (82).

3.2.2 Thresholds of air pollution and risk 
assessment

More than 90% of the world’s population is exposed to levels that 
are greater than the WHO’s air quality standards (AQG), which are 
<10 g/m3 annually and < 20 g/m3 daily. Air contamination regularly 
reaches 35 μg/m3 in many areas of Asia (70% of the population), and 
over 99% of residents are subjected to AQG levels that are higher than 
the average. During severe periods of ambient air pollution, PM2.5 
concentrations can even surpass notable levels beyond 500–1,000 g/
m3, values comparable to high levels of indoor air pollution or active 
smoking (80, 83). On the other hand, values regularly average < 12 μg/
m3 in Canada and the USA. The present improvement in awareness of 
global air contamination exposure is not at all minor and includes air 
quality index data hourly from regulatory checking data networks 
from more than 9,000 locations in right 100 cities across 70 countries 
due to the drastic increase of ground-level air-monitoring data. 
Enhanced awareness in some cases, regulatory reforms have led to 
non-traditional measuring outlets, social media and independent 
stations (by means of personal level monitoring) and air evaluators are 
examples. The breadth and reach of customized tracking systems have 
also significantly increased, with several of these devices being 
available to offer unparalleled knowledge on personal exposure (84). 
Satellite-based techniques are applied to obtain indirect evaluations of 
ground-level pollutant concentrations using the visual characteristics 
of aerosol columns (aerosol optical depth) in satellite pictures, which 
form the basis of Global Burden of Disease (GBD) air quality 
estimations. The progress of an interactive contact-response arc that 
combines relative risk of PM2.5 effluence from various causes 
(household air pollution, ambient air pollution, tobacco smoking, and 
second-hand smoke) into a single curve on which risk levels are 
calculated addressed the need for credit risk estimates for nations with 
air pollution concentrations beyond those of the sample populations 
(85, 86). Remarkably, the entirety of the evidence suggests no lower 
concentration threshold at which population-level concentrations can 

be deemed healthy. Also, within the annual AQG of less than 10 μg per 
cubic meter, the little amount of PM2.5 goals faced by hundreds of 
millions of individuals pre suppose substantial public health risks and, 
especially, the CV events (79, 87–91). In addition, other air 
contaminants (e.g., ozone) could pose an individual risk of their own 
(90, 92). Compared to PM2.5, ozone displays a threshold impact from 
short-term exposure in the most recent estimates (91).

3.2.3 Air pollution and disease burden-mediated 
morbidity and mortality

PM2.5 overwhelmingly influenced nations over the past century, 
for instance, India and China, due to ecological-economic changes; it 
influences almost all globally (73, 75, 83, 93–95). The most recent 
GBD estimates state that ambient PM2.5 caused 4.2 million fatalities 
and 103.1 million disability-adjusted life-years (DALYs) in 2015, 
which accounted for 7.6% of all global fatalities and 4.2 percent of all 
DALYs worldwide (73). Due to the use of solid fuels, household air 
pollution resulted in 85.6 million DALYs and 2.8 million fatalities in 
2015. CV ailments accounted for more than half of the health risks (6, 
73). Ozone exposure caused 4.1 million DALYs and 254,000 deaths 
from chronic obstructive pulmonary disease (COPD) in 2015 (73).

In a current report, it is stated that in the Medicare population (61 
million US residents), short-term increases in PM2.5 and ozone were 
connected to daily death rates of 1.0105 (95%CI = 1.0095–1.0115) and 
1.005 (95%CI = 1.0041–1.0061), respectively (91). Despite the lack of 
cause-specific mortality statistics, a large body of research suggests 
that CV factors account for more than half of all fatalities caused by 
air pollution. Furthermore, even though this study did not allow for 
testing the association of variables like income and smoking on the 
relationship, a subsequent analysis of the Medicare Current 
Beneficiary Survey found no such interaction (90). These findings are 
comparable with research from Canada and Europe that shows a 
roughly linear connection between PM2.5 and fatalities at PM2.5 g/m3 
levels (87, 96, 97).

3.2.4 Cardio-metabolic effects of air pollution

3.2.4.1 Heart failure due to air pollution
A transient rise in gaseous components and PM (both PM10 and 

PM2.5) was associated with an increased risk of heart disease 
hospitalization or mortality, as shown by a systematic review and 
meta-analysis of 35 studies (98). Owing to heart letdown, the relative 
risk (RR) of hospitalization or death enlarged by 2.1% as a result of the 
10 g/m3escalation in PM2.5 (RR = 1.021; 95%CI = 1.014–1.028). In a 
new Chinese revision of 26 towns with high PM2.5 concentration, an 
increase in PM2.5 at the inter quartile was linked to a 1.3% relative rise 
in heart failure hospitalizations (99).

3.2.4.2 Cerebrovascular ailment due to air pollution
It was discovered that a 10 g per cubic meter increase in PM2.5 and 

PM10 concentrations was related to a 1 % increase in the risk of 
hospital admission with stroke and stroke fatalities, which has been 
conducted by SMA in 94 research work comprises of 28 countries 
(100). It seems that existence nearby the road and poverty are related 
to ischemic stroke and the incidence of stroke (101, 102). Despite the 
fact that the link was not statistically noteworthy in the primary 
evaluations, there was a connection between PM2.5 and mortality in 
the ESCAPE cohort study of subjects 60 years of age (hazard ratio 
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(HR) = 1.40; 95% CI = 1.05–1.87 per 5 g/m3 increase in PM2.5), 
non-smokers (HR = 1.74; 95% CI = 1.06–2.88 per 5 g/m3 rise in PM2.5), 
as well as among contributors (79). Greater risk was mainly observed 
in participants over the age of 60 years, as well as in non-smokers, and 
was reliably found at PM2.5 < 25 μg/m3 meditations. With significant 
increases for longer time periods of PM2.5 contact of 35 and 
83.0%/10 g/m3, correspondingly, the Women’s Health Initiative study 
in the United States revealed certain of the highest evaluations of 
stroke and demise from cerebrovascular sickness owing to PM2.5 (103).

3.2.4.3 Myocardial infarction due to air pollution
The relationship between daily variations in MI and short-term 

increases in air pollution has been investigated in case crossover as well 
as time-series studies across the globe. A systematic review and meta-
analysis of studies of short-term exposure to air pollution and MI 
found a relationship between the increased risk of MI and PM2.5, sulfur 
dioxide, nitrogen dioxide (NO2), and carbon monoxide (104). In the 
ESCAPE (Cohort Studies in Europe for Air Pollution Effects) study 
(N = 100,166 from different cohorts) a substantial 13% relative rise in 
nonfatal acute coronary events was found, with a 5 μg/m3 increase in 
long-term PM2.5 exposure (105). Exceptionally high risk can be found 
in a diseased person with a fundamental coronary blood vessel ailment. 
The greatest recent research on the relationship between concurrent-day 
PM2.5 and increase in acute coronary syndrome (ACS) on the same day 
comes from Utah (Intermountain Health Care, N = 16,314) (106). Only 
people with coronary artery angiographic disease were shown to have 
an increased risk of MI, which resulted in an escalation in ST fragment 
levels. Long-term survival resulting in ACS was similarly lowered as a 
result of long-term PM2.5 exposure (107, 108).

3.2.4.4 Cardiovascular deaths due to air pollution
Exposure to PM2.5 for a time raised the comparative risk (CR) for 

severe MI by 2.5% per 10 μg cubic meters (RR = 1.025; 95%CI = 1.015–
1.036) as reported in a number of investigations (104). Despite the 
low relative risks, short-term PM2.5 exposures are responsible for up 
to 5% of MI globally (attributable population fraction), even though 
hundreds of millions of people are constantly distressed (109). It has 
been suggested that monotonous, near-continuous acquaintance with 
air contamination promotes atherosclerosis and recurrent 
occurrences, considering that air impurity revelation happens across 
a lifetime (110). Certainly, longer-term exposures seem to pose 
amplified risks over several years (75, 103, 110–112). Ischemic heart 
disease fatalities increased considerably in two Canadian studies, 
despite PM2.5 being less than 9 μg per cubic meter on average (87, 89). 
In the National Organizations of Health–AARP cohort (N = 517,043) 
in the United States (US), similar findings were reported where long-
standing exposure increased CV death by 10% (per 10 μg/m3) despite 
low PM2.5 levels (10–13 μg/m3) (113). There have been multiple 
studies conducted in China that suggest a rise in severe CV mortality 
when PM2.5 levels are high (114, 115). A meta-analysis of the research 
found that each 10 μg/m3 increase in PM2.5 was associated with an 
absolute 0.63 percent rise in the CV death rate, even though PM2.5 
levels ranged from 39 to 177 μg/m3 (114). A few long-term cohort 
trials have performed elevated PM2.5 levels, indicating an improved 
effect of longer-period disclosure (116). However, at higher levels of 
air pollution (average PM2.5 levels of 43.7 μg/m3), the higher risk of 
morbidity and mortality persists which is stated in a recent study in 
China (117). The RR for CV fatality rose by an elevation of 9%/10 μg/

m3, above the feature of the combined exposure-response arc. This 
recommends that additional longitude investigations are required to 
better illustrate the figure of the full dose–response arc at high levels 
of exposure to lethal and nonlethal CV events, given the impact on 
the burden of global public health.

3.2.5 Cardio-metabolic risk mediated by air 
pollution

According to a large body of research, air pollution is increasingly 
implicated in the rise of cardio-metabolic threat factors such as insulin 
fighting and hypertension, according to a large body of studies.

3.2.5.1 Hypertension mediated by air pollution
There have been at least four meta-analyses investigating the link 

between hypertension and air pollution in the past (118–121). For the 
following several days, increases in systolic and diastolic blood pressure 
of 1–3 mm Hg are reliably linked to an up surge in appropriate PM2.5 
concentrations of 10 g per cubic meter. In several studies, longer-term 
exposures have been linked to a permanent rise in plasma force and an 
increased incidence or prevalence of hypertension. In meticulously 
planned, closely watched human experiments, a diversity of vascular 
alterations in reaction to air adulteration have been examined, and 
increases in blood pressure are frequently perceived (75, 111, 122–130).

According to published randomized controlled trials, short-term 
exposure causes higher plasma stresses or modifications in the 
vascular index. Robust interactions were observed in the Chinese 
megacity at exciting levels of the exposure-response association (131). 
Notably, unique lower air pollution techniques show accelerated blood 
pressure reduction, further supporting the significant influence of air 
fragment inhalation on plasma stress (75, 132). This body of research 
confirms increased blood pressure levels and morbidity associated 
with hypertension in the global burden estimates for air pollution.

3.2.5.2 Insulin resistance/diabetes mediated by air 
pollution

Previous expert studies have reviewed the relationship between type 
2 diabetes mellitus and insulin resistance (75, 111, 133, 134). The 
comparative risk for diabetes increased by 39% for every 10 g/m3 of PM2.5 
according to a meta-analysis of cohort trials comprising a total of 
2,371,907 people and 21,095 cases of type 2 diabetes mellitus (135). PM2.5 
and NO2 increased the incidence of diabetes (HR = 1.10; 95%CI = 1.02–
1.18 and HR = 1.08; 95%CI = 1.00–1.17 per 10 g/m3 increase in PM2.5 and 
NO2, respectively) stated in the utmost new meta-analysis (136).

3.2.6 Cardiac arrhythmias mediated by air 
pollution

It has been shown that sudden air pollution exposure causes atrial 
fibrillation. The inhabitants’ attributable risk of atrial fibrillation 
increased by 0.89% (95%CI = 0.20–1.57) for every 10 g/m3 of PM2.5 in 
a meta-evaluation of four experimental research studies consisting of 
461,441 people (137). The threat of ventricular arrhythmias has also 
been linked to air pollution exposure in the past, albeit the data is 
insufficient (74).

3.2.6.1 Venous thromboembolism mediated by air pollution
The link between venous thromboembolism and exposure to 

contaminated ambient air is uncertain. Few types of research have 
indicated a relationship, although others have not (138, 139).
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3.2.6.2 Other non-communicable diseases mediated by 
air pollution

Other chronic cardio-metabolic syndrome-related diseases, 
including obesity (140), sleep-related respiratory disorders (141), 
chronic kidney disease (142), along with neurological diseases (e.g., 
dementia, sadness) (141), have been associated with air contamination, 
though further study is required.

3.2.7 Mechanisms of air pollution-mediated 
cardio-metabolic disease

Although the explanation of the mechanisms underlying the 
systemic CV risk mediated by air pollution is still developing, there are 
six fundamental subordinates “effector” pathways: Endothelial barrier 
dysfunction, distinctive and adaptive immune constituents in 
inflammation, prothrombotic mechanisms, autonomic inequity 
favoring sympathetic tone via afferent passageways in the upper airways 
and lungs, stimulation of the hypothalamic–pituitary–adrenal (HPA) 
axis by the central nervous system, changes in epigenomic expression, 
and endothelial barrier dysfunction are just a few of the symptoms. 
Some of these interconnected mechanisms can respond with high 
overlap; thus, underlying vulnerability and to detect disease, extra basic 
risk factors might be needed (e.g., “feed-forward” and reinforce each 
other). Therefore, it is significant to distinguish (somewhat artificially) 
the pathways dependent on exposure time courses and the subsequent 
temporal significance of biological responses. Short-term exposures 
affect some pathways more than others (e.g., increased risk for 
thrombosis, autonomic imbalance) and are likely to play a triggering 
role. Others are expected to take on a long-term role. What are the 
principal triggering mechanisms of secondary effects, a significant 
question? Among the three main activating mechanisms direct 
translocation, oxidative stress, or impacts of elements and subordinate 
intermediaries produced in response to air contamination are longings 
that can subsequently arbitrate systemic influences. Notably, neuronal 
reflexes triggered by the detection of inhaled fragments by distinct 
receptors in the lungs (possibly without causing oxidative stress) might 
be  regarded as a major effectors’ mechanism. However, they will 
be considered separately for purposes of clarification.

3.2.7.1 Primary paths of initiation

3.2.7.1.1 PM-mediated consequences of oxidative stress
Oxidative trauma, which can develop in the lung and systemically 

through several vascular beds, including the blood–brain barrier, may 
be  present in numerous tributary routes (143–146). A more 
sophisticated model has been replaced by the standard graded 
response paradigm (147), where ROS and reactive nitrogen species 
(RNS) interact dynamically, both as site-specific mediators and as core 
inflammatory regulators (148–150). The first hierarchical response in 
humans is oxidative stress to air pollution, when additional CV 
variables are directly evaluated, they show a delayed reaction, 
indicating that oxidative stress could be an early phase (151). It has 
been noted that membrane-associated receptors are involved in 
sensing and transducing particles and particulate components, 
including initiating inflammatory cascades (152, 153). Several families 
can activate Toll-like receptors (TLR2/TLR4) along with the 
nucleotide-binding domain leucine-rich (NOD)-like receptor repeats 
directly or indirectly may be active, secondary mediators, such as ROS 
(154–156). Additionally, TRP channels (transient receptor potential) 

have been implicated, and burning particles or soluble organics can 
cause oxidative stress (TRPA1 and TRPV1). Depleting antioxidants 
with low molecular weight will contribute to oxidative stress potential, 
as can the hereditary predisposition exemplified in antioxidant genes 
through polymorphisms (145). The chemical half-life of antioxidants 
and surfactants might be reduced from days to hours and minutes, 
respectively, by increasing ozone levels from baseline background 
quantities (30 ppb) to summer smog conditions (100 ppb) (157). It is 
also predicted that elevated PM2.5 and rising ozone concentrations 
would intensify the effects of PM2.5.During phagocytosis, the particle 
buildup in macrophages might ultimately lead to the initiation of 
pro-inflammatory pathways, a phenomenon known as frustrated 
phagocytosis, with long-term exposure (158). Two recent 
investigations have found that increasing the lung antioxidant barrier 
via extracellular superoxide dismutase overexpression could reduce 
the negative complete vascular consequences of air contamination, 
implying that pulmonary oxidative trauma is important for 
modulating systemic responses (159, 160).

3.2.7.1.2 Direct translocation
In specific examples, soluble constituents or other tiny ultrafine 

elements can be  introduced directly into the systemic circulation, 
resulting in undeviating effects at distant deposition sites (145, 161). 
In a seminal work in mice and humans, the rapid translocation of 
inert gold particles into systemic circulation was established (161). 
Ultrafine particles have been transferred directly in mice across the 
blood–brain barrier and can be  distributed via the production of 
axonal transport or efferent pathways that control inflammation, 
blood pressure, and metabolism and are regulated by secondary 
mediators (Figure 2) (162).

3.2.7.1.3 Biological intermediates as transducers of systemic 
effects

In addition to exposure, the development of biological 
intermediates also needs special attention (145, 153, 163–168). 
Contact with air pollution for a longer time period lowers surfactant 
resistances (168) and raises oxidative phospholipid-altered substances 
in surfactant fluids, such as 1-palmitoyl-2-phosphorylcholine (PAPC)-
3-arachidonic-sn-glycero and other metabolic byproducts, which may 
play a role in endothelial barrier dysfunction and the selection of 
inflammatory cells (Figure 2), facilitating effective signal transfer to 
the systemic circulation of these and other signals (153). Through 
activation of TLR4 pathways, these mediators can increase oxidative 
stress in the vasculature (153). In response to highly concentrated 
PM2.5, impairments in TLR4, NOX2, and neutrophil cytosolic factor 
1 (p47phox) have mostly been observed to promote vascular function, 
decrease ROS generation, and decrease inflammatory vasculature 
monocyte infiltration exposures by inhalation (153, 169). Long-term 
exposure to PM2.5 results in the production of oxidized byproducts like 
7-ketocholesterol, which is then transported inside of lipoproteins 
with low density and subsequently absorbed by CD36, which may 
be  another unusual way that air effluence causes endothelial 
dysfunction and amplifies the effects of narrowing heart arteries (165, 
170). Due to the development of 12-hydroxyeicosatetraenoic acid 
(12-HETE) and 13-hydroxy octadecadienoic acid (13-HODE), which 
are peroxidation products of the liver, small intestine, and plasma, 
exposure to ultrafine particles, like diesel, might exacerbate 
inflammation and oxidative stress in these areas (171, 172).
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3.2.7.1.4 Pathways of secondary effectors
3.2.7.1.4.1 Air pollution causes complete vascular dysfunction and 
CV restoration

The overwhelming body of research provisions that particle air 
pollution has rapid and long-lasting effects, in subordinate people and 
animals on vascular function (3, 75, 111). In animal tests, short, 
medium, and long-term exposure to air pollution increases superoxide 
(O2) and potentiates vasoconstrictor responses both on its own and in 
combination with drugs like angiotensin II. At the same time, 
endothelial function enhances due to the decrease of ROS sources, 
inflammation, supply of nitric acid, and activation of endothelial cells 
(adhesion molecule expression). A robust mechanism causing adverse 
vascular effects may be superoxide production due to uncoupled nitric 
oxide and nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases (173, 174). Inflammatory monocytes had increased 
microvascular adhesion and peri-vascular deposition of mononuclear 
cells, with NADPH oxidase (Nox2) and TLR4 deficits enhancing 
vascular reactivity and swelling with concentrated exposure to PM2.5 
(153, 175). Even though there have been few type of research 

comparing ultrafine particles to PM2.5, they often demonstrate similar 
or, in some cases, even more, fantastic impacts, with at least a single 
research study explaining that contact of mice to ultrafine particles 
and an apolipoprotein E knockout (ApoE−/−) resulted in higher 
atherosclerosis (176). The process could be  related to enhancing 
systemic penetration inflammation, and higher ROS as demonstrated 
by enhanced LPO products and hepatic malondialdehyde in the liver 
and plasma, with added pathways that comprise more significant 
reticence of the anti-inflammatory capability, tremendous systemic 
oxidative stress, and high-density lipoproteins.

As evidenced by decreased reversible endothelium-dependent or 
smooth muscle dilation or brief constriction of a reversible peripheral 
conduit vessel in several monitored human exposure studies, very brief 
contact with PM2.5 along with dilute diesel exhaust causes agonists 
conduit or microvascular dysfunction. Studies on ultrafine particles 
(UFPs), including those involving elemental carbon inhalation and 
watery diesel exhaust, have demonstrated that they can quickly result 
in endothelial dysfunction in microcirculation (177, 178). Additionally, 
it was found that exposure to diesel exhaust during exercise caused 

FIGURE 2

The physiological translational mechanism between air pollution exposure and cardiovascular events.
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ST-segment depression and ischemia burden to be significantly higher 
than filtered air exposure (179). Human data is scarce, which may 
contribute to the use of higher doses (0.5–1 ppm against the current 
U.S. National Ambient Air Quality Standard of 0.075 ppm) in animal 
research; however, ozone exposures in animal studies have been 
demonstrated to affect endothelial function. It has been observed in 
human panel reports and in response to concentrated PM2.5 disclosure 
that degradation of endothelial progenitor cells or circulating 
angiogenic cells can be a significant source of protracted endothelial 
dysfunction and can also be  a significant appliance of sustained 
endothelial dysfunction. However, the findings are unreliable (160, 
180–182). The prevention of lung oxidative stress enhances endothelial 
progenitor function in the lung by over expressing extracellular 
superoxide dismutase. Long-term hypertension, diastolic dysfunction, 
increased cardiac after-load, myocardial fibrosis, alterations in 
coronary flow reserve, and ultimately left ventricular hypertrophy can 
result from endothelial failure besides vasoconstrictor’s up-regulation 
passageways (183). Elevated myosin heavy chain and decreased Sarco/
endoplasmic reticulum calcium-ATPase (SERCA2a) suggest aberrant 
calcium cycling at the molecular level (183).

3.2.7.1.4.2 Autonomic dysfunction other than central nervous system 
pathway activation

Humans have experienced autonomic nervous system changes 
that manifest as abrupt changes in sympathovagal equilibrium as seen 
by variations in plasma stress and heart rate in response to exposure 
to coarse and small particles. It is now understood that different 
receptors, including transient receptor potential vanilloid 1 (TRPV1), 
transient receptor potential ankyrin 1 (TRPA1), and purinergic P2X 
channels, are stimulated by subtypes of nasal, bronchial, and, 
pulmonary C-nerve fiber (184–188). These receptors can act as inborn 
environmental sensors and start the activation of sensory nerves 
(189). Indeed, blood pressure changes occur in controlled exposure 
trials in humans in combination with changes in cardiac frequency 
inconsistency, indicating a sympathetic prevalence at both split ends 
of the continuum of air contamination. Investigations for a very short 
time period in canine models and long-term cannulated mice exposed 
to concentrated air particles showed that hypertension was produced 
and that there was an indication of central sympathetic activation of 
the neuron system, presumably induced by neuro-inflammation in 
relation to the disclosure of PM2.5 (190, 191). Ultrafine fragments, 
nanomaterials, and ozone can both specifically interact with the 
inducers of circulation factors or the blood–brain barrier in humans 
and mice and impair neuronal function (162, 168, 192, 193).

3.2.7.1.4.3 Inflammatory reaction at the systemic level
In much early research in animals and people, bone marrow 

disclosure for a slight time period to air pollution has been 
demonstrated (3). Recent experimental studies have demonstrated that 
prolong exposure to concentrated appropriate PM2.5 promotes the 
efflux of Ly6hi + monocytes (CD11b + Gr-1low7/4hi cells) from the 
bone marrow and, in addition, encourages their subsequent relocation 
to adipose tissues, the vasculature, and other inflamed tissue, which 
provides an explanation for the existence of this reaction (75). Since 
TLR4 deficiency eliminated tissue penetration and ROS production in 
systemic tissues and reduced the PM2.5 influence on boosting 
peripheral Ly6Chigh cells (F4/80+, CD11b+, and CD115+), it appears that 
these pathways play a role in mediating the effects of exposure (153). 

The strong mobilization of these cells by C-C chemokine receptor type 
2 (CCR2) may contribute to insulin resistance/type 2 diabetes in 
adipose inflammation tissue. CCR2/mice displayed alterations in 
hepatic lipid aggregation and reduced whole-body insulin tolerance as 
a result of transcriptional reprogramming mediated by sterol 
regulatory element-binding protein-1c (SREBP1c) (194). Additionally, 
chemokine (C-X-C motif) receptor 3 deletion (CXCR3) can 
be  comprised of the translation of PM2.5 influences and transfer 
populations of T-cells that have been activated (CD44+ CD62L CD4+) 
(153). In monitored short-term human exposure reports, unequivocal 
connections between exposure and inflammation have been found less 
reliably, likely owing to variation in research procedures, participant 
susceptibility, or previous unmeasured exposures (3).

3.2.7.1.4.4 Prothrombotic pathways
Research has demonstrated on a hamster model of arterial 

thrombosis, that intratracheal exposure quickly stimulates platelets 
(195). Ex vivo flow chamber perfusion data from human trials showed 
that breathing inhaled diluted diesel exhaust particulate matter 
increased thrombotic response and platelet-leukocyte aggregation 
(196). Direct pulmonary contact or ultrafine PM translocation could 
cause rapid platelet sensitization. Patients with extra risk factors may 
be more susceptible to cardiovascular events due to platelet activation 
and changes in the ratio of tissue plasminogen activator to 
plasminogen activator inhibitor (179, 197).

3.2.7.1.4.5 HPA-axis activation
Inflammation in white adipose tissue, insulin resistance, and 

brown adipose dysfunction are all connected to metabolic 
reprogramming through hypothalamic pathways, according to recent 
research (75, 133, 134). Metabolic consequences for the short time 
period associated with insulin resistance frequently appear in human 
studies. Injecting an inhibitor of the nuclear factor kappa-B kinase 
subunit (IKK) into the brain prevented the detrimental effects of air 
pollution on peripheral inflammation, insulin resistance, and whole-
body metabolism (191, 198). The quantity of oxidative-modified lipids 
PAPC that can activate TLR/nuclear factor kappa-B kinase cells 
(NF-B) in the brain has increased as a result of exposure to PM2.5 
(198). Activation of the adrenal axis, expressed as elevation of 
glucocorticoids, can also be an essential mechanism by which air 
contamination can modulate CV threat (199).

3.2.7.1.4.6 Variations in epigenomics
Environmental influences influence developmental trajectories, 

according to extensive human and, animal model research and 
chronic disease vulnerability during crucial prenatal and postnatal 
growth phases. Environmental epigenetic studies (200) frequently 
reveal the small epigenetic changes linked with exposure. Although 
global methylation status has been noted in restricted panel studies, 
other epigenetic symbols, such as microRNAs, noncoding RNAs, and 
chromatin alterations, deserve more study now that the technical and 
financial obstacles to evaluating them are decreasing (201).

4 Conclusion

Many strategies for producing toxic effects have been uncovered 
throughout the last two decades of experimental work on the 
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cardiovascular effects of air pollution and cigarette smoking. 
Conversely, the specific role of PM and cigarette smoking linked to 
CVD needs additional elucidation, and this review was intended to 
encourage exploratory efforts in this capacity. In this review, findings 
show that cigarette smoke consumption is related to cardiovascular 
disease; however, the specific elements of cigarette smoke and the 
appliances underlying this link have not been thoroughly defined in 
recent quantifiable and tentative research on the potential 
pathophysiology and mechanisms involved in smoking-related 
cardiovascular illness. According to epidemiological data, exposure 
to air pollution raises the risk of myocardial infarction, stroke, and 
heart failure, which increases both long- and short-term 
cardiovascular mortality. The inflammatory reaction is an essential 
part of atherosclerosis development and progression. Several studies 
have observed that CS induces the peripheral blood leukocyte count 
to rise by around 20–25%. There have been numerous reviews of the 
connection between air pollution and hypertension in the past, and 
at least four recent meta-analyses have focused on this issue. For the 
following several days, increases in systolic and diastolic blood 
pressure of 1–3 mm Hg are reliably linked to proliferations in 
sufficient PM2.5 concentrations of 10 g/m3. In numerous studies, 
longer-term exposures have been linked to enduring plasma force 
increases and an increased prevalence or incidence of hypertension. 
As a result, interventional studies are necessary to learn more about 
the direct impacts of cigarette smoking and air pollution on 
cardiovascular disease.

5 Recommendations

5.1 Recommendations for cigarette 
smoking

Based on the available literature, cigarette smoking exposure has 
been linked to numerous cardiovascular diseases, including coronary 
artery disease, cardiac arrhythmias, and hypertension. Therefore, the 
following recommendations can be made:

 • Quit smoking: Smoking cessation is the most effective way to 
reduce the risk of developing cardiovascular diseases associated 
with smoking. Smokers should be advised and encouraged to 
quit smoking, and provided with resources and support to assist 
in the process.

 • Avoid exposure to secondhand smoke: Non-smokers should 
avoid exposure to secondhand smoke as it can also increase the 
risk of cardiovascular diseases.

 • Limit exposure to air pollution: In addition to smoking, exposure 
to air pollution, particularly particulate matter and gaseous 
pollutants has been associated with cardiovascular diseases. 
Therefore, individuals should limit their exposure to air pollution 
by avoiding outdoor activities during peak pollution hours and 
using air filters in their homes.

 • Exercise regularly: Regular exercise can help reduce the risk of 
developing cardiovascular diseases associated with smoking. 
Smokers should be advised to exercise regularly and engage in 
physical activities that they enjoy.

 • Maintain a healthy diet: A healthy diet can also help reduce the 
risk of developing cardiovascular diseases. Smokers should 
be advised to consume a diet rich in fruits, vegetables, whole 
grains, and lean proteins.

 • Monitor blood pressure and cholesterol levels: Individuals should 
have their blood pressure and cholesterol levels checked regularly. 
If levels are high, they should work with their healthcare provider 
to manage these conditions through medication and 
lifestyle changes.

Overall, smoking is a major risk factor for cardiovascular diseases, 
and individuals should take steps to reduce their exposure to cigarette 
smoke and other environmental pollutants, as well as adopt healthy 
lifestyle habits to reduce their risk.

5.2 Recommendations for air pollution

Exposure to air pollution has been associated with an increased 
risk of cardiovascular diseases, including coronary artery disease, 
cardiac arrhythmias, and hypertension. To reduce the adverse effects 
of air pollution on cardiovascular health, the following 
recommendations are suggested:

 • Limit exposure to outdoor air pollution: Reduce time spent 
outdoors during times of high air pollution, particularly during 
rush hour traffic, wildfires, and industrial activities.

 • Use air filters: Install air filters in homes and workplaces to reduce 
exposure to particulate matter and gaseous pollutants.

 • Use public transportation or carpool: Use public transportation, 
carpool, or bike instead of driving alone to reduce the number of 
vehicles on the road.

 • Quit smoking: Quit smoking or avoid secondhand smoke 
exposure, as smoking is also a major contributor to air pollution 
and increases the risk of cardiovascular diseases.

 • Promote green energy: Support the development and use of clean 
and renewable energy sources to reduce reliance on fossil fuels 
and decrease air pollution.

 • Advocate for policy changes: Advocate for stricter regulations 
and policies to reduce air pollution levels and improve air 
quality standards.

 • Seek medical advice: People with pre-existing cardiovascular 
diseases should consult with their healthcare providers and 
follow their advice to minimize their exposure to air pollution 
and reduce their risk of complications.

Overall, reducing air pollution exposure is crucial to 
maintaining cardiovascular health, and individuals, policymakers, 
and healthcare providers should work together to achieve 
this goal.

5.3 Methods

The Study conducted a literature review to examine the links 
between cigarette smoking, air pollution, and cardiovascular 
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diseases, as well as to summarize the potential mechanisms involved 
in these associations based on both human and experimental 
studies. To gather relevant publications, we  searched several 
databases such as PubMed, EBSCO, Cochrane, and Science Direct, 
using specific MESH terms and keywords such as “cigarette 
smoking,” “air pollution,” “particulate matter,” “gaseous air 
pollutants,” “cardiovascular diseases,” and “hypertension.” To ensure 
the quality of the studies, we applied PECOS criteria that focused 
on the population (i.e., adults chronically exposed to outdoor air 
pollutants), comparator (unexposed persons), result (all-cause 
mortality and cardiovascular diseases), and study design 
(experimental and epidemiological studies, intervention studies, 
meta-analyses, and systematic reviews published in peer-reviewed 
journals in English). We  excluded studies involving children, 
persistent organic compounds, gray literature, conference abstracts, 
conference papers, comments, editorials, letters, and unpublished 
data. From the initial 604 papers reviewed, we selected 204 articles 
for inclusion in our review.
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