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Objective: Using population-based simulations and machine-learning algorithms

to develop an adaptive restraint system that accounts for occupant anthropometry

variations to further enhance safety balance throughout the whole population.

Methods: Two thousand MADYMO full frontal impact crash simulations at 35mph

using two validated vehicle/restraint models representing a sedan and an SUV

along with a parametric occupant model were conducted based on the maximal

projection design of experiments, which considers varying occupant covariates

(sex, stature, and body mass index) and vehicle restraint design variables (three

for airbag, three for safety belt, and one for knee bolster). A Gaussian-process-

based surrogate model was trained to rapidly predict occupant injury risks and

the associated uncertainties. An optimization framework was formulated to seek

the optimal adaptive restraint design policy that minimizes the population injury

risk across a wide range of occupant sizes and shapes while maintaining a low

di�erence in injury risks among di�erent occupant subgroups. The e�ectiveness

of the proposedmethod was tested by comparing the population-wise injury risks

under the adaptive design policy and the traditional state-of-the-art design.

Results: Compared to the traditional state-of-the-art design for midsize males,

the optimal design policy shows the potential to further reduce the joint injury

risk (combining head, chest, and lower extremity injury risks) among the whole

population in the sedan and SUV models. Specifically, the two subgroups of

vulnerable occupants including tall obese males and short obese females had

higher reductions in injury risks.

Conclusions: This study lays out a method to adaptively adjust vehicle restraint

systems to improve safety balance. This is the first study where population-based

crash simulations and machine-learning methods are used to optimize adaptive

restraint designs for a diverse population. Nevertheless, this study shows the high

injury risks associated with obese and female occupants, which can be mitigated

via restraint adaptability.

KEYWORDS

adaptive design, machine learning, safety balance, Gaussian process, optimization

Introduction

Motor-vehicle crashes continue to be a public health problem in the United States. Field

data analysis has shown an estimated 20, 160 people died in motor-vehicle crashes in the

United States in the first half of 2021, up 18.4% over 2020, according to a report from the

National Highway Traffic Safety Administration (1). Advanced technologies for restraint
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system designs have been widely explored tomitigate crash injuries.

While current designs are effective in protecting people in a wide

variety of frontal crash conditions, occupants with other body sizes

can experience higher injury risks in crashes, severely hindering

safety balance among the whole population (2, 3). Conceptually,

a natural solution is to develop an adaptive restraint system that

optimally adjusts the design settings to match the characteristics of

different occupants and crash configurations. This study’s focus is

on the adaptivity regarding the occupant characteristics.

Some attempts have been made to develop adaptive restraint

systems in the existing literature. For example, McCarthy et al. (4)

and Reßle et al. (5) demonstrated the potential benefits of applying

an adaptive restraint system tomitigate crash injuries based on field

data. Shin et al. (6) and Miller and Maripudi (7) investigated the

crash injuries under a combination of different restraint designs

and several pre-determined crash conditions using simulations

(8, 9). Untaroiu and Adam (10) searched for an optimal restraint

law for each pre-crash posture classified from vision signals. Huang

et al. (11) optimized the restraint design for five different sizes

of occupants and two crash severities. Boyle et al. (12) optimized

a restraint system for four occupants with a wide range of sizes

and shapes under two pre-crash postures. However, all the existing

studies were established based on pre-specified representation of

occupants (for example, midsize male or 5th percentile female),

which does not cover the heterogeneity of the whole population and

may not protect occupants whose sizes are not represented by the

pre-specified categories.

To achieve the population-wise protection, one natural way is

to adjust an adaptive restraint system according to a pre-optimized

design function that takes the occupant covariates [e.g., sex, stature,

and body mass index (BMI)] as inputs and returns the optimal

design setting. Such a function is called an “adaptive restraint

design policy” in this paper and will be referred to as the “design

policy” in the following context with no ambiguity. With the rapid

development of vehicle technologies, especially with automated

driving systems (ADS), the occupant covariates could be measured

or estimated from available in-vehicle sensing signals, while the

restraint system can be adaptively adjusted via an automatic control

system. In this study, an optimal design policy is researched via

machine learning generated from a large number of MADYMO

occupant simulations. In the literature, a considerable number of

machine learning methods have been proposed for design policies

in the field of precision health. For example, Song et al. (13) utilized

the Q-learning method to optimize a sequence of treatments based

on patients’ information. The O-learning approach was proposed

by Zhao et al. (14) to formulate the adaptive design searching

procedure as a classification problem for categorical decisions. In

Gu et al. (15), a Bayesian model was developed to estimate the

model parameters in the adaptive design function. However, those

methods are not readily applicable to the problem where the inputs

of the design policy are a mixture of continuous and categorical

variables representing occupant size and shape.

In this study, a two-step procedure is proposed to learn

the optimal design policy from the simulation dataset—(i) train

a surrogate model to predict the injury risk for any given

combination of occupant covariates and vehicle design variables;

(ii) formulate and solve an optimization problem to seek an optimal

design policy that can automatically assign restraint system settings

adaptive to any given set of occupant covariates. To the authors’

knowledge, this is the first study that explores the machine-learning

algorithm for the optimal design of adaptive restraint systems to

enhance the balance of crash protection. While solving this data-

driven optimization problem, a machine learning methodology to

search for the optimal design policy in the multi-dimensional space

of continuous and categorical variables was delivered.

Method

Notations and problem formulation

Throughout the paper, scalars are denoted by lowercase letters,

vectors by lowercase boldface letters, and matrices by uppercase

letters. Let d ∈ D denote the vehicle design variables and s ∈ S

denote the occupant covariates. Here D and S represent the space

of vehicle design variables and occupant covariates, respectively.

The computer simulation model f is a function that takes d and

s as inputs, and returns the injury risk as f (s, d). Different from

the traditional state-of-the-art designs, an adaptive restraint system

adjusts the vehicle design variables d as a function of the occupant

covariates s, which is implemented via a design policy d = a (s).

The objective is to search for an optimal design policy that reduces

the injury risk for the whole population characterized by the space

of occupant covariates, S . Mathematically, the optimized target

design policy is the solution to the following optimization problem:

a∗ = argmin
a∈A

Es

[
f
(
s, a(s)

)]

= argmin
a∈A

∫

s∈S
f
(
s, a(s)

)
p (s) ds, (1)

where Es is the expectation operator with respect to s, p (s) is the

probability density function of s for the occupant population, and

A represents the space of all the feasible design policies.

The optimization problem in Eq. (1) brings about three main

research challenges. (i) Solving Eq. (1) requires the values of

f
(
s, a(s)

)
at different combinations of occupant covariates s ∈

S and vehicle design variables d ∈ D. Thus, it is necessary

to construct a computer simulation model that can take any

feasible vehicle design variables and occupant covariates as inputs

to evaluate the corresponding injury risks. (ii) Although the injury

risks can be evaluated from the computer simulation model, it is

infeasible to generate all simulation runs at every point in the full

space S × D under limited computational resources. A surrogate

model f̂ , which is a computationally efficient prediction model for

f , could be trained to directly generate fast predictions of the injury

risk responses f given any inputs without running computational

simulations. (iii) The injury risk function f is highly non-linear and

non-convex, making the closed-form solution to Eq. (1) intractable.

An efficient and accurate numerical solution scheme could be

developed when searching for the optimal policy a. The flowchart

of the proposed method is depicted in Figure 1. Consequently,

technical details to address the aforementioned research challenges

will be presented.
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FIGURE 1

Flowchart of the proposed method. (Upper panel) The simulation data is generated from a MADYMO simulation model. (Middle panel) The

simulation data is used to train a surrogate model. (Lower panel) The adaptive design policy is optimized to minimize the population injury risk. The

bold texts highlight the key modules in the Method Section.

Computer simulation model setup

In this study, two generic driver compartment models

representing a midsize sedan and a midsize SUV were obtained

from Ford Motor Company. Each of the two models includes

a driver seat, safety belt, driver airbag, knee airbag, instrument

panel, steering wheel, knee bolster, and other vehicle interior

components. Both models have been rigorously validated against

35 mph full frontal impact crash tests with the Hybrid-III

midsize male and small female dummies. A rigid-body-based

scalable MADYMO dummy model was used to conduct all crash

simulations. This parametric occupant model can represent both

male and female occupants with a wide range of statures and

body weights by scaling the midsize male occupant model using

MADYMO scaler. The scaling is based on the anthropometric

data of adults in the GEBOD (GEnerator of BODY data)

database (16). In this study, the occupants were sampled within

the 5th and 95th percentile stature and BMI in the male

and female populations based on anthropometry data from the

National Health and Nutrition Examination Survey (NHANES) for

the years 2011-2014.

For each crash simulation, the scaled occupant model was

positioned as a driver according to a driving posture model

developed based on measurements from 68 volunteers (17). The

driving posture model predicts occupant posture and position

variables as a function of occupant body dimensions and vehicle

package factors. In this study, only stature and BMI were used as

the input parameters to define the driver sizes. The vehicle package

factors, including seat height (H30), steering wheel X (distance

from the center of steering wheel to the ball of foot reference

point) (L6), and seat track angle (A27), were all configured based

on the sedan and SUV model for predicting the driving postures.

The model-predicted driver hip and eye locations (only in the X

direction) were used to position the scaled occupant models, and

the predicted driver-selected seat H-point location was used to

position the seat before each simulation. For each simulation, the

drivers hands were positioned on the steering wheel by adjusting

the shoulder and elbow angles, and the right and left feet/shoes were

positioned onto the gas pedal and the floor respectively by adjusting

the hip, knee, and ankle angles. After the scaled occupant models

and the vehicle seat were repositioned, the seat belt was fitted onto

the occupant through pre-simulations.
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To enable a large-scale simulation automation, ModeFrontier

(ESTECO, Italy), a multi- disciplinary design optimization

platform, MADYMO, and Scilab were used to integrate the

occupant model scaling, occupant model positioning procedure,

and automatic belt fitting algorithm together. Simulation runs were

further used to train the surrogate model similar to that of Hu

et al. (18). Generating more simulation runs can improve the

accuracy of the surrogate model (19), while also bringing a higher

computational cost. To balance the simulation time and model

accuracy, 2,000 simulation runs were generated to explore the

injury measures and the corresponding injury risks under a total of

10 occupant covariates and vehicle design variables for each vehicle

type, sedan and SUV included. The vehicle design variables and

the associated ranges are in Table 1. Three main injury measures

were collected from the simulation model: head injury criterion

(HIC = HIC15), chest deflection (ChestD), and femur forces (FF).

Following the techniques introduced in Hu et al. (20), a regression

model was trained to estimate the chest depth and femur cross-

sectional area based on occupant covariates. The chest and lower

extremity injury risks of each occupant were estimated via scaling

the injury risk curve of a midsize male to the corresponding size.

Finally, the joint injury risk function (Pjoint) was evaluated by

integrating the injury risks at different body regions.

To effectively utilize the information from simulation runs,

the simulation inputs were determined by the state-of-art design

of experiments technique “Maximum Projection Design” (21).

Consequently, for each vehicle type, the simulation runs are

collected in a simulation dataset of n = 2, 000 triplets(
si, di, yi; i = 1, ..., n

)
where si, di and yi represent the occupant

covariates, vehicle design variables, and injury measures in the i-th

simulation run, respectively.

Surrogate model training

In this subsection, a surrogate model is trained to predict

injury measures yi based on the input si and di. The predicted

injury measures can be directly used to evaluate the injury risks

(20). Among the variety of choices of the surrogate model, the

Gaussian Process (GP) modeling (22) was utilized because it not

only provides a point estimation but also quantifies the prediction

uncertainty. The uncertainty quantification of the surrogate model

grants us the possibility to evaluate the potential worst-case

scenario when predicting the injury risks and allows us to enhance

the robustness of the target design policy.

In the GP modeling, the MADYMO simulation outputs of

injury measures were considered as a random function that follows

a GP. The GP surrogate model directly predicts the MADYMO

simulation output of injury measures at any given input point

as a weighted summation of n initial simulation outputs of{
yi; i = 1, ..., n

}
, wherein the weights are determined based on this

input point’s relative distances to those simulated input points of

{(si, di; i = 1, ..., n)}. The GP is uniquely determined by a mean

function and a covariance function, which are parameterized

by hyper-parameters to be estimated via Maximum Likelihood

Estimation (MLE). Further mathematical details can be found in

Rasmussen (22). In this study, the GP-based surrogate model is

implemented by the Python package “GPyTorch” (23) with the

Squared Exponential Kernel function. To ensure the robustness of

the resultant design policy in the worst-case scenarios, the 95%

upper confidence bound from “GPyTorch” was selected as the

prediction of the injury measures. The predicted injury measures

are then mapped into the injury risks according to Hu et al. (20).

After training the GP surrogate model, the GP model can be used

to directly predict the injury risks and the Pjoint, f̂ (s, d), given

any pair of the simulation input variables (s, d) without conducting

MADYMO simulations.

Design policy optimization

In Eq. (1), f is substituted with the trained surrogate model f̂ ,

and the optimization problem is rewritten as

â = argmin
a∈A

∫

s∈S
f̂
(
s, a(s)

)
p (s) ds. (2)

For the dimension reduction purpose, a(s) is expressed in a

polynomial form as

a(s) =

m∑

j=1

Bjφj(s), (3)

where Bj is the matrix of coefficients for the j-th basis, φj(s) =[
s1
j−1, . . . , s

j−1
K

]
, and sk denoting the k-th dimension of S with the

maximal dimension K. Let B =
{
Bj; j = 1, ...,m

}
. The optimization

problem in Eq. (2) is converted into

B̂ = argmin
B∈B

∫

s∈S
f̂


s,

m∑

j=1

Bjφj(s)


 p (s) ds. (4)

For ease of computation, the integral in Eq. (4) is evaluated

through Monte Carlo simulation, that is, to first sample a subset

of occupant covariates S ⊂ S according to the probability density

function p(s), and then solve

B̂ = argmin
B∈B

∑

s∈S

f̂


s,

m∑

j=1

Bjφj(s)


 . (5)

Now the optimization function in Eq. (5) is directly calculable

for any given B. Due to the non-convexity of the optimization

function, we adopt the non-convex optimization problem solver,

Adam (24), with the autograd function (25) in Python to solve out

the coefficients in the design policy, B̂.

Substituting B̂ =
{̂
Bj; j = 1, ...,m

}
into Eq. (3) yields the

resultant design policy:

â(s) =

m∑

j=1

B̂jφj(s), (6)

which adaptively returns the vehicle design variables as a function

of the occupant covariates s.
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TABLE 1 Summary of vehicle design variables.

Name Explanation (unit) Min Max

D0_LL Load limiter belt payout D0 (m) 0.03 0.05

D1_LL Load limiter belt payout D1 (m) 0.01 0.11

DAB Airbag cushion diameter (m) 0.96 1.12

DABSTRAP Airbag tether (m) 0.2032 0.3048

F_LL Retractor belt force (N) 1,000 4,000

MF Adjusted percentage from the default airbag mass flow rate −15% +15%

Stiff Adjusted percentage from the default knee bolster stiffness −40% +40%

Results

A total of 2, 000MADYMO simulations were conducted for the

sedan and SUV model. The design of experiment matrices were

randomly generated based on the Maximum Projection Design

(21), which shows advantages in the accuracy of the trained

surrogate model among a variety of applications. The surrogate

model was trained via the Gaussian process regression technique,

where the squared exponential kernel was selected. The accuracy of

the surrogate model was evaluated based on the prediction errors in

a 10-fold cross-validation setup. Simulation runs were divided into

10 folds. The surrogate model was trained based on the data from

nine folds, which was used to generate the predictions at the left-

out fold. The procedure was repeated for 10 times for each fold.

The prediction errors are then visualized in a scatter plot of the

predicted and true values among all the test samples in all the 10

folds. As an illustration, the cross-validation results for HIC values

and chest deflection values on male drivers for the sedan model

were shown in Figure 2, where most of the points lie on the line

of y = x, indicating the high accuracy of the surrogate model.

The occupants whose BMI is greater than the 95% population

quantile is depicted by the circles. Although these points show a

higher variance than those for subjects with a normal BMI, the

predicted values are still close to the true values. The R2 value of

the predictions on the left and right panels are 0.9998 and 0.9991,

respectively. The comparison results also suggest that it is sufficient

to generate 2, 000 simulations for each vehicle type to train an

accurate surrogate model.

The proposed adaptive restraint design optimization is then

applied to the generated simulation dataset. The design policy

was expressed in the polynomial form with the maximal order of

three. The probability density function p(s) was set as constant to

assign equal weights to occupants with different anthropometry.

The stochastic gradient descent optimizer was used to search for

the optimal model parameter for the design policy under a learning

rate of 0.001. The effectiveness of the proposed method was tested

by comparing the injury risks under (i) the traditional state-of-the-

art design optimized for the midsize male, (ii) the state-of-the-art

designminimizing the Pjoint among the whole population, and (iii)

the adaptive design policy. The comparison results are displayed

in Table 2, where columns 2 through 5 show the population injury

risks as an average of the Gaussian process predictions at a space-

filling design in the occupant covariates space and the last column

shows the Pjoint for midsize males. Overall, the design policy

leads to an average of 59.28% relative reduction in the Pjoint for

sedans, and an average of 24.23% relative reduction in the Pjoint

for SUVs, compared to the state-of-the-art design optimized for

midsize males. The design policy shows an advantage over the

second non-adaptive design optimized for the population, with

17.40 and 13.84% relative reduction in the Pjoint for sedans and

SUVs, respectively, implying that the adaptivity in the design policy

helps mitigate the population-wise injury risks. It is also worth

noting that the second baseline design leads to a higher head injury

risk for SUVs when reducing the Pjoint and may increase the

injury risk for midsize male occupants, which may compromise

the results in the current regulatory or consumer information crash

tests that emphasize the head protection. Subsequently, the Pjoint

for the midsize male occupants maintained a 0.035 result for both

sedan and SUV while further improving the protection for other

occupants. The proposed adaptive design does not provide an

injury risk for midsize males as low as under design (i) due to

the linear assumption of the adaptive design policy function. A

visualization of the reduction in Pjoint for individuals is shown

in Figure 3. It is worth noting that the adaptive design results in

lower Pjoint for individuals with higher BMIs and heights, while

achieving a similar protection performance for individuals whose

occupant covariates are in the normal range. The injury reduction

results indicate that the proposed adaptive design can better

protect high-risk occupants with higher BMIs and heights without

degrading the current state-of-the-art vehicle design. Specifically,

the commonly used 5th, 50th, and 95th Hybrid III (HIII) dummy

models are evaluated to demonstrate the injury reduction using the

optimal design policy. As shown in Figure 4, the proposed adaptive

design policy significantly reduced the injury responses for the

three dummies on both the overall injury Pjoint, and the other three

measurements including ChestD, HIC, and lower extremities. Also,

with the injury scales and vulnerable body parts varying among

different dummymodels, the adaptive design showed the capability

to reduce the injury responses in all body regions and ultimately

reducing the overall Pjoint.

To illustrate how the design policy mitigates the injury risks

for the whole population, occupants from five different BMI

groups and two sex groups on SUVs were uniformly sampled.

As shown in Figure 5, the head and chest injury risks were

plotted by height for different BMI and sex groups. Large injury

reduction in HIC for taller males and ChestD for all females was

observed after applying the optimal design policy. The results

in Figure 5 indicates that the design policy mitigates high injury
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FIGURE 2

(Left panel) 10-fold cross validation of GP predictions for HIC values on male drivers in sedans. (Right panel) 10-fold cross validation of GP

predictions for chest deflection values on male drivers in sedans. HIC is presented in a logarithmic transformation to better visualize the correlation

between predicted and true values in a reasonably small scale.

TABLE 2 Comparison of average injury risks for the whole population under di�erent optimized designs.

Sedan HIC ChestD Lower
extremities

Pjoint Pjoint (midsize
male)

(i) Optimum (midsize male) 0.0911 0.1233 0.1655 0.2542 0.0257

(ii) Optimum (population) 0.0710 0.1049 0.0101 0.1253 0.0383

(iii) Adaptive design policy 0.0535 0.0941 0.0095 0.1035 0.0351

SUV HIC ChestD Lower
extremities

Pjoint Pjoint (midsize
male)

(i) Optimum (midsize male) 0.0146 0.0872 0.0085 0.0978 0.0262

(ii) Optimum (population) 0.0254 0.0738 0.0091 0.0860 0.0384

(iii) Adaptive design policy 0.0078 0.0700 0.0088 0.0741 0.0347

risks for occupants with higher BMI and height compared to the

traditional design, which is more significant for female drivers with

a high BMI of 38.6.

The trend of the design policy on SUVs is further visualized

and validated based on its physical interpretation. Figure 6

illustrates the values of the two vehicle design variables at different

configurations of occupant covariates according to the optimal

design policy, where the upper section of each plot represents

the design policy for males and the lower section represents the

design policy for females. An increasing trend of the joint injury

risk (depicted by the point sizes) as BMI and height increases

for each sex group was observed. The increasing trend was

relatively smooth and slow under the proposed design policy,

implying that the design policy achieves the balance in injury

risks among the whole population. Moreover, the design policy

suggests higher retractor belt forces and lower mass flow rates

for obese occupants, which corresponds with the vehicle design

intuition that a tighter belt force and softer airbag can better protect

obese occupants.

Sensitivity analysis was also conducted to both the surrogate

model and the design policy. In the surrogate model, it was

observed that the BMI, height, sex, F_LL, and MF were the most

sensitive factors influencing the Pjoint. In the optimal design

policy, we found the F_LL and MF were sensitive to all three

occupant covariates—BMI, height, and sex, especially for boundary

conditions where BMI and height increase. The sensitivity of each

design variable was quantified by the extent of injury reduction

that is only due to the adaptivity of the current design variable,

while all other variables take the same value as the second non-

adaptive design optimized for the population. Comparing the

Pjoint over the population from design (ii), the relative Pjoint

percentage reduction with respect to each design variable is shown

in Figure 7. Among the seven vehicle design variables, F_LL and

MF were able to reduce the population-level Pjoint to a lower

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1202970
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2023.1202970

FIGURE 3

Visualization of injury reduction due to the adaptive design. Blue dots represent males and orange dots represent females. The dot diameter indicates

the amount of Pjoint reduction. (Top left panel) Reduction in Pjoint of sedan drivers by changing the traditional state-of-the-art design [design (i)]

into the adaptive design policy [design (iii)]. (Top right panel) Reduction in Pjoint of SUV drivers by changing the traditional state-of-the-art design

[design (i)] into the adaptive design policy [design (iii)]. (Bottom left panel) Reduction in Pjoint of sedan drivers by changing the state-of-the-art

design optimized for the whole population [design (ii)] into the adaptive design policy [design (iii)]. (Bottom right panel) Reduction in Pjoint of SUV

drivers by changing the state-of-the-art design optimized for the whole population [design (ii)] into the adaptive design policy [design (iii)].

FIGURE 4

Injury response comparison between design (ii) and optimal design (iii) for the 5th, 50th, and 95th HIII models considering Pjoint, ChestD, HIC, and

lower extremities. (Left panel) Optimal injury comparison between design (ii) and design (iii) on 5th, 50th, and 95th HIII drivers in SUVs. (Right panel)

Optimal injury comparison between optimal design for the whole population [design (ii)] into the adaptive design policy [design (iii)] on 5th, 50th, and

95th HIII drivers in sedans.

level and consequently were the most sensitive design variables

with respect to the change of occupant covariates. The general

guideline was to use a higher retractor belt force and a lower mass

flow rate for obese occupants. Such information may guide the

design of the sensing systems for restraint system optimization in

future vehicles.

Additional analysis was conducted for the two subgroups of

the most vulnerable occupants. Specifically, the group of tall obese

males was defined as both BMI and height were larger than the

sum of their mean value plus one standard deviation of the male

covariates, i.e., BMI is larger than 30.5, and height is larger than

181.7 cm. Similarly, the group of short obese females was defined as
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FIGURE 5

(Left panel) Comparison of head injury risks on male between the design policy and the state-of-the-art design for midsize male drivers in SUVs.

(Right panel) Comparison of chest injury risks on female between the design policy and the state-of-the-art design for midsize female drivers in

SUVs. Di�erent colors represent di�erent BMI groups. The dashed line represents the injury risks under the optimal state-of-the-art design for

midsize males while the solid lines represent the injury risks under the design policy.

FIGURE 6

Visualization of design policy for di�erent occupants on SUVs. (Left panel) Heat map of optimal F_LL for di�erent occupants. (Right panel) Heat map

of optimal MF for di�erent occupants. The point size represents the corresponding joint injury risk. The color depicts the value of the design variables.

the subjects with BMI higher than 37.3 and height lower than 157.0

cm. The optimal design policy showed 25.08% reduction in Pjoint

for tall obese males from 0.0854 to 0.0640 and 48.25% reduction in

Pjoint for short obese females from 0.2210 to 0.1144.

Discussion

This study lays out a method to adaptively adjust vehicle

restraint systems to further enhance the safety balance. The

objective is to tailor the vehicle restraint system for individual

occupants through machine learning. The effectiveness of

the proposed method was demonstrated by the reduction in

population-wise injury risks compared to the traditional state-of-

the-art design. The advantage of the conceptual adaptive restraint

system lies in the improved protection of the occupants whose

subject variables are not considered in the current regulated crash

tests. In the meanwhile, the proposed adaptive restraint system

achieves a similar protection effectiveness for the majority groups

of occupants.

This study has a few limitations. First, the conceptual study

only focuses on a frontal crash scenario under limited vehicle types

and a fixed crash condition. To generalize the proposed approach,

future studies should: (i) extend the method to varying crash

parameters including impact speed and impact angle, wherein the

vehicle design can be adaptively adjusted based on crash scenarios

for injury mitigation. (ii) Analyze injuries in more body regions

including the neck and valuation of submarining. (iii) Consider the

effects of seat location and sitting posture which could significantly

impact the injury risks for the population and potentially enhance

the adaptive design policy.

Second, the Madymo parametric occupant model was a rigid

body dynamics-based model, which may not fully account for

the obesity effects in crash simulations and exhibit differences
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FIGURE 7

Sensitivity analysis of design variables. The bar plot indicates the

relative injury reduction percentage from the second non-adaptive

design [design (ii)] to the optimal design by only adapting the

current design variable while keeping the other variables the same

value as design (ii).

between the simulated and actual responses. To improve the model

accuracy, the state-of-the-art finite element parametric human

models (26) coupled with field crash data may be introduced in

future studies. A quantitative model for the simulation discrepancy

may be developed to calibrate the simulation model.

Finally, this study assumes that many restraint design

parameters can be fully adaptive. However, in reality the

design adaptability might be limited to fewer design parameters.

Nevertheless, the methods developed in this study may provide

guidance on which design parameter(s) provides the most

benefit in reducing the injury risks for different vulnerable

populations. Given the need for further simulations, it would

be desirable to iteratively generate simulation runs that can

provide more information on the adaptive design to improve

the method efficiency. Future studies could explore integrating

the simulation generation step with the design optimization

step under the guidance of the surrogate model to address this

limitation.
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