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Introduction: Perinatal asphyxia is one of the most frequent causes of neonatal

mortality, a�ecting approximately four million newborns worldwide each year

and causing the death of one million individuals. One of the main reasons for

these high incidences is the lack of consensual methods of early diagnosis for

this pathology. Estimating risk-appropriate health care for mother and baby is

essential for increasing the quality of the health care system. Thus, it is necessary to

investigate models that improve the prediction of perinatal asphyxia. Access to the

cardiotocographic signals (CTGs) in conjunction with various clinical parameters

can be crucial for the development of a successful model.

Objectives: This exploratory work aims to develop predictive models of perinatal

asphyxia based on clinical parameters and fetal heart rate (fHR) indices.

Methods: Single gestations data from a retrospective unicentric study from

Centro Hospitalar e Universitário do Porto de São João (CHUSJ) between

2010 and 2018 was probed. The CTGs were acquired and analyzed by

Omniview-SisPorto, estimating several fHR features. The clinical variables were

obtained from the electronic clinical records stored by ObsCare. Entropy and

compression characterized the complexity of the fHR time series. These variables’

contribution to the prediction of asphyxia perinatal was probed by binary logistic

regression (BLR) and Naive-Bayes (NB) models.

Results: The data consisted of 517 cases, with 15 pathological cases. The asphyxia

prediction models showed promising results, with an area under the receiver

operator characteristic curve (AUC) >70%. In NB approaches, the best models

combined clinical and SisPorto features. The best model was the univariate BLR

with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55;

95.31%].

Conclusion: Both BLR and Bayesian models have advantages and disadvantages.

The model with the best performance predicting perinatal asphyxia was the
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univariate BLR with the CR2 variable, demonstrating the importance of non-linear

indices in perinatal asphyxia detection. Future studies should explore decision

support systems to detect sepsis, including clinical and CTGs features (linear and

non-linear).
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non-linear methods, neonatology, fetal heart rate, cardiotocography, perinatal asphyxia

1. Introduction

Perinatal asphyxia is characterized by an impaired exchange

of respiratory gases (oxygen and carbon dioxide) between the

mother and fetus, resulting in hypoxemia (decreased oxygen in the

blood) and hypercapnia (increased carbon dioxide), accompanied

by acidosis metabolism and tissue damage (1, 2).

The incidence rate of perinatal asphyxia in developed countries

ranges from 1 to 5/6 cases per 1,000 live births (3). However, in

developing countries, the incidence is higher, reaching 26.5 cases

per 1,000 (2, 3). In addition, asphyxia is the third most common

cause of neonatal death (23%), after preterm birth (28%), and

serious infections (26%) (1, 4). One of the main reasons for these

high incidences is the lack of consensual methods of early diagnosis

for this pathology.

The causes of perinatal asphyxia can be maternal or fetal.

There are several clinical risk factors for perinatal asphyxia,

including maternal age, prolonged rupture of membranes, multiple

births, non-attendance for prenatal care, low fetal weight,

malpresentation, preeclampsia, increased labor with oxytocin, and

abnormal fetal heart rate (fHR) (2, 5, 6). Asphyxia can still occur in

utero during childbirth or in the immediate postnatal period, and

in many cases, the timing of asphyxia cannot be established with

certainty (2).

There has yet to be an agreement among the various authors

regarding the diagnosis of asphyxia. However, the criteria of

the American College of Obstetrics and Gynecology and the

American Pediatric Association are based in pH, Apgar score,

and the presence of neurological manifestations (7–9). Although,

sometimes the diagnosis is difficult and proves to be late for

many babies. Several biomarkers that identify kidney, central

nervous system, or cardiac damage, to more specifically access the

mechanism of hypoxia and be able to predict perinatal asphyxia,

have been analyzed recently (2). Abiramalatha et al. (10) analyzed

troponin-T concentrations in asphyxiated newborns and correlated

concentrations with clinical outcomes. Patel et al. (11) used the

uric acid/creatinine ratio as an additional marker for predicting

perinatal asphyxia and compared it with blood gas analysis in

monitoring the Apgar score. Mikkelsen et al. (12) studied how birth

asphyxia, as measured by the pH of blood in the umbilical artery

cord, is associated with attention deficit hyperactivity disorder in

childhood.

The prediction of perinatal asphyxia is still a problem in the

provision of health care. Understanding the probability of birth

asphyxia risk is very important for better clinical care and medical

intervention. A correct and easily obtained clinical prognosis

is essential for predicting perinatal asphyxia. It is crucial to

develop new bio and physiomarkers with greater specificity in the

diagnosis and more accurate prediction models. However, several

intrapartum events can cause asphyxia. It is vital to recognize a

fetus presenting a pathological cardiotocographic signal (CTGs)

at the delivery time, which may imply possible hypoxia and

perinatal asphyxia (13–16). Therefore, the CTGs interpretation is

essential. Besides the linear CTGs indices, entropy and compression

are among the most used non-linear methods for predicting

asphyxiation (17).

A frequent problem in medical data is the imbalance caused

by the fact that the number of observations belonging to the two

groups (asphyxia/non-asphyxia) is very different. An unbalanced

dataset is a big challenge because failure to solve this problem

can lead to classifiers being biased. Recently, da Silva Rocha et

al. (18) reviewed the literature on computer models for mortality

prediction, covering stillbirth, perinatal, neonatal, and infant

deaths, and found that only 50% of studies addressed the crucial

problem of the unbalanced dataset.

The main objective of this exploratory study is to develop

predictive models that detect perinatal asphyxia using retrospective

databases of CTGs in conjunction with clinical factors. For this

purpose, we used clinical information and linear and non-linear

CTG features to develop and compare perinatal asphyxia predictive

models using logistic regression and Bayesian networks.

2. Data

In this study, we used data from a retrospective study that

contained anonymized data from single gestations’ childbirth from

Centro Hospitalar e Universitário do Porto de São João (CHUSJ)

between 2010 and 2018. Of the 22,648 cases that comprise the

original dataset, 72 were diagnosed by the medical team with

perinatal asphyxia (0.32%). In this study, the 22,524 subjects

born alive were considered. The group with perinatal asphyxia,

defined by the International Classification of Diseases, 9th Revision,

Clinical Modification (ICD-9-CM), comprises 15 fetuses with a

CTGs record in the last hour before birth.

For the non-asphyxia (suspicious) group, individuals with

CTGs in the last hour before birth with a pH value record

were considered (2,991 cases). From these cases, 502 cases were

randomly selected and stratified by gestational age and gender.

The data was collected from two information systems:

the Virtual Care’s ObsCare system (19) and the Omniview-

SisPorto (20). The ObsCare is an electronic clinical record

system implemented in several Portuguese hospitals that support

gynecology and obstetrics departments by storing data during
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pregnancy and birth. On the other hand, the Omniview-SisPorto

acquires CTGs and analyzes them following the International

Federation of Gynecology and Obstetrics guidelines (20, 21).

2.1. Clinical variables

The clinical variables obtained from ObsCare included in the

database were organized into four groups: parturient, pregnancy,

delivery, and fetus/newborn. (a) Parturient: age, body mass

index (BMI), blood group (GS—A, AB, B, or O), RH system (RH

positive or RH negative), and allergies. (b) Pregnancy: type of

pregnancy (spontaneous or stimulation). (c) Labor: gestational

age, fetal presentation (cephalic, non-cephalic), increased labor

with oxytocin, intrapartum fever, and type of delivery (c-section,

vaginal, vacuum). (d) Fetus: gender (male or female), and third-

trimester ultrasound fetal weight percentile adapted to Portuguese

reality (22).

2.2. SisPorto features

The traces from the last 60 min before delivery were

analyzed using Omniview Sisporto 4.0 (20). The linear features

considered were: fHR base and basal line, accelerations, fetal

movement, number of contractions, average and abnormal

short-term variability (STV), average and abnormal long-term

variability (LTV), saltatory index, mild, intermediate, prolonged,

and repetitive decelerations, and yellow, orange, red, and red

without ST alerts. A full description of the indices can be found

at (20, 23).

2.3. Non-linear indices

In this section, we describe the non-linear methods used to

characterize the complexity of the fHR signals, for which we use

the CTGs 60 min before birth.

Entropy and compression are two of the most applied non-

linear measures to predict fetal pathologies. These measures have

already been successfully used in asphyxia-related work (17).

A time series’ entropy measures how irregularly distributed, or

unpredictable, each new observation is. In other words, the entropy

rate increases monotonically with the level of randomness (24).

The concept of sample entropy (SampEn), introduced in 2000

by Richman and Moorman (25), is becoming the entropy most

applied to heart rate time series (26). Furthermore, the multiscale

entropy (MSE), proposed by Costa et al. (24, 27) has also been

widely employed in biomedical signal analysis considering system

information on different time scales.

The MSE method comprises two parts:

1. Construction of the time series scales: using the original signal,

a scale (s) is created through a coarse-graining procedure by

replacing s consecutive points with their average;

2. Computation of the entropy index for each time series scale. We

apply SampEn withm = 2 and r = 0.15× standard deviation in

this work.

The MSE curve is obtained by plotting the entropy value as a scale

function. The entropy indices used were the entropy obtained from

the original scale and scale 2 (SampEn1 and SampEn2, respectively)

and the three indices related to the multiscale sample entropy

computed as:

1. MSEsum—the sum of the entropy values of the first five scales;

2. MSEslope—the slope of the linear regression line best fitting the

entropy values over on the first five scales;

3. MSEss—the product of MSEsum and MSEslope.

Another complementary approach is the Kolmogorov

complexity one, which considers the amount of information in

an object as the length of the object’s smallest description. The

Kolmogorov complexity attempts to answer how “random” an

object is concerning the number of bits necessary to describe it.

This measure is not computable but can be approximated using

compressors. In this work, we used the bzip2 compressor (28).

We extended the MSE algorithm concept and combined it

with the compression by replacing the second step, forming the

multiscale compression (MSC). The compression indices used were

the compressed file size for original scale and scale 2 (SC1 and SC2,

respectively), and the three indices extracted from the multiscale

compression curve (MSCsum, MSCslope, and MSCss) obtained

analogously to the three indices of the MSE. Due to the order of

magnitude the values of the MSCsum variable were divided by

10,000.

We also compute the compression ratio (CR) for each scale as

follows:

CR =
size of compressed file for each scale

size of file for each scale
× 100 (1)

The same five indices were considered, similarly to the previous

indices (CR1, CR2, MSCsumCR, MSCslopeCR, and MSCssCR).

Therefore, 15 non-linear indices were computed (SampEn1,

SampEn2, MSEsum, MSEslope, MSEss, SC1, SC2, MSCsum,

MSCslope, MSCss, CR1, CR2, MSCsumCR, MSCslopeCR, and

MSCssCR).

3. Prediction models

Data mining and machine learning have achieved significant

results in various fields. Due to the success of these methods,

many researchers have used machine learning algorithms in

medical analyses (29). Prediction or classification models have

great potential in predicting pathologies, identifying inefficiencies,

improving clinical practices, and reducing costs.

In this work, we use binary logistic regression (BLR) and

Bayesian network classifiers (Naive-Bayes) to analyze data and

develop predictive models.

3.1. Binary logistic regression model

The binary logistic regression model is widely used in medical

research and is part of a family of statistical models called

generalized linear models. Recently, many researchers have applied

this method to predict perinatal asphyxia (30–32).
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The model produces odds ratio (ORs), which suggest an

increase, decrease, or no change in the odds of being in an outcome

category with an increase in predictor value (33). This work applies

the univariable andmultivariable BLR to predict perinatal asphyxia.

3.2. Bayesian model—Naive-Bayes

Traditional statistical methods, such as logistic regression, have

difficulty dealing with large amounts of data. In recent years, new

methods using machine learning techniques have emerged and

their applications have increased. Due to its ability to provide causal

inference, one of the most used machine learning techniques in

medicine is Bayesian Network (34, 35).

Bayesian networks were introduced by Pearl (36) as a formalism

to represent and reason with models of problems involving

uncertainty, adopting probability theory as a basic framework

(37). Initially, Bayesian networks were built manually, but due

to the large amount and constant increase of data, there was

a need to develop algorithms to learn networks from data.

Learning Bayesian networks from data has two components: (1)

the structure of the networks and (2) the parameters (conditional

probability tables) (38). The Bayesian network has the advantages

of dealing with missing data and modeling the interdependence

between two variables even when the relationship between them is

unknown (39).

There are many versions of Bayesian network classifiers (40,

41). In this work, we will apply one of the most popular

classifiers—Naive Bayes (NB) classifier (42). NB classifier assumes

the stochastic independence of the features given the class. It differs

from othermachine learningmethods in that there is not an explicit

search for a possible hypothesis but the product of the probabilities

of each attribute (43). NB is a simple probabilistic classifier with fast

techniques, robust to the presence of irrelevant attributes, and the

dimension of its decision model is independent of the number of

subjects.

4. Data balancing techniques

Unbalanced datasets are relevant and commonly observed in

pathology detection problems that can significantly impact the

classification performance of machine learning models. Several

solutions have been proposed to deal with unbalanced datasets (44,

45) and the problem was solved by data resampling at the pre-

processing data level. The basic idea of unbalance is to resample

the original dataset, either by oversampling the smallest class or

subsampling the largest class until the class sizes are approximately

the same. In general, resampling techniques can be divided

into three categories [undersampling, oversampling, and hybrid

sampling (HS)].

Undersampling (US): the dataset is balanced by randomly

excluding majority class instances. The main limitation of this

method is that we can discard some important information for the

learning process (46).

Oversampling (OS): this method balances the data by randomly

resampling minority class instances. The weakness of this method

is that if the dataset is large, it can introduce a significant additional

computational load and the duplication of information due to

the oversampling of the minority class instances, which can lead

to the overfitting of the model. However, this method retains all

important information, unlike the US method (44).

Hybrid sampling (HS): in this method, the dataset is balanced

by combining the OS and US approaches (47).

5. Methods

Univariable BLR analysis was performed for all the independent

variables. The odds ratios (ORs), the 95% confidence interval (CI),

and the p-values were computed. The Spearman correlation

coefficient between variables was calculated to minimize the

redundancy between the variables. When the Spearman correlation

coefficient was >0.6, the variable with the lowest significance value

in the univariate BLR was selected. For the construction of the

multivariate models, independent variables with a p-value < 0.2 in

the univariate BLR models after the minimization of redundancies

were considered and the oversample. For each of the non-linear

CTGs variables with p < 0.2, univariate BLR models and

Naive-Bayes models were developed. Asphyxia prediction models

were implemented in R (48) using the Generalized Linear Models

function to binomial logistic and the naivebayes package (49),

respectively.

In constructing our models, we used a classification cut of 0.5.

The evaluation of the model’s fit was carried out by the analysis of

the test of Hosmer and Lemeshow (50).

To allow an unbiased evaluation of the models, we use a two-

fold cross-validation method: training and testing. The training

dataset was randomly composed of 55% of the dataset and the test

set for the remaining 45%. Due to the imbalance of the groups,

asphyxia and no asphyxia, we used the technique of oversampling

in the training dataset in order to have a probability of asphyxia of

0.3. Asphyxia prediction models were then built using resampling

by oversampling the training set.

The oversampling technique was implemented using the ROSE

R package (51). We repeated 1,000 times for each training set,

obtaining BLR and NB models. We also calculated the area under

the receiver operating characteristic curve (AUC) for the respective

test set and their confidence interval.

A visual assessment of the histogram verified the normality of

the distribution, and the median and interquartile interval were

presented. In the case of categorical variables, we describe the

absolute and relative frequency (in percentage).

6. Results

In Table 1, the data from the two groups used in this study are

characterized. The APGAR score at 5th minute > 7 in 83% of the

subjects in the non-asphyxia group, while for the asphyxia group is

it verified in only 20% of cases. It is also worth mentioning that the

APGAR score at 5th minute was equal to 10 for 199 subjects in the

non-asphyxia group and we do not have any case with this index in

the asphyxia group. Also, the parturients in the asphyxia group had

a higher BMI.
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TABLE 1 Characteristics of asphyxia and non-asphyxia groups. Data are

expressed in n(%) or median (interquartile interval).

Variables Non-asphyxia group Asphyxia group

(n = 502) (n = 15)

Newborn

Birth weight (g) 3017.5 (2606.3–3377.5) 3215.0 (2982.5–3347.5)

Birth term (weeks) 39.1 (37.4–40.2) 39.3 (39.0–40.5)

Gender, male 288 (57%) 6 (40%)

Apgar > 7 at 5 min 418 (83%) 3 (20%)

Artery pH 7.2 (7.1–7.3) 7.1 (7.0–7.2)

Parturient

BMI (kg/m2) 24.3 (21.9–28.9) 28.8 (25.1–34.2)

Age (years) 32.0 (28.0–35.0) 30.0 (23.5–33.5)

BMI, body mass index.

The correlation between CTGs variables (linear and non-

linear) can be seen in Figure 1. We obtained a high correlation

within the entropy indices, and within some compression

indices. We also obtained a high correlation between some

SisPorto variables, such as: the average STV, abnormal STV,

average LTV, abnormal LTV, and saltatory index. We obtained

moderated correlation between the SisPorto variables and

the non-linear indices, mainly between the entropy measures

and the average STV, abnormal STV, average LTV, and

abnormal LTV.

Univariable binary logistic regression analysis was performed

for the 46 independent variables (13 clinical variables, 18 SisPorto

variables, and 15 non-linear CTGs indices). The body mass

index (BMI) variable presented 47 missings, and the missing

values were replaced by the median BMI of mothers of the

same age. To deepen our study, we considered independent

variables with value p < 0.2 in univariate models (three clinical

variables, five SisPorto variables, and five non-linear variables),

and analyzed correlation between these variables to minimize

the redundancy.

We found a coefficient >0.99 between the variables SC1, SC2,

and MSCsum and between the variables CR2 and MSCsumCR.

We also found a moderate/high correlation coefficient (r = 0.62)

between the SisPorto variables prolonged deceleration and red

alert. For the analysis, we used the variables with the lowest

significance value for the outcome determined in the univariable

BLR models (MSCsum, CR2, and prolonged deceleration). The

remaining Spearman correlations were <0.6, so the remaining

variables were used in constructing the models.

In Table 2, we present the characteristics of the asphyxia and

non-asphyxia groups for independent variables with p < 0.2

after logistic regression analysis. Higher maternal age and male

fetuses are significant protector factors against the risk of perinatal

asphyxia. On the other hand, higher gestational age and a higher

value for CTGs indices present significant risk factors for neonatal

asphyxia. Furthermore, the increased number of accelerations and

the presence of prolonged decelerations are also risk factors for

neonatal asphyxia. The non-linear indices, CR2 and MSCsum,

are the best separating individuals with asphyxia. Considering the

entire dataset and defining for CR2 a threshold of 6%, we obtain a

sensitivity of 87% (13 out of 15) and a specificity of 100%.

For the construction of the multivariate logistic regression

model, the clinical and SisPorto variables described in Table 2 were

considered. As stated in methods section, the multivariate logistic

regression model was performed using a oversampling technique

in a two-fold cross-validation method. In Table 3, we the adjusted

ORs and the respective 95% confidence interval for these models

are presented. As a result, we only obtained three variables with

p-value >0.05.

In Table 4, we present the mean of the 1,000 values for AUC

and respective 95% confidence interval (95% IC) for all asphyxia

prediction models built. The Naive-Bayes model presented a higher

AUC (92.55 [92.43; 92.68]) when considering clinical and SisPorto

variables. However, the binary logistic regression presented better

results (94.93 [94.55; 95.31]) using only the CR2 index.

7. Discussion

Our findings are notable for four main reasons. First, we used

a retrospective database of CTGs along with clinical risk factors

to predict perinatal asphyxia. Second, we use fHR data to predict

perinatal asphyxia, allowing us to act before birth on detected cases.

Third, the diagnosis is based on physiological signals having the

advantage of being non-invasive and easily accessible. Fourth, a

compression index seems to predict asphyxia.

The need for increasingly specialized health care and the

early detection of pathologies justifies the importance of creating

predictive models that aid diagnosis. BRL and Bayesian models

have advantages and disadvantages, and their usefulness is

remarkable when associated with traditional diagnosticmethods. In

Bayesian models, all relationships between variables are modeled.

Therefore, it has an advantage over regression analysis due to

its ability to capture the natural complexity of the data more

effectively. BRL has the disadvantage of not being able to represent

causality between the data. However, Bayesian models require the

discretization of continuous data, which causes constraints and can

reduce the model’s performance. On the other hand, the notable

advantages of Bayesian models are related to the fact that they can

deal with missing data and allow a graphical representation that

shows the relationship between the variables and their probabilistic

values.

The incidence rate of perinatal asphyxia from the CHUSJ single

birth data between 2010 and 2018 was 3.2 cases per 1,000, which

agrees with the literature (3). Only 3,006 cases had pH analysis

and CTGs recording in the last hour; of these only 15 were

classified as having perinatal asphyxia. Only 21% of babies classified

with asphyxia had CTG tracings in the last hour. However, the

percentage of fetuses without pathology and CTG in the previous

hour is similar. This fact leads us to consider that availableness of

the CTG is arbitrary and that the lack of these data will be related

to acquisition and storage problems.

The high correlation that we obtained between the entropy

indices, the compression indices, and between the SisPorto indices

did not surprise us. However, the correlation that we obtained

between the linear and non-linear indices of the CTGs is surprising,
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FIGURE 1

Correlation plot between CTGs indices. CR1, compression ratio for scale 1; CR2, compression ratio for scale 2; MSCslope, slope of the linear

regression line best fitting the compressed file size all first five scales; MSCss, product of MSCsum and MSCslope; MSCsum, sum of the compressed

file size values of the first five scales; MSCslopeCR, slope of the linear regression line best fitting the compression ratio values over on the first five

scales; MSCssCR, product of MSCsumCR and MSCslopeCR; MSCsumCR, sum of the compression ratio values of the first five scales; MSEslope, slope

of the linear regression line best fitting the entropy values over on the first five scales; MSEss, product of MSEsum and MSEslope; MSEsum, sum of the

entropy values of the first five scales; SampEn1, entropy for scale 1; SampEn2, entropy for scale 2; SC1, compressed file size for scale 1; SC2,

compressed file size for scale 2; STV, short-term variability; LTV, long-term variability.

and efforts should be made for the in-depth study of the

relationships between these variables.

In this exploratory study, of the 13 clinical variables studied,

only for three clinical variables (maternal age, gestational age, and

fetal sex) we obtained a p-value <0.2 when separating the groups.

Clinical variables in the literature that were associated with the risk

of asphyxia, such as third-trimester fetal weight percentile, fetal

presentation, and increased labor with oxytocin, were not shown

to be significant in our study. Moreover, clinical variables, such as

prolonged rupture of membranes and multiple births, remained

unanalyzed due to a need for more information in our database.

The non-linear CTGs indices seem to be predictors of asphyxia,

which showed a change in fHR variability in the 60 min before

birth.

The multivariate models were built with the clinical and

SisPorto variables described in Table 2 because the non-linear

variables (CR2 and MSCsum) separate the study groups well.

We built univariate asphyxia prediction models based on each

of the non-linear variables to compare with the performance

of the multivariate models.Previous studies suggested that the

compression values depend on the data acquisition technique and

machine. Two monitors were used in this dataset, the STAN, and

the Philips Serie 50 Fetal Monitor, 20% of the pathological and

31% of the non-asphyxia CTGs were acquired from STAN. Also,

93% of the pathological and 68% of the non-asphyxia CTGs were

ultrasound. The others were electrocardiograms.

The results of the models showed that the best model is the

BRL univariate with CR2 variable. We obtained an AUC of 94.93

[94.55; 95.31], followed by the result obtained with the Naive-

Bayes model using clinical and SisPorto variables (AUC of 92.55

[92.43; 92.68]). We recall that the multivariate models were built

using oversampling techniques. A hold-one-out technique was also

employed to substantiate the obtained results. For the CR2 variable,

we obtained similar results with an AUC for the BRL model of 94.5

[85.3; 100.0] and the Naive-Bayes model of 89.1 [74.6; 100.0]. The

results for the clinical and SisPorto variables were worse due to the

absence of the oversampling technique in the training model and

possibly due to some overfitting. We achieved an AUC for the BRL
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TABLE 2 Non adjusted odds ratio (OR), respective 95% confidence interval (CI), and p-value for variables with p < 0.2.

Variables Non-asphyxia Asphyxia OR p-value

(n = 502) (n = 15) [95% CI]

Clinical

Maternal age (years) 32 (7) 30 (10) 0.92 [0.84;1.00] 0.054

Gestational age (weeks) 39.1 (2.8) 39.25 (1.45) 1.30 [1.00; 1.91] 0.117

Male fetus 288 (57%) 6 (40%) 0.50 [0.16; 1.39] 0.189

SisPorto

Prolonged decelerations 41 (8%) 6 (40%) 7.50 [2.41;21.85] < 0.001

Accelerations 4 (8) 10 (12) 1.08 [1.01; 1.15] 0.014

Orange alerts 171 (34%) 9 (60%) 2.90 [1.03; 8.79] 0.046

Mild decelerations 6 (7) 8 (8.5) 1.09 [1.00; 1.18] 0.051

Non-linear

CR2 4.32 (1.46) 8.78 (1.53) 9.79 [4.77; 30.54] < 0.001

MSCsum 1.46 (1.07) 2.60 (0.98) 4.55 [2.12; 10.90] < 0.001

Characteristics of asphyxia and non-asphyxia groups, expressed in n(%) or median (interquartile range). SisPorto and non-linear variables were obtained from CTGs in the last 60 min before

birth. CR2, compression ratio scale 2; MSCsum, sum of compressed file size for all five scales.

TABLE 3 Odds ratios obtained from the multivariate logistic regression

model for the prediction of perinatal asphyxia based on clinical and

SisPorto variables.

Variables OR [95% CI] p-value

Clinical

Maternal age 0.95 [0.90; 1.01] 0.126

Gestational age 1.72 [1.37; 2.24] < 0.001

Male fetus 0.35 [0.18; 0.63] 0.001

SisPorto

Prolonged decelerations 63.18 [23.41; 190.25] < 0.001

Accelerations 1.11 [1.06; 1.18] < 0.001

Orange alerts 1.07 [0.54; 2.08] 0.848

Mild decelerations 1.02 [0.96; 1.08] 0.578

CI, confidence interval; OR, odds ratios.

model of 77.2 [66.8; 87.7] and the Naive-Bayes model of 75.2 [63.9;

86.6]. These results reinforce the conclusion that the CR2 variable

seems to discriminate fetuses with asphyxia from suspicious cases.

This study has some limitations, such as being a unicentric

study, missing data, and being a retrospective study that might

lead to different definitions of the diagnosis originating from the

ICD-9-CM code.

Furthermore, the most critical limitations of this study are due

to the reduced number of pathological cases and the imbalance

between the number of subjects in the two groups. The latter will

always be present in pathologies of low prevalence. An unbalanced

dataset is a big challenge, as failure to address this issue can

lead to biased classifiers. Undersampling can discard important

information and, consequently, worsen the performance of some

results. Oversampling tends to be the technique most used by

researchers (46, 52).

TABLE 4 The area under the receiver operating characteristic curve and

respective confidence interval of 95% obtained in the asphyxia prediction

models.

Variables Binary logistic
regression

Naive-Bayes

AUC(%) [95% CI] AUC(%) [95% CI]

Clinical and SisPorto

3 Clinical and 4 SisPorto 86.58 [86.41; 86.75] 92.55 [92.43; 92.68]

Non-linear

CR2 94.93 [94.55; 95.31] 90.28 [89.80; 90.76]

MSCsum 79.60 [73.90; 80.09] 74.51 [73.90; 75.12]

AUC, area under the receiver operating characteristic curve; CR2, compression ratio scale 2.

MSCsum, sum of compressed file size for all five scales.

Due to these limitations, before moving on to clinical practice,

our results must be validated, in a future study, in a database with a

larger number of pathological cases.

8. Conclusions

Correct and early detection of perinatal asphyxia enables

adequate and specialized health care essential to reduce neonatal

mortality. In recent decades, access to new clinical information has

increased due to easier data acquisition and storage. The multiple

systems allow combining several patient information not possible

before.

The addition of vital and hemodynamic indicators, such as fHR

analysis, in predicting perinatal asphyxia is critical. The integration

of clinical parameters with linear and non-linear CTG indices leads

to the developing of risk predictor models that are effective in early

detection.
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The model that best predicted perinatal asphyxia was the

univariate binary logistic regression with the variable CR2 (AUC of

94.93 [94.55; 95.31]), demonstrating the importance of this variable

in perinatal asphyxia detection.

Ideally, future studies should explore decision support systems

to detect asphyxia, including clinical studies and CTGs resources

(linear and non-linear).
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