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Biological age (BA) is a common model to evaluate the function of aging individuals 
as it may provide a more accurate measure of the extent of human aging than 
chronological age (CA). Biological age is influenced by the used biomarkers and 
standards in selected aging biomarkers and the statistical method to construct 
BA. Traditional used BA estimation approaches include multiple linear regression 
(MLR), principal component analysis (PCA), Klemera and Doubal’s method (KDM), 
and, in recent years, deep learning methods. This review summarizes the markers 
for each organ/system used to construct biological age and published literature 
using methods in BA research. Future research needs to explore the new aging 
markers and the standard in select markers and new methods in building BA 
models.
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Introduction

Aging is accompanied by a progressive decline in physiological functions and an 
accumulation of damage to the body, leading to an increased risk of morbidity and mortality 
(1). Based on birth date, chronological age (CA) is the traditional criterion for assessing aging. 
However, the degree of aging may vary significantly between individuals with the same CA (2). 
Therefore, CA is not the best indicator for evaluating the degree of aging in human individuals.

To seek a better index to assess the degree of aging of individuals, biological age (BA) (3, 4) 
are used as alternatives to CA to estimate aging status. BA is the most popularly used model. 
Aging markers are the basis for constructing biological age, in this article we summarize the 
markers used in constructing biological age. There are many ways to classify markers of aging, 
e.g., the aging markers can classify into two categories: histology-based data (DNA methylation, 
metabolomics, proteomics, etc.), and clinical biomarkers obtained from blood chemistry, 
hematology, anthropometry, and organ function test measurements (5, 6). The “aging clock” 
developed from omics data is another form of biological age, multiple omics data can 
be  combined to build the clock (7). Until now, omics data have rarely been used in the 
construction of BA because of the high cost of its application in large-scale populations. 
Previously built BA models commonly choose aging biomarkers in multiple organs/systems, 
such as blood biomarkers (8, 9), genetic indicators (10), and physical activity data (11, 12). 
Biomarkers from diverse organs are more reflective of the overall body state. To build the BA 

OPEN ACCESS

EDITED BY

Roy Rillera Marzo,  
Management and Science University,  
Malaysia

REVIEWED BY

Walid Kamal Abdelbasset,  
University of Sharjah,  
United Arab Emirates
Valentin Vetter,  
Charité Universitätsmedizin Berlin,  
Germany
Peter Fedichev,  
GERO LLC PTE,  
Singapore

*CORRESPONDENCE

Hongwei Jiang  
 jianghw@haust.edu.cn  

Xiangmei Chen  
 xmchen301@126.com

†These authors have contributed equally to this 
work

SPECIALTY SECTION

This article was submitted to  
Aging and Public Health,  
a section of the journal  
Frontiers in Public Health

RECEIVED 19 October 2022
ACCEPTED 16 March 2023
PUBLISHED 12 April 2023

CITATION

Li Z, Zhang W, Duan Y, Niu Y, Chen Y, Liu X, 
Dong Z, Zheng Y, Chen X, Feng Z, Wang Y, 
Zhao D, Sun X, Cai G, Jiang H and 
Chen X (2023) Progress in biological age 
research.
Front. Public Health 11:1074274.
doi: 10.3389/fpubh.2023.1074274

COPYRIGHT

© 2023 Li, Zhang, Duan, Niu, Chen, Liu, Dong, 
Zheng, Chen, Feng, Wang, Zhao, Sun, Cai, 
Jiang and Chen. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 12 April 2023
DOI 10.3389/fpubh.2023.1074274

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1074274&domain=pdf&date_stamp=2023-04-12
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1074274/full
mailto:jianghw@haust.edu.cn
mailto:xmchen301@126.com
https://doi.org/10.3389/fpubh.2023.1074274
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1074274


Li et al. 10.3389/fpubh.2023.1074274

Frontiers in Public Health 02 frontiersin.org

model, these biomarkers apply different model building methods like 
multiple linear regression (MLR) (13, 14), principal component 
analysis (PCA) (15, 16), Klemera and Doubal’s method (KDM) (3, 17), 
deep learning (8, 12), and other methods.

Previous studies have focused on the construction of BA models 
using different methods, but fewer studies have compared the BA 
models constructed by these methods, especially the advantages and 
disadvantages between deep learning and traditional methods. This 
review focuses on BA models constructed by four common 
approaches, namely composite or combined biomarkers that include 
a lot of aging markers. A more accurate biological age can only 
be  constructed on the basis of knowing the advantages and 
disadvantages of existing methods. Table 1 provides a review of the 
more important, influential, and newly published literature with the 
four approaches above (3, 4, 8–16, 18–51), including cross-sectional 
and longitudinal studies.

Selection of aging biomarkers

Candidate biomarkers

The candidate biomarkers are a crucial factor to determine the 
final selected aging biomarkers. The most frequently used candidate 
biomarkers are routine clinical tests. These include age, sex, blood 
pressure, respiratory rate, pulse, heart rate, routine blood tests, blood 
biochemistry, routine urine tests, lung function, endocrine hormones 
(27, 34), and inflammatory factors (3, 38). Several metrics can be used 
to evaluate the same organ, and the best one is generally picked. For 
example, urea nitrogen (BUN), blood creatinine, and cystatin C 
(CYSC) are relevant to renal function. CYSC is a more sensitive 
marker of the endogenous glomerular filtration rate than blood 
creatinine (52). It has proven to be more suitable for BA models than 
blood creatinine and BUN (16, 30). Changes in body morphology (27, 
29, 40) reflect the growth and nutritional statuses of the target 
population, such as waist circumference (WC), waist-to-hip ratio, 
waist-to-height ratio (WHtR), body mass index, and body fat. 
Abdominal obesity can occur in older adults with increased abdominal 
fat accumulation. Studies have shown that WHtR and WC are good 
indices to identify obesity in the elderly (53). Cognitive tests (4, 22, 45) 
are available to examine brain function, such as the trail making test, 
the digit symbol test, and the mini-mental state examination. Sensory 
tests (15, 29, 54), such as hearing, visual acuity, and vibration 
perception, are relatively less applied due to the cumbersome and 
specialist nature of the measurement process. Some parameters 
reflecting physical exercise capacities, such as grip strength (13) and 
vertical jump (31), are not only valuable for the BA model. They have 
also been used to structure physical (fitness) age (18, 19, 21) to assess 
aging. Imaging indices, such as cardiac and carotid ultrasound, are 
suitable biomarkers of aging for estimating BA (10, 16).

Aging is not a single process but is rather governed by a 
comprehensive range of factors, including disease, environment, 
lifestyle habits, and genetics. Health status, work experience, lifestyle, 
and dietary habits are often obtained through questionnaires (4, 22). 
Some genetic indicators are also taken as candidate aging biomarkers 
in the BA model, such as single nucleotide polymorphisms and 
terminal telomere restriction fragments (TRF). Nevertheless, probably 
because of its high detection cost in the population, genetic indicators 

are less applied in biological age. Zhang et  al. (16) investigated 
polymorphic loci on P16, Sirt1, IL6, and Klotho genes associated with 
aging. Limited by the size of the sample population and the genes 
tested, the genes could not be  used in BA models. TRF length is 
considered a genetic biomarker of aging at the cellular level (55), 
reflecting the dynamic aging process (56). TRF was found to be a 
promising aging biomarker in healthy aging populations (10).

Selection criteria for aging biomarkers

Researchers or organizations in the field of aging have proposed 
criteria for selecting aging biomarkers, such as Butler et al. (57) and 
the American Federation for Aging Research (58), but no consensus 
has been reached. There are also some commonalities between the 
criteria, including aging biomarkers that predict age-related body 
functions, low or noninvasive assays, and high reproducibility (55). 
Costa and McCrae concluded that generic biomarkers of aging 
explain most of the changes that occur with increasing age (59, 60). 
This is similar to the criterion, proposed by Butler et al. (57), that 
aging biomarkers change with CA. An interesting question is if 
aging biomarkers can be  selected according to their correlation 
with CA. First, it is associated with the method of estimating 
BA. When using MLR, PCA, and KDM methods, the initial step is 
to calculate the correlation between biomarkers and CA. This 
process is replaced by automatic machine learning in deep learning 
methods, which have a series of complex algorithms. Second, 
consider experiments that discovered biomarkers of aging and 
empirically found various physiological, biochemical, and imaging 
indicators that significantly correlate with age or analyzed age 
correlations from extensive data obtained from multiomics (2). In 
contrast, the selection of aging biomarkers in studies oriented to 
aging mechanisms is based on a hypothesis about the causes of 
aging (2). Finally, some investigators (61, 62) have given the more 
reasonable view that this correlation is not a reasonable criterion 
for selecting, validating, or weighting aging biomarkers, and some 
biomarkers moderately associated with CA may be utterly unrelated 
to aging. It follows that the correlation of aging biomarkers with CA 
is not equivalent to a causal relationship between aging biomarkers 
and senescence simply because there is no better alternative to 
correlation for screening markers. We summarized the standard 
selection criteria for aging biomarkers in the BA model (Table 2), 
including those significantly correlated with CA; nonredundant 
variables; monitoring the underlying mechanisms of the aging 
process rather than the effects of disease; repeatable measurements; 
reflecting different organ or physiological functions; and biomarkers 
used in previous studies.

Final selected aging biomarkers

It is critical to select the correct number of representative aging 
biomarkers to evaluate BA. The aging biomarkers of BA models in 
different systems are summarized in Table  3. In analyzing the 
differences in the final selection of aging biomarkers by different 
investigators, the preference is related to the study population. Some 
researchers (16, 18) choose all subjects to be healthy or almost healthy 
to exclude the effects of disease. There were also studies (31, 36) in 
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TABLE 1 The basic information of BA models in different populations.

Assessment 
methods

Researchers Year Country Sample size Age range Population Aging 
biomarkers 
(Candidate 

→ Final)

MLR Hollingsworth et al. 1965 Japan 169 Males

268 Females

10–70+ years General population 17 → 9

MLR Webster and Logie 1976 Australia 1,080 Females 21–83 years General population 37 → 7

MLR Takeda et al. 1982 Japan 200 Males 20–69 years Healthy population 10 → 5

MLR Voitenko and Tokar 1983 Soviet Union 88 Males

109 Females

19–73 years General population 122 → 11

MLR Dubina et al. 1984 Soviet Union 100 Males

63 Females

60–100 years Healthy population 21 → 3

MLR /PCA Nakamura et al. 1988 Japan 462 Males 30–80 years Healthy population 30 → 11

PCA Nakamura et al. 1989 Japan 69 Males Average 

42.6 ± 9.4

years

Healthy population 18 → 7

PCA Nakamura et al. 1990 Japan 65 Females 20–64 years Healthy population 18 → 9

PCA Nakamura et al. 1996 Japan 221 Males 20–85 years Healthy population 17 → 8

PCA Nakamura and

Miyao

2003 Japan 86 Males 31–77 years Healthy population

(including some early 

functional decline or 

disease)

25 → 9

PCA Ueno et al. 2003 Japan 981 Females

(cross-sectional study)

110 Females

(longitudinal study)

28–80 years Healthy population 31 → 5

PCA Nakamura and

Miyao

2007 Japan 86 Males 31–77 years Healthy population

(including some early 

functional decline or 

disease)

29 → 5

MLR Bae et al. 2008 Korea 1,302 Males

2,273 Females

40–88 years General population 80 → 25

PCA Nakamura and Miyao 2008 Japan 86 Males

93 Females

31–77 years Healthy population

(including some early 

functional decline or 

disease)

29 → 5

PCA Park et al. 2009 Korea 1,588 Males 30–77 years Healthy population

(including some early 

functional decline or 

disease)

11

PCA Bai et al. 2010 China 392 Males

460 Females

30–98 years Healthy population

(including some early 

functional decline or 

disease)

108 → 8

MLR/PCA/KDM Cho et al. 2010 Korea 200 Males 30–70 years General population 16 → 11/3 

principal 

components

PCA Jee et al. 2012 Korea 1,604 Males

760 Females

30–85 years Healthy population 14 → 8

MLR Bae et al. 2013 Korea 66,168 Males

55,021 Females

20–89 years General population 34

(Continued)
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TABLE 1 (Continued)

Assessment 
methods

Researchers Year Country Sample size Age range Population Aging 
biomarkers 
(Candidate 

→ Final)

MLR/PCA/KDM Levine 2013 United States 9,389 People 30–75 years NHANES (1988–1994) 21 → 10

PCA Zhang et al. 2014 China 505 People 35–91 years Healthy population 114 → 7

PCA Zhang et al. 2014 China 69 Males

70 Females

35–91 years Healthy population 105 → 6

KDM Belsky et al. 2015 New Zealand 954 People 38 years The Dunedin Study

(1972–1973)

10

KDM Mitnitski et al. 2016 Canada 1,013 People

(61.6% Females)

Average 

80.8 ± 7.2

years

Canadian Study of Health 

and Aging (1991–1992)

22 → 10

DNN Putin et al. 2016 Russia 62,419 People 0–100 years Anonymous population 41

MLR/PCA/KDM Jee and Park 2017 Korea 912 Females 30–80 years Healthy population 31 → 8

PCA Kang et al. 2017 Korea 165,395 Males

98,433 Females

Average 

44.2 ± 10.6 years

Healthy population

(including some early 

functional decline or 

disease)

5

PCA Zhang et al. 2017 China 581 Males

792 Females

19–93 years Healthy population 74 → 5

KDM Brown et al. 2018 United States 1,356 Males

1,420 Females

70–79 years The Health ABC Study

(2013.11)

8

DNN Mamoshina et al. 2018 Korea, Canada, 

Eastern Europe

142,379 People ≥20 years Anonymous population 19

KDM Murabito et al. 2018 United States 2,532–3,417 People Average 

45/62/67 years 

(Exam 2/7/8)

The Framingham Heart 

Study

Exam 2 (1979–1983)

Exam 7 (1998–2001)

Exam 8 (2005–2008)

clinical BA:6

inflammatory 

BA:9

CNN Pyrkov et al. 2018 United States 7,454 People

(51% Females)

6–84 years NHANES (2003–2006) 1-Week Activity 

Data

KDM Hastings et al. 2019 United States 6,731 People

(52% Males)

20–84 years NHANES (1999–2002) 12

MLR/PCA/KDM Jee 2019 Korea 940 Males 30–80 years Healthy population 32 → 6

DNN Mamoshina et al. 2019 Canada 149,000 People Average 55 years Anonymous population 18/20/23(three 

DNN models)

ConvLSTM Rahman and Adjeroh 2019 United States 7,104 People 18–84 years NHANES (2003–2006) 1-Week Activity 

Data

KDM Gaydosh et al. 2020 China Taiwan 951 People Average 

67.7 ± 8.3 years

Social Environment and 

Biomarkers of Aging Study 

(2000)

11

KDM Zuyun Liu et al. 2020 China 8,119 People

(53.5% Females)

20–79 years China Nutrition and 

Health Survey (2009)

27 → 12

KDM Parker et al. 2020 United States 1,374 People

(35% Males)

71–102 years Duke Established 

Populations for 

Epidemiologic Studies of 

the Elderly (1991–1992)

10

MLR/PCA/KDM Zhong et al. 2020 Singapore 2,844 People 55–94 years Singapore Longitudinal 

Aging Studies (2008.03–

2013.11)

68 → 8/10(Males/

Females)

(Continued)
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which people in the early stages of adisease were included. In 
addition, the sample size, gender composition, age, and ethnicity of 
the study population can also impact the results. Moreover, BA 
models for specific populations, such as the elderly (37, 44) and the 
young (33), offer the possibility to explore aging differences between 
individuals within the same age group and potential clinical 
applications. Second, the choice is associated with candidate aging 
biomarkers; candidate biomarkers and investigators’ research 
directions and perceptions have a significant impact. Then, the choice 
of biomarkers is related to the selection criteria. The thresholds for 
correlation selection varied across trials. In recent years, some 
investigators (42, 44) building BA models referred to previously 
published biomarkers of aging, which are generally screened in large 
populations, used by others and have good reliability. Examples 
include the 10 biomarkers of aging that Levine initially selected in the 
third National Health and Nutrition Examination Survey (NHANES) 
population and the nine biomarkers of aging that were subsequently 
acquired through machine learning (3, 63). Finally, the selection is 
affected by the BA assessment approach. The MLR and PCA select 

aging biomarkers that correlate linearly with CA, and the KDM can 
be used in the nonlinear case of aging biomarkers (17). On the other 
hand, deep learning also answers whether candidate aging biomarkers 
can be selected through powerful fitting capabilities. One example is 
that chest radiographs, which researchers once discarded because 
they could not be quantified, have recently been used to construct BA 
models (49). Briefly, the final selection of aging biomarkers by 
research staff affected the study population, the candidate aging 
biomarkers, the selection criteria, and the method of BA evaluation.

Biological age assessment method

Multiple linear regression

Hollingsworth et al. (13) selected nine age-related indicators of 
physiological function and innovatively used MLR to predict BA in 
the Japanese Hiroshima population. This approach has since been 
widely used. The independent variable was selected according to the 

TABLE 1 (Continued)

Assessment 
methods

Researchers Year Country Sample size Age range Population Aging 
biomarkers 
(Candidate 

→ Final)

PCA/KDM Chan et al. 2021 UK 141,254 People 40–70 years Healthy population 110 → 51 

principal 

components

DNN Gialluisi et al. 2021 Italy 23,858 People

(51.7% Females)

Average 

55.9 ± 12.0 years

The Moli-Sani Study

(2005.03–2010.04)

36

KDM Kuo et al. 2021 UK 294,293 People Average 

56.7 ± 8.0 years

UK Biobank (2006–2010) 7

CNN Raghu et al. 2021 United States 116,035 People 40–100 years General population Chest X-ray 

dataset

MLR/KDM Bahour et al. 2022 United States 2,459 People 20–80 years Diabetes, pre-diabetes, 

and NHANES (2017–

2018) population

8

Deep learning Nusinovici et al. 2022 Korea 40,480 People ≥65 years Korean Health Screening 

study

retinal photos

MLR, multiple linear regression; PCA, principal component analysis; KDM, Klemera and Doubal’s method; DNN, deep neural networks; CNN, convolutional neural networks; ConvLSTM, 
deep convolutional long-term memory; NHANES, National Health and Nutrition Examination Survey.

TABLE 2 The selection criteria for aging biomarkers among MLR, PCA, and KDM.

Selection criteria Assessment Methods

Significantly correlated with CA MLR (3, 13, 14, 20–22, 27, 32, 35, 40, 45, 54), PCA (3, 4, 10, 16, 18, 19, 23–26, 

28–30, 35, 40, 45, 54), KDM (3, 34, 35, 40, 45, 54)

Non-redundant variables MLR (35, 40, 45), PCA (4, 10, 16, 25, 26, 28–31, 35, 36, 40, 45), KDM (35, 40, 43, 45)

Used in previous studies MLR (3, 22, 27, 32, 54), PCA (3, 54), KDM (3, 33, 37–39, 42–44, 48, 54)

Monitors the underlying mechanisms of the aging process rather than the effects of disease MLR (20, 32, 35, 40), PCA (29, 31, 35, 40), KDM (35, 40, 43)

Repeatable measurements MLR (14, 35), PCA (35, 46), KDM (35, 38, 46)

Reflects different organs or physiological functions MLR (13, 15, 54), PCA (15, 23, 54), KDM (38, 54)

Variables with higher loadings within the first principal component MLR (3, 15), PCA (3, 10, 15), KDM (3)

Test results can be quantified MLR (35), PCA (16, 30, 31, 35, 46), KDM (35, 46)
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TABLE 3 The common aging biomarkers of four methods in different systems.

System MLR PCA KDM Deep learning

Cardiovascular system

SBP (3, 13, 15, 20, 22, 27, 32, 35, 40) SBP (3, 15, 18, 19, 23–26, 28, 29, 31, 35, 40) SBP (3, 33, 35, 37–40, 42, 43, 48)

DBP (27, 32, 45) DBP (45) DBP (34, 45)

Pulse pressure (32) Pulse pressure (4, 16, 30)

Mean arterial pressure (36)

Pulse (15) Pulse (15, 18)

Pulse wave velocity (22)

Heart rate (19)

Intima-media thickness (10, 30)

Minimum intima-media

thickness (4, 16)

End diastolic velocity (30)

mitral valve E/A peak (4, 30)

MVEL (30), MVES (16), MVEA (10)

Atherosclerosis index (18, 19)

NT-proBNP (47)

Cardiac troponin I (47)

Creatine phosphokinase (32)

Homocysteine (32)

Respiratory

system

FVC (15, 27, 32, 54) FVC (15, 18, 19, 23, 24) FVC (54)

FEV1 (3, 20, 21, 27, 32, 35, 40, 45) FEV1 (3, 24–26, 28, 29, 31, 35, 40, 45) FEV1 (3, 33, 35, 37, 38, 40, 45)

Vital capacity (13, 22)

Maximal midexpiratory

flow rate 75/25 (16)

VO2 max (29, 31)

Chest radiography (49)

Nervous system

MMSE (45) MMSE (45) MMSE (45)

Digital symbol test (22) Digital symbol test (10)

Numeric memory (54) Numeric memory (54)

Associated memory (54) Associated memory (54)

Topological memory (54) Topological memory (54)

Short-time memory (14)

Concentration (54) Concentration (54)

Intellectuality -mental defect (22)

Trail making test (4, 16)

Endocrine metabolic 

system

Glucose (27, 32) Glucose (23, 25, 36) Glucose (38) Glucose (8, 9, 41, 47)

HBA1C (3, 32) HBA1C (3, 29) HBA1C (3, 33, 37, 39, 42–44, 48) HBA1C (41)

C-peptide (47)

Insulin (47)

Triglyceride (20, 27, 32) Triglyceride (19, 36) Triglyceride (43) Triglyceride (9, 47)

TC (3, 13, 15, 20, 21, 27, 32, 35) TC (3, 15, 23, 35) TC (3, 33, 35, 37, 38, 42, 43, 48) TC (8, 9)

HDL (27), LDL (32) HDL (36), LDL (29) HDL (9, 47),LDL (9, 47)

Apolipoprotein A1 and B (47)

TSH (27) TSH (34)

Testosterone (27) Testosterone (47)

Vitamin D (40) Vitamin D (40) Vitamin D (40) Vitamin D (47)

Calcium (34) Calcium (9)

Potassium (9)

Sodium (9)

Inorganic phosphorus (34)

(Continued)
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TABLE 3 (Continued)

System MLR PCA KDM Deep learning

Urinary system

Urea (3, 15, 20, 32, 35) Urea (3, 15, 18, 19, 23, 24, 26, 28, 29, 35) Urea (3, 33–35, 39, 42–44) Urea (8, 9, 41)

Creatinine (3, 27, 32, 35, 40) Creatinine (35, 40) Creatinine (3, 33, 34, 37, 39, 42–44, 48) Creatinine (9, 47)

eGFR (45) eGFR (45) eGFR (45)

Uric acid (39, 44) Uric acid (47)

Cystatin C (4, 10, 16, 30) Cystatin C (47)

Creatinine clearance (32)

Urine specific gravity (32)

Urine pH (32)

Digestive system

ALT (32) ALT (23) ALT (47)

AST (15, 32, 35) AST (15, 18, 19, 35) AST (35) AST (47)

ALP (3, 20, 32) ALP (3) ALP (3, 33, 34, 37, 39, 44, 48) ALP (8)

Total protein (32) Total protein (34) Total protein (9)

Albumin (3, 15, 32) Albumin (3, 15, 24, 26, 28, 29) Albumin (3, 33, 34, 37, 39, 42–44, 48) Albumin (8, 9, 47)

A/G (15, 32) A/G (15, 24, 25)

Total bilirubin (32) Total bilirubin (9)

Direct bilirubin (32)

Amylase (32)

Lactate dehydrogenase (21, 32) Lactate dehydrogenase (19, 23)

Alpha 2 globulin (8)

Gamma glutamyl

transpeptidase (32)

Hematologic System

Red blood cell (40) Red blood cell (24, 28, 40) Red blood cell (40, 43) Red blood cell (8, 9, 47)

Red blood cell volume

distribution width (39)

Red blood cell volume

distribution width (8, 47)

Hematocrit (24, 26) Hematocrit (8, 9)

Mean corpuscular

volume (39, 42, 44)

Mean corpuscular

volume (9, 47)

Mean corpuscular

hemoglobin (25)

Mean corpuscular hemoglobin 

concentration (9, 47)

Hemoglobin (15, 45) Hemoglobin (15, 18, 19, 23, 24, 45) Hemoglobin (34, 45) Hemoglobin (9, 47)

White blood cell (39, 42, 44) White blood cell (47)

Granulocytes (47)

Neutrophils (47)

Basophils (47), Eosinophils 

(47)

Lymphocytes (39, 42, 44) Lymphocytes (8, 47)

Monocytes (45) Monocytes (45) Monocytes (45) Monocytes (47)

Platelet (43) Platelet (9, 47)

Mean platelet volume (47)

Platelet distribution width 

(47)

Erythrocyte Erythrocyte

sedimentation rat (20, 27) sedimentation rat (29)

D-dimer (10)

Fibrinogen (30)

D-dimer (47)

Ferritin (35) Ferritin (35) Ferritin (35, 43) Ferritin (41)

Fransferrin (43)

(Continued)
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correlation between biomarkers and CA, and the individual’s BA was 
used as the dependent variable to establish the MLR equation:

 

BA b b xi j
m

j ji= +
=∑0
1

 

(1)

In Eq. (1), m is the number of aging biomarkers, and x ji  (i = 1...n, 
j = 1...m) represents the jth aging biomarker of the ith individual (54). 
Moreover, b0 and bj are the intercept and regression coefficients, 
respectively, calculated by the least-squares method. The BA model 
constructed using the MLR requires an F test for the significance of 
the regression equation, a t test for the significance of variables, and 
a goodness-of-fit test for how well the model fits the variables.

MLR has collinearity problems (54, 62), which can 
be  diagnosed by the variance expansion factor method and 
characteristic root determination method, eliminating some 

unimportant independent variables and increasing the sample size 
to eliminate collinearity. MLR fails to avoid the biomarker 
paradox, where biomarkers perfectly associated with CA are 
insensitive in individuals (54). In addition, the BA values 
calculated by MLR are distorted at both ends of the regression 
equation (54, 62). Dubine et al. (14) proposed using the Z score to 
solve this problem. The equation for the Z score corrected BA 
equation is as follows:

 Corrected BA BA Zi= +  (2)

Here, Z = (CAi-MEANCA) × (1-b), where CAi is the chronological 
age of the individual, MEANCA is the average chronological age of the 
population in which the individual is located, and b is the slope in the 
simple linear regression, representing the relationship between 
BA and CA.

TABLE 3 (Continued)

System MLR PCA KDM Deep learning

Sensory system

Visual accommodation (22, 54) Visual accommodation (54)

Visual reaction time (54) Visual reaction time (54)

Visual acuity (13, 15) Visual acuity (15)

Hearing (13, 21, 22, 54) Hearing (29) Hearing (54)

Vibrotactile (13, 14, 54) Vibrotactile (54)

Retinal photos

Inflammatory index

CRP (3) CRP (3) CRP (3, 33, 37–39, 42–44, 48) CRP (47)

Cytomegalovirus optical density (3) Cytomegalovirus

optical density (3)

Cytomegalovirus

optical density (3, 33, 42)

Interleukin-6 (38)

P-selectin (38)

Motion index

Grip strength (13, 14, 45, 54) Grip strength (31, 45) Grip strength (45, 54)

Vertical jump (31)

Timed up and go test (45) Timed up and go test (45) Timed up and go test (45)

Chair rise time (45) Chair rise time (45) Chair rise time (45)

1-week physical activity (11, 

12)

Body morphology 

index

WC (32, 35) WC (29, 31, 35, 36) WC (35)

Waist-to-hip ratio (27, 32)

Waist-to-height ratio (40) Waist-to-height ratio (40) Waist-to-height ratio (40)

Body mass index (27, 32)

Weight (22)

Height (45) Height (45) Height (45)

Body fat (27, 32) Body fat (29)

Lean body mass (27, 32)

Soft lean mass (31)

Genetic index
Terminal telomere restriction

fragment (10)

Genetic index
Terminal telomere restriction

fragment (10)

SBP, systolic blood pressure; DBP, diastolic blood pressure; NT-proBNP, N-terminal pro brain natriuretic peptide; MVEA, mitral annulus peak E anterior wall; MVEL, mitral valve annulus 
lateral wall of peak velocity of early filling; MVES, mitral valve annulus ventricular septum of the peak velocity of early filling; FEV1, forced expiratory volume in 1.0 s; FVC, forced vital 
capacity; MMSE, mini-mental state examination; eGFR, estimated glomerular filtration rat; HBA1C, glycosylated hemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein; 
TSH, thyroid stimulating hormone; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; ALP, alkaline phosphatase; A/G, ratio of albumin to globulin; CRP, c-reactive protein; WC, 
waist circumference.
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Principal component analysis

PCA was first used by Nakamura et al. (15) to estimate BA in 
Japanese populations, subsequently becoming popular in Korea, 
China, and other countries (3, 16, 29, 30). Our team was the first to 
utilize PCA to evaluate BA in healthy populations in China (30). 
For nearly 20 years, we have structured BA models based on data 
from single-centered and multicentered populations, finding that 
aging biomarkers such as CYSC and carotid intima-media thickness 
were closely associated with aging in the Chinese population (4, 10, 
16, 30).

The steps of building a BA model by PCA are summarized as 
follows: (1) select aging biomarkers by correlation analysis, 
stability analysis, and redundancy analysis (64); (2) convert 
potentially relevant aging biomarkers into linearly uncorrelated 
principal components by orthogonal transformation; and (3) 
select the first principal component or multiple principal 
components to create the formula for predicting BA. When the 
PCA selects only the first principal component, the critical aging 
biomarkers can be  further screened by principal component 
loading (3). The colinearity problem can be avoided if multiple 
principal components are selected as new variables (54). Both 
approaches have their advantages. The biological age score (BAS) 
formula constructed by selecting the first principal component 
as an example is as follows:

 BAS a X a X a Xn n= + +…+′ ′ ′
1 1 2 2  (3)

Here, X’ is the standardized biomarker of aging, an is the score 
coefficient of aging biomarkers, where X’ is computed from the 

equation 
X MEAN X

SD X
− ( )

( )
 and MEAN(X) and SD(X) are the mean 

and standard deviation of the aging biomarkers, respectively. Because 
the BAS is not measured in years, Nakamura et  al. (15) used the 
T-score to convert BAS to BA:

 BA BAS SD MEANCA CA= × +  (4)

In Equation (4), SDCA and MEANCA are the variance and mean 
of the chronological age of subjects, respectively. Similar to the 
MLR method, to avoid regression of BA values toward the mean age 
of the sample, the Z score was used to correct BA (10, 16), as in 
Formula (2).

Klemera and Doubal’s method

KDM was first proposed by Klemera and Doubal (17) in 2006 
and is now broadly available for aging and aging-related research. 
The KDM formula development process incorporates certain core 
hypotheses (17): (1) The hypothesis is that “the difference in BA is 
the difference among individuals aging in the same CA population.” 
A random variable R SBA BA0

2
;( )  with mean 0 and variance SBA

2  
was used to replace the differences in individual BA, establishing 
the formula:

 
BA CA R SBA BA= + ( )0

2
;

 
(5)

(2) Another hypothesis is that “the actual value of aging biomarker 
X is not only regulated by BA but also influenced by transient effects 
that are not BA dependent” (17). A random variable R SX X0

2
;( )  with 

mean 0 and variance SX2  is used to represent the transient effect. An 
inverse regression equation similar to the Hochschild (65) view 
is obtained:

 
X F BA R SX X X= ( ) + ( )0

2
;

 
(6)

Here, F BAX ( )  is considered a simple linear equation with 
independent variable BA, intercept q, and slope k. Subsequently, 
Klemera and Doubal developed two formulations, shown in Eqs (7) 
and (8), for calculating BA through sophisticated mathematical 
derivations, the distinction being the inclusion of CA as an 
independent variable in Eq. (8) (17).
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(8)

where x j , q j , k j , and s j2  (j = 1...m) represent the jth aging 
biomarker and its intercept, slope, and transient effect, respectively. 
The detailed derivation process is available in their paper. Cho et al. 
(54) improved the algorithm of KDM to simplify the computing flow. 
In the KDM2 model they developed, PCA was introduced, and 
multiple sets of principal components were selected instead of the 
original aging biomarkers (54). Levine (3) used the modified method 
that combined PCA to construct the KDM2 model, with the difference 
being that they selected the key aging biomarkers within the first 
principal component. In addition, the Δage (Δage = BA-CA) was 
determined by the KDM method and is more practical than 
calculating the BA of an individual (34). Recently Kwon and Belsky 
developed an R package containing the KDM method: BioAge, for 
facilitating biological age measurement (66).

Deep learning

Deep learning is a subfield of machine learning, where good features 
can be learned automatically using a general-purpose learning procedure 
(67). Deep neural networks (DNNs) (8, 9, 41, 47), convolutional neural 
networks (CNNs) (11, 49), and recurrent neural networks (RNNs) (12) 
have been employed to build BA models in recent years.
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A DNN consists of an input layer that receives external data, 
several hidden layers responsible for feature extraction, and an output 
layer that outputs the final result. Round-by-round iterations are 
performed with activation functions (68), gradient descent (69), and 
backpropagation algorithms to transform the input data into results 
for solving regression or classification problems. In 2016, Putin et al. 
constructed a model for predicting BA using a DNN, which is placed 
at www.aging.ai for public usage; the BA can be estimated by entering 
the complete 41 blood markers or just the most crucial 10 markers (8). 
The model performed poorly in non-Eastern European populations 
due to population differences (70). Mamoshina et al. trained a DNN 
with a dataset containing ethnically diverse populations to enhance 
accuracy in computing BA in Canadian, Korean, and Eastern 
European populations (9). More recently, Gialluisi et al. created a DNN 
based on 36 circulating biomarkers to estimate BA in Italians (47). It 
is worth considering that suitable approaches should be explored in 
deep learning to clarify the weight and importance ranking of 
individual aging biomarkers to assess their importance. Permutation 
feature importance (PFI) is an algorithm derived from the random 
forest that explains the importance of aging biomarkers in DNNs (8, 
9). To explore the effect of smoking on BA, Mamoshina et al. used PFI 
to rank biomarkers and selected the top-ranked biomarkers to 
construct three DNNs and found that smoking accelerates aging (41).

Used chiefly for image analysis, CNNs are mainly composed of 
convolutional and pooling layers with features such as local 
connectivity and weight sharing, simplifying the number of 
parameters and the complexity of calculations (67). The convolutional 
layer converts the input information into an output feature map with 
multiple feature mappings employing a specific number of filters. The 
pooling layer is intended to reduce the information output from the 
convolution layer. It is executed immediately after the convolution, 
completed by the maximum, minimum, or average value of 
operations. Pyrkov et al. selected physical activity data recorded by 
wearable devices of NHANES participants for 1 week as a biomarker 
of aging and generated a BA model with a CNN (11). Raghu et al. built 
a BA model using chest radiograph data combined with a CNN (49).

RNNs are designed with a loop/repeat structure to preserve 
valuable historical information in sequences through “state vectors” 
to better process sequence data. RNNs suffer from long-term 
dependency problems (71) such as vanishing or exploding gradient 
when learning on long sequences. Hochreiter and Schmidhuber (72) 
proposed the long short-term memory network (LSTM) to solve this 
problem, adding the cell state unit and the gate unit based on the 
ordinary RNN. Thus, LSTM can handle short-term information 
sensitively and remember valuable information for a long time, which 
improves the network’s learning ability. Rahman and Adjeroh (12) also 
used physical activity data from 1 week. Considering the temporal 
information contained in the data, they adopted a deep convolutional 
long-term memory (ConvLSTM) method to develop a BA model that 
outperformed other deep learning approaches (12).

Other methods

In addition to the four popular methods mentioned above, some 
researchers have tried to find the best model to assess BA, starting from 
the aspect of the impact of aging markers on life expectancy. Hochschild 
(62, 65, 73) suggested a nonstandard, complex, but reasonable approach 

to estimating BA. Taking a questionnaire format, he collected mortality 
risk factors, such as smoking, diet, and exercise, and aggregated these 
indicators into a “composite validation variable (CVV).” The standardized 
biological age was then calculated by the correlation coefficient between 
CVV and aging markers and finally transformed into BA in years. Some 
studies used correlations with mortality to identify aging variables. 
Twelve clinical indicators associated with mortality were selected by 
Drewelies et al. and validated in two independent birth cohorts (74). 
Levin and coworkers (63, 75) determined the “phenotypic age” through 
a multifactorial analysis of mortality risk, an algorithm known to some 
researchers (39, 44) as “LM BA.” First, nine aging biomarkers associated 
with mortality were selected with machine learning. Then, two Gompertz 
proportional hazards models were developed to predict the mortality 
risk, called the “mortality score,” and converted to biological age values. 
In addition, Pyrkov et al. constructed BA models to predict both CA and 
life expectancy, further discussing the relative performance of the models 
in stratifying the effects of diseases and lifestyles (11). However, these 
approaches are not widely used for two main reasons: one, a mortality 
event is required to calculate the aging rate, which is a lengthy process for 
the follow-up of a normally aging population; second, even if death 
occurs, many cannot distinguish whether it is due to death from disease 
or natural death from aging.

Comparison of the four assessment methods
There is no perfect way to evaluate BA. Each researcher should 

select the proper approach according to the study’s purpose, sample 
population, laboratory conditions, funding, statistical knowledge, and 
programming ability. A summary of the strengths, limitations, and 
possible practical improvements of the four BA assessment methods 
is presented in Table 4. MLR is the simplest way to measure BA but 
suffers from the biomarker paradox, edge distortion, and colinearity 
(54). “collinearity” refers to linear regression in which the accuracy of 
the model may be  affected by the presence of highly correlated 
relationships among the independent variables, and “edge distortion” 
refers to distortion at both ends of the linear regression, where the 
estimated BA values are too large or too small. PCA can further screen 
aging biomarkers or solve the covariance problem. However, PCA 
selects aging markers based on correlation with CA and cannot settle 
the paradox of biomarkers. KDM uses a reverse regression equation 
that solves the biological paradox (65) and avoids distortion at both 
ends of the regression equation (76). The KDM2 model combined 
with PCA allows for a better valuation of mortality (3). Although BAEC 
is superior to BAE in predicting BA, assigning CA a similar role to 
other biomarkers would be controversial, as proposed by Klemera and 
Doubal (17). Mitnitski et  al. (34) argued that CA is made an 
independent variable to avoid extreme values (to prevent BA from 
being overcalculated, e.g., 120 years) at the expense of BA clarity. Deep 
learning allows machines to extract features and construct BA models 
autonomously by learning about biomarkers. Their strengths include 
the ability to handle high-dimensional datasets with complex 
interactions and correlations to resolve problems that people do not 
fully understand. However, it is challenging to structure large datasets 
(8), and there is a “black box” in deep learning, where the specific 
learning process is unknown, and the results are uncontrollable.

Performance evaluation of biological age
Currently constructed BA models are mainly used to Predict the 

occurrence of disease or predict life expectancy. Their performance 
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evaluation metrics, such as R (2), reflect the superiority of the training 
model by the degree of fit between the estimated BA and the actual 
CA, however, the nonlinear fitting strategy in machine learning can 
cause R2 to suffer from overfitting problems. In contrast, Δage is 
superior, which response to the acceleration of biological age. The 
validity of the model was recently confirmed by Li and Zhang et al. 
who trained the BA model using a healthy Beijing population and later 
validated the acceleration of aging by disease in a diseased population 
(77). However, the value of ∆age may only serve a qualitative purpose, 
as relative acceleration or retardation of aging compared to a healthy 
population with the same CA. Some researchers have checked the 
efficacy of BA models through mortality (78). The introduction of a 
BA model with mortality training is similar to the inclusion of 
endpoint events in clinical trials. On the one hand, the incorporated 
life-length data may improve the accuracy of BA models more than 
the iteration of statistical methods alone; on the other hand, the 
exploration of endpoint mortality events may be  more likely to 
generate public interest in BA. However, some emergencies or sudden 
events may affect the accuracy of biological age judgment.

Summary and prospects

BA is an integral part of the aging field. Only by accurately 
evaluating the individualized aging status, prompting an earlier 
window of aging prevention, and timely intervention for disease-prone 
and diseased individuals can we  improve the quality of life of the 
elderly and prolong their lifespan (79). We investigated the selection 
and assessment methods of aging biomarkers in BA. Although 
researchers in aging have identified some aging biomarkers, due to the 
continuous application of new technologies, new ideas, and new 
groups of people, there are still many potentially better biomarkers 
waiting to be discovered. For example, with the increasing availability 
of longitudinal biological data, the organic state recovery time 

(resilience) has been found to be an important marker of aging, which 
cannot be obtained from cross-sectional data (80, 81). Moreover, the 
development of sequencing omics and image acquisition has provided 
a direction for exploring new aging biomarkers.

This review focuses on statistical methods for quantifying BA, 
discusses the advantages and disadvantages of different statistical 
methods, summarizes the different kinds of aging markers applied in 
biological age, also mentioned the selection criteria of aging markers. It 
compares traditional methods and new deep learning methods in BA 
research and helps clarify how to construct a more accurate new 
biological age. Of course, this paper has the following shortcomings: on 
the one hand, candidate markers and selected markers are different for 
each article, it cannot reflect the importance of each marker by the 
frequency of aging markers use; on the other hand, only a brief 
discussion on the performance aspects of statistical methods is made in 
this paper, and longitudinal or mortality verification is less; Third, there 
are few studies using the same population to compare the pros and cons 
of different methods, and more are theoretically compared. We suggest 
that, regarding the selection of aging markers, it is necessary to focus on 
both the discovery of new aging markers and the reassessment of the 
role of old aging markers. It is very important to develop standardized 
or equivalent screening criteria for aging markers. The new method is 
more accurate but requires a larger amount of data, and it is easy to 
overfit if the amount of data is small, so it is not the latest that is the best, 
but the right one is the best. Common BA evaluation methods have 
their own merits and demerits and are continuously optimized in 
practice. The combined use of multiple methods may yield superior 
results and facilitate the creation of new methods. Biological age is 
mostly constructed in healthy or community populations to avoid the 
influence of disease factors. We  should pay more attention to the 
accuracy of applying biological age in different populations such as 
disease populations, progeria populations, and longevity populations. 
In the future, we should pay attention to the clinical translation of BA 
models and do further exploration for clinical utility, such as developing 

TABLE 4 The advantages and disadvantages of the four methods and possible effective improvements.

Methods Advantages Disadvantages Improvements

MLR Simple and easy to operate (1) Biomarkers paradox (2) co-linearity (3) 

Regression equation edge distortion

(1) Z-score correction edge distortion (14)

(2) Co-linearity diagnosis and removal of 

redundant variables

PCA (1) Avoid co-linearity (54)

(2) Further screen aging biomarkers (3)

(1) Biomarkers paradox

(2) Regression equation edge

distortion

Z-score correction edge distortion (14)

KDM (1) Resolving the biomarker

paradox

(2) Avoiding distortion at the edges of 

the regression equation (76)

(3) Suitable for non-linear biomarkers 

(17)

(1) Complicated calculation (54)

(2) CA as a marker of aging is controversial 

(34)

(1) Cho et al. improved the calculation

process (54)

(2) Calculating individual △age is

more practical than BA (34)

Deep learning (1) Good at handling high-dimensional 

dataset (67)

(2) The machine extracts features 

autonomously by learning (67)

(1) Difficulty in building large data (8)

(2) The existence of a “black box” and 

uncontrollable results

(3) Excellent programming skills and 

computer hardware and software support 

required

(1) Suitable methods can be explored to 

clarify the weighting of each aging 

biomarker

(2) Multidisciplinary Cooperation

MLR, multiple linear regression; PCA, principal component analysis; KDM, Klemera and Doubal’s method.
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assessment models suitable for different disease individuals and further 
revealing the complex interaction between disease and aging.
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