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Millions of people’s health is at risk because of several factors and multiple 
overlapping crises, all of which hit the vulnerable the most. These challenges are 
dynamic and evolve in response to emerging health challenges and concerns, 
which need effective collaboration among countries working toward achieving 
Sustainable Development Goals (SDGs) and securing global health. Mental 
Health, the Impact of climate change, cardiovascular diseases (CVDs), diabetes, 
Infectious diseases, health system, and population aging are examples of 
challenges known to pose a vast burden worldwide. We are at a point known as 
the “digital revolution,” characterized by the expansion of artificial intelligence 
(AI) and a fusion of technology types. AI has emerged as a powerful tool for 
addressing various health challenges, and the last ten years have been influential 
due to the rapid expansion in the production and accessibility of health-related 
data. The computational models and algorithms can understand complicated 
health and medical data to perform various functions and deep-learning 
strategies. This narrative mini-review summarizes the most current AI applications 
to address the leading global health challenges. Harnessing its capabilities can 
ultimately mitigate the Impact of these challenges and revolutionize the field. 
It has the ability to strengthen global health through personalized health care 
and improved preparedness and response to future challenges. However, ethical 
and legal concerns about individual or community privacy and autonomy must 
be addressed for effective implementation.
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Introduction

Millions of people’s health and well-being are at risk of several factors and multiple 
overlapping crises, including but not limited to infectious disease outbreaks, rising malnutrition 
rates, and lack of sufficient medical access; all hit the vulnerable the most (1). As we are heading 
toward the end of 2023, a record 339 million people globally need urgent aid. Several critical 
issues need to be addressed urgently to improve health globally and build resilience against 
future threats (1); the recent COVID-19 has shown that each country’s security and prosperity 
depend on creating a healthier, safer, more resilient world.

Global public health priorities play a crucial role in addressing the most pressing health 
challenges faced by populations worldwide. They are dynamic and evolve in response to 
emerging health challenges and crises, which need effective collaboration among countries to 
secure global health. Mental Health, the Impact of climate change, cardiovascular diseases 
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(CVDs), diabetes, Infectious diseases, health system, and population 
aging are examples of challenges that are examples of these 
challenges that are known to pose a vast burden worldwide 
(Figure 1) (2, 3).

We are at a point known as the “digital revolution,” characterized 
by the expansion of artificial intelligence (AI) and a fusion of 
technology types; the rapid and transformative changes brought about 
by these advances in digital technology led to increased connectivity 
and accessibility of vast amounts of information (4). AI has emerged 
as a powerful tool for addressing various challenges, and the last ten 
years have been influential in the digital health (5, 6). AI and its 
subfields or techniques, such as deep learning (DL), natural language 
processing (NLP), and machine learning (ML), have prospects to 
benefit healthcare, including public health, because of the rapid 
expansion in the production and accessibility of health-related data 
(7–9). The computational models and algorithms can understand 
complicated health and medical care data to perform various functions 
and deep-learning strategies. AI in health care improves disease 
surveillance, diagnosis, treatment selection, and clinical laboratory 
testing (10, 11). Harnessing its capabilities can ultimately mitigate the 
impact of global public health issues and revolutionize the field.

However, the burgeoning interest was accompanied by caution 
over using it, especially in health-related fields. Crucial ethics, privacy, 
and bias issues were raised to ensure AI’s responsible and equitable 
integration in the global public health landscape. Additionally, the 
human inability to see how ML systems make their decisions “black 
box,” brought uncertainty and threatened trust among the users 
regarding its application (12). This review aims to explore the current 
state of AI in those mentioned global public health challenges and 
provide insights about its current application in disease diagnosis, 
medicinal product development, and medical intervention. This step 
will provide more comprehension, and interpretability for most of AI’s 
leading evidence-based applications and contribute to a better 

understanding of AI in dealing with the increasing scale and 
complexity of challenges to global health.

AI in non-communicable diseases

The global development over the last years was also associated 
with the change in disease burden, and NCDs have almost become the 
leading cause of mortality, resulting in 200 million premature deaths 
and expectation of another 150 million people deaths during the next 
ten years; most of them in low and middle-income countries (13).

NCDs are usually multifactorial diseases, and several factors are 
associated with their development, including genetic and 
environmental factors, which make them challenging to prevent and 
treat effectively. They are exacerbated by four key modifiable risk 
factors, namely tobacco use, harmful use of alcohol, physical inactivity, 
and unhealthy diets (14). It was estimated that behavioral factors and 
genetic factors are the main contributors to preterm death in the USA 
with (40%), and (30%) respectively (15), and the role of public health 
awareness and intervention have a vast impact (16). AI can offer the 
potential to analyze large and complex datasets obtained from lifestyle, 
clinical, and biological data in a way that exceeds the human ability to 
make sense of it. ML, NLP, Robotic, virtual agents (chatbots), and 
speech analysis are just a few examples of the available AI applications 
that are used to improve public health (17). For example, Florence, 
which is the WHO’s first virtual health worker, is designed to help the 
world’s 1.3 billion tobacco users quit smoking (18); STop obesity 
Platform that can offer personalized support to people with obesity 
(19), and chatbots to personalized fitness strategies.

If we discuss kidney disease progression as a case illustration, AI 
has its application in pre/post-diagnosis, which can ultimately lead to 
improved outcomes in a timely and accurate manner (20). During the 
analysis phase of patient data, AI can identify the early signs of the 

FIGURE 1

Examples of global health challenges.
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diseases from the lab results, medical history, and images (21, 22), it 
can also help in the diagnosis of kidney disease from a kidney biopsy 
through deep learning-based approaches (23), and to improve 
outcome and early detection of other comorbidity in renal patients 
(24). The flowing part discusses AI’s applications in the major 
of NCDs.

AI in cardiovascular diseases

Cardiovascular diseases (CVDs) are the leading cause of global 
mortality, taking an estimated 17.9 million lives in 2019. Strategies to 
tackle this considerable burden are directed toward reducing risk 
factors, enhancing the health system, and monitoring disease patterns 
and trends to inform national and global actions. The application of 
AI can identify, process, integrate, and analyze massive amounts of 
data, including but not limited to medical records, ultrasounds, 
medications, and experimental results. The gold standard in 
diagnosing most CVDs is an echocardiogram (ECG) and cardiac 
magnetic resonance (CMR). However, the clinician’s interpretation of 
ECG depends on their experience. Hence, ECG information might 
be missed due to clinicians’ difficulty analyzing them (25, 26).

Additionally, most ECGs are done on symptomatic patients, even 
though many CVDs, such as valvular heart diseases, involve long 
asymptomatic periods (27). However, the AI algorithm interpretation 
of ECG can diagnose heart failure, atrial fibrillation, hypertrophic 
cardiomyopathy, pulmonary hypertension, aortic valve stenosis, and 
anemia (28–36). An approach that reduced time and the physician’s 
cognitive burden by offering pre-diagnosis, correcting clinician errors 
and preventing the occurrence of misdiagnosis. Moreover, AI enhances 
the prompt efficiency of medical tools such as computed tomography 
(CT), echocardiography, magnetic resonance imaging (MRI), and 
Coronary computed tomography angiography (CCTA) (37–39). In 
addition to its application in CVD prediction and predictive modeling, 
such as mortality prediction, vascular aging, and predicting major 
adverse cardiovascular events in asymptomatic subjects (40–43).

AI in cancer

Cancer is a large group of diseases and is considered the second 
leading cause of global mortality; the estimated mortality in 2020 was 
10 million deaths. Despite the several accomplishments that have been 
made in the field of cancer diagnosis, prognosis, and treatment, 
individualized and data-driven care remains challenging. The 
challenge lies in the specific characteristics of distinct molecular, 
genetic, and tumor-based features (44). However, using machine 
learning and AI positively supports cancer prevention and 
management, as it is reshaping the existing picture, and is developing 
rapidly (45–47). AI has become pivotal as it can provide patients with 
forecasting and prediction and improved risk stratification according 
to specific criteria, such as in the cases of some breast, colon, ovarian, 
lung, and skin cancers (48–54). Further, it can detect hidden patterns 
from several sources such as molecular profiling, pathology, and 
medical imaging, and integration of-omics data to provide a more 
comprehensive understanding of cancer and improve the precision 
oncology (55). During a surgical procedure, AI can provide real-time 
detection and diagnosis of some cancers; through its ability to 

differentiate between cancerous and normal tissues (56, 57). Recently, 
mounting evidence indicated the potential role of microRNAs 
(miRNA) in cancer diagnosis and prognosis. MiRNAs, a small, single-
stranded, non-coding ribonucleic acids (RNAs), are essential for all 
biological functions including cancer development. ML provides an 
opportunity to explore miRNA’s ability to serve as a reliable biomarker 
targeting drugs and improve cancer clinical classification (58, 59).

A recent achievement is the genetics-based classification and 
treatment response of Cancer of unknown primary (CUP); this type 
of cancer usually leads to poor outcomes because primary cancer is 
unknown (60). The study used ML to classify the cancer based on its 
genetic profile. This model identifies the likely prior site and predicts 
the best treatment option (60). Another example is pancreatic cancer, 
one of the most challenging cancers to diagnose as it is often 
asymptomatic until it metastasises, causing poor and ineffective 
treatment. AI modeling enables the detection of individuals at high 
risk of developing pancreatic cancer; the detection was up to 3 years 
earlier than currently by using medical records (61).

AI in diabetes

A global crisis that is increasing exponentially and is considered a 
significant cause of blindness, kidney failure, heart attacks, stroke, and 
lower limb amputation. It was estimated that the prevalence was 529 
million in 2021 and is projected to reach 1·31 billion in 2050 (62), a 
burden that has a global agreement to halt before. According to several 
recommendations, the starting point is prevention by screening, 
especially for obese or overweight adults (63, 64). However, a significant 
number of cases were missed with these approaches. The current clinical 
application of AI in diabetes diagnosis and management is categorized 
into four domains: (1) automatic retinal screening, (2) clinical diagnosis 
support, (3) patient self-management tools, and (4) risk stratification 
(65). AI for automatic retinal screening enables early diagnosis with 
high specificity and sensitivity (66). Several studies have evaluated the 
prediction of new-onset diabetes mellitus by AI and ML models, and it 
was recommended to include data as an omics database (e.g., genomics) 
(67). Recently, a new model based on AI was developed to detect 
diabetes warning signs, even in patients who did not meet the guidelines 
for diabetes elevated risk. This model can enhance type 2 diabetes (T2D) 
detection; it uses the patient’s X-ray image collected during routine 
medical care and their medical records to detect T2D (68).

In diabetes management, AI devices can help patients monitor their 
glucose levels in real-time and predict spikes or drops in healthcare. 
AI-based medical devices, such as the Guardian Connect System by 
Medtronic and the DreaMed Diabetes system (DreaMed Diabetes Ltd), 
have been approved to help control diabetes (69, 70). Another mobile 
application (GoCARB) is used to estimate the carbohydrate content in 
meals, which can help enhance the patients’ skills in managing diabetic 
disease through diet management (71, 72). The future application of AI 
will introduce a paradigm shift in Diabetes care from conventional 
management to more personalized and data-driven precision care.

AI in population aging

As a result of significant increases in life expectancy, the global 
population of people aged 60 years and older is increasing (73). One 
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billion was the estimated number in 2019, rising to 1.4 billion by 2030, 
accounting for 16.7% of the global population, and projected to reach 
2.1 billion by 2050; around 80% will live in low and middle-income 
countries (74, 75). The increase in age is associated with common 
health conditions, leading to several complex health states due to 
multiple underlying factors, such as disability. However, there is no 
linearity or consistency in developing these changes, and individual 
characteristics have a vast impact. They will continuously demand 
primary and long-term care, a more trained workforce, and physical 
and social environments for social support. Around 92% of global 
older adults have at least one chronic disease, and more than 81% of 
those aged ≥85 years suffer from two chronic diseases or more (76–
78). Additionally, disability and its consequences also have a huge 
burden on the aging population. Globally, 1.3 billion people (16% of 
the world’s population) suffer from a physical or cognitive disability; 
although these estimates cover all age groups, starting from 18 years 
old (79). However, AI can provide intelligent solutions for longer lives, 
satisfy the growing unmet healthcare needs, and overcome the limited 
number of insufficient healthcare resources. Currently, AI technologies 
for aging population are used in the robotic intervention (80, 81), 
applications on smartphones or computers (82, 83), social interaction 
and support, such as improved mental well-being and quality of life 
(84–86); rehabilitation therapy, such as its application in the recovery 
of upper and lower extremity functions, gait robotic rehabilitation, or 
improve sleep quality and daily living activities (87–90), and 
wearables, voice-activated (91–94). It can create more advanced 
algorithms to provide more precise holistic interventions tailored to 
address the elders’ multiple needs in a safer and more friendly manner 
(78, 95, 96). Ambient-assisted working and ambient-assisted living are 
examples of smart systems that can adapt themselves to older adult 
needs by exploiting ambient intelligence solutions. These systems 
focus on using technology to support and enhance the quality of life 
of the older adult population, either in work, or indoor and outdoor 
environments (97, 98). Recently, a group of researchers have helped 
develop drugs that might potentially delay the effects of aging by 
eliminating senescent cells (96, 99).

AI in mental health

The global estimate of mental health disorders is one billion 
individuals (100). Since the beginning of the COVID-19 pandemic, 
the rates of anxiety, depression, and substance use disorder have 
increased (101, 102). This situation is worse in low-and middle-
income countries, where the estimated number of people with limited 
access and no treatment is around 75% of people with mental, 
neurological and substance use disorders (100, 102).

Despite the significant advantages of using AI in healthcare, 
mental health has been slower to adopt AI since the primary factor 
contributing to successful psychiatric diagnosis and treatment is the 
interaction with the patients’ (103–105). However, AI applications 
have great potential in diagnosing different kinds of mental illness. 
This is a great advantage given the available heterogeneity in the 
pathophysiology of mental illness. AI can access and analyze relevant 
information about a patient’s unique bio-psycho-social characteristics 
and identify pertinent data patterns that might help provide more 
objective, improved definitions of these illnesses (106). Further, AI can 
be used in biomarkers identification, develop better diagnoses and 

formulate risk models to predict individual risk (105, 107). Moreover, 
it can be used for some cases, such as depression or autism, where 
face-to-face interaction might be challenging. In autism, for example, 
AI could be a more useful tool than a psychotherapy session with a 
human doctor; it can provide tailored, personalized interventions or 
bridge the communication gap they may experience (105). 
Nevertheless, the variation of AI applications is persistent in dealing 
with sensitive issues like mental health.

AI in infectious diseases

As the world becomes increasingly globalized, health and illnesses 
have no borders. Concerns about One Health have gained prominence 
recently, which is justified as the world emerges from the most 
significant global emergency and the increasing number of infectious 
pathogens that spread from humans, animals, or the environment. 
COVID-19 has highlighted the high spreading rate with which 
infections can devastate the world’s health and economy. Results in 
more investment and investigation into the occurrence, prevalence, 
prevention, control, and treatment of infectious diseases to strengthen 
the epidemic response and mobilize quickly for public health priority.

Globally, the leading communicable diseases associated with high 
mortalities are HIV/AIDS, tuberculosis (TB), malaria, viral hepatitis, 
sexually transmitted infections, and neglected tropical diseases 
(NTDs). HIV continues to be a major global issue, claiming the lives 
of 36.3 million so far, and TB-associated mortalities reached 1.5 
million annually, making it the world’s second top infectious killer 
after COVID-19 (108). Tackling AI applications in HIV will yield 
several examples in HIV prevention, testing, and treatment to achieve 
sustained viral suppression (109–111). It was used also for rapid 
detection and response through monitoring clusters of vulnerable 
groups to reduce HIV transmission (111). Another example is 
Syphilis, which is a sexually transmitted disease (STD). To eliminate 
congenital syphilis (CS), the WHO launched an initiative in Latin 
America and the Caribbean (112). However, as the syphilis epidemic 
increased in Brazil, the government of Brazil developed a national 
project, the “Syphilis No!” Project (SNP), for implementing and 
integrating a syphilis response into healthcare networks, (113, 114). 
This project encompasses four dimensions: (a) management and 
governance, (b) surveillance, (c) comprehensive care, and (d) 
strengthening of the educommunication (113, 115). The application 
of AI such as data mining and NLP in these strategies augments the 
country’s capabilities in combating syphilis (113).

It is essential to analyze global infectious disease cases regularly. 
However, some countries’ investment in contagious disease 
identification was typically based on the identification of presenting 
symptoms and the likelihood of exposure due to the high cost and 
feasibility of the primary approach of detection (116, 117). However, 
using big data, AI and ML algorithms can contribute to global 
infection control and help with the spatial and temporal prediction of 
the evolution and spread of infectious diseases (118). Their advanced 
capabilities can analyze several factors: population demographics, 
environmental conditions, and individual behaviors, all of which can 
be used simultaneously (119). Such as case prediction according to 
historical data (120), predicting the likelihood of an individual 
contracting an infectious disease according to personal and behavioral 
characteristics, using pathogen genetic makeup to identify the most 
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likely sources of an outbreak, identifying or anticipating an epidemic 
by analyzing massive data; it can be used for early warning systems, 
hot spot detection, forecasting, and improving the recourses allocation 
at a country and a global level (68–72). After the exposure or presence 
of a potential outbreak, AI can advance in diagnostic approaches and 
differentiate various pathogens by using the pathogen genetic makeup, 
such as its ability to distinguish between COVID-19 and other 
circulating respiratory viruses with COVID-like symptoms (121, 122).

Another example is the possible application to the rising incidence 
of antimicrobial resistance (AMR), which has become a significant 
challenge. For this purpose, a group of researchers were able to 
develop a mobile application to classify bacterial susceptibility to 
various antibiotics, especially in resource-limited settings (123). 
Further, reducing transmission is essential to control global 
widespread infections such as those that occur in pandemics. The 
application of AI for screening technologies targeting infections and 
integrating them into data visualization has been introduced broadly, 
especially during the COVID-19 pandemic (117). This improved the 
surveillance and generated meaningful insights from multidimensional 
data, which can be widely used for public health practice.

In addition to surveillance, early detection, and diagnosis, AI is 
used to develop anti-infective therapies, although it became 
challenging with the spread of drug resistance (124). ML models can 
help explore the pathway of pathogen’s interaction with host cells and 
immune responses, facilitating antigen determination, vaccine design, 
and treatment strategies (124–127). Finally, the WHO global report 
on infection prevention and control estimated that implementing 
infection prevention and control (IPC) can reduce healthcare-
associated infections (HAIs) by 70% (128). Using AI can improve 
current and past processes to speed infection prevention and control 
response, such as identifying the correlations associated with 
medically relevant conditions, identifying potential risk factors, and 
surveillance of emerging infectious diseases (129–131), improving 
hand hygiene compliance (132), and in-hospital analysis of 
transmission, and outbreak events identification and 
investigation (133).

AI in environmental health

The impact of environmental health on human lives and health 
are interconnected in various ways. The Global Health Observatory 
estimated that 24% of all estimated global deaths are linked to the 
environment. Between 2030 and 2050, climate change is expected to 
cause approximately 250,000 additional deaths per year, mainly from 
undernutrition, malaria, diarrhea and heat stress (134). Because of the 
adynamic of the environment, AI applications in this field are 
immense; its deployment will provide a better capacity to deal with 
the growing climate exigency and related challenges. In exposure 
assessment, AI can use satellite observations, meteorological variables, 
land use, and traffic data to predict the spatiotemporal patterns and 
concentrations of pollutants (135–138). AI were used in monitoring, 
such as its application during COVID-19, for airport security checks 
and patient tracking (139), or to improve the prediction of harmful 
algal blooms (140).

Additionally, it can predict diseases based on environmental 
factors, such as its application to predict the spread of Zika virus and 
Dengue fever (141, 142). In waste management, AI reduces fuel 

consumption and emissions, increases recycling rates, and reduces 
landfill waste (143). GeoAI is one of the emerging AI tools that can 
handle complex spatial and temporal data to adjust algorithms and 
workflows according to the specific characteristics of spatial processes 
(136, 144). It can develop various environmental exposure models 
across different geographical regions in prospective and retrospective 
approaches (136). In 2022, the United Nations launched The World 
Environment Situation Room, a new digital platform that can provide 
real-time analysis, track air quality, measure environmental footprint, 
and monitor (145).

AI in health systems

Through good stewardship, resource development, funding and 
services, health systems support initiatives to prevent, promote, and 
provide for more health and well-being (146). They are complex and 
are in a constant state of flux; according to the World Health 
Organization (WHO), “A well-functioning health system working in 
harmony is built on having trained and motivated health workers, a 
well-maintained infrastructure, and a reliable supply of medicines and 
technologies backed by adequate funding, strong health plans and 
evidence-based policies” (147). At the global level, it should be able to 
control and address global health challenges and severe events (147). 
However, several myriads of difficulties impede their ability to provide 
these services. This includes but is not limited to the sudden onset or 
the slowly growing crises, such as the COVID-19 pandemic, the 
natural disasters the world is encountering, or the slow time impact of 
climate change (148–150), the rising number of older people, and the 
associated complex chronic medical illness. To overcome these 
difficulties and achieve effective and lasting change, four factors were 
proposed: (a) the acorn-to-oak tree principle (small initiative), (b) the 
data-to-information-to-intelligence principle (information technology 
(IT) and data), (c) the many-hands principle (stakeholders); and (d) 
the patients-the-preeminent-player principle (individuals) (151). 
These factors were established across 60 health systems; the role of 
data and technology cannot be missed (5, 151). AI applications are 
steadily entering novel domains previously governed solely by human 
experts. They can improve health financing, make public health more 
effective, and reach underserved populations by making health care 
more efficient and effective through more personal health 
services (152).

Further, the Primary health care system (PHC) is vital to 
addressing health issues effectively; they are considered the front door 
of the health care system. Using AI will enhance the holistic approach 
of PHC in outcome prediction, data mining, and personalized 
treatment (153–155). The current tools in PHC have several 
applications, including the risk prediction (156–158), workforce 
assessment (159), record data extraction (160, 161), control of 
healthcare-associated infections (162), and performing medical tasks 
remotely that contribute to public health domain (154, 163, 164).

Conclusion

AI integration and application to global health challenges have 
immense potential to overcome them efficiently and effectively. 
Disease prevention, detection, and response can quickly mobilize and 

https://doi.org/10.3389/fpubh.2023.1328918
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zaidan 10.3389/fpubh.2023.1328918

Frontiers in Public Health 06 frontiersin.org

yield medicinal products. As mentioned earlier, around 40% of 
preterm death was associated with behavioral factors. With AI 
advancement, data analysis and segmentation can be done for several 
characteristics such as behavior, opinion, and attitude. Using these 
data, the ML can analyze the online health information and provide 
personalized massaging to influence individuals’ health behaviors 
with high quality and clarity, amplifying their influence and 
effectiveness (165–167). This health communication can also inform 
AI technology in developing effective communication systems with 
patients and their healthcare providers. The health communication 
theories and models can highlight the available barriers to behavioral 
change and the available limitations of technology-driven health 
interventions. Which can help improve the efficacy of AI-supported 
systems or intervention designs (167–169).

AI in health care is expected to grow from nearly US $15 billion 
to $103 billion between 2023 and 2028 (170). However, incongruent 
with AI’s benefits, exacerbation of inequities was accompanied, and 
ethical and legal concerns about individual or community privacy and 
autonomy were raised (118, 171). The EU AI Act is nearing 
implementation, and it will be the first comprehensive regulation that 
addresses the risks of artificial intelligence; European Parliament 
proposed it to ensure better conditions for developing and using this 
innovative technology (172). Further, to avoid the risk of hindering AI 
applications in healthcare due to lack of sufficient transparency “black 
box,” researchers were urged to provide more research and explanation 
for AI; explainable AI (xAI), as an approach to more understandable 
and human-interpretable AI-based applications (173, 174).

However, AI stands as a cornerstone of the upcoming digital 
revolution. Despite the moral dilemmas in AI application in health 
care, it is likely to meager, co-exist or replace current systems and 

assets as a potent amplifier of human potential. It has the ability to 
strengthen global health through personalized health care and 
improved preparedness and response to future challenges.
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