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Machine Learning is a powerful tool to discover hidden information and relationships

in various data-driven research fields. Obesity is an extremely complex topic, involving

biological, physiological, psychological, and environmental factors. One successful

approach to the topic is machine learning frameworks, which can reveal complex and

essential risk factors of obesity. Over the last two decades, the obese population (BMI

of above 23) in Korea has grown. The purpose of this study is to identify risk factors

that predict obesity using machine learning classifiers and identify the algorithm with

the best accuracy among classifiers used for obesity prediction. This work will allow

people to assess obesity risk from blood tests and blood pressure data based on the

KNHANES, which used data constructed by the annual survey. Our data include a total

of 21,100 participants (male 10,000 and female 11,100). We assess obesity prediction

by utilizing six machine learning algorithms. We explore age- and gender-specific risk

factors of obesity for adults (19–79 years old). Our results highlight the four most

significant features in all age-gender groups for predicting obesity: triglycerides, ALT

(SGPT), glycated hemoglobin, and uric acid. Our findings show that the risk factors for

obesity are sensitive to age and gender under di�erent machine learning algorithms.

Performance is highest for the 19–39 age group of both genders, with over 70%

accuracy and AUC, while the 60–79 age group shows around 65% accuracy and AUC.

For the 40–59 age groups, the proposed algorithm achieved over 70% in AUC, but for

the female participants, it achieved lower than 70% accuracy. For all classifiers and age

groups, there is no big di�erence in the accuracy ratio when the number of features is

more than six; however, the accuracy ratio decreased in the female 19–39 age group.
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1. Introduction

The prevalence of obesity has become one of the most prominent issues in global public

health. The causes of obesity fall into several categories, including physiology, individual

psychology, food production, food consumption, physiology, individual physical activity, genetic

and cultural influence, and physical activity environment (1, 2).With the number of obese people

doubling in two decades (from 1.3 million people obese globally in 1980 to 2.6 million in 2008),

unhealthy habits, unhealthy diets, high intake of saturated fat, discretionary foods, and physical

inactivity are the major factors causing “obesity and overweight” (3). The medical problems

caused by obesity increase the risk of other diseases and health problems, such as heart disease,

diabetes, high blood pressure, and certain cancers (4, 5). Moreover, obesity can diminish the

overall quality of a person’s life (6).

Obesity is responsible for a large fraction of costs to both the healthcare system and

society at large. Diabetes, cancer, cerebrovascular disease, hypertensive disease, and arthrosis

are diseases related to obesity, which resulted in socioeconomic costs of about KRW 1.36 trillion

in long-term socioeconomic costs associated with adolescent obesity (7). As of 2016, social costs,
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FIGURE 1

Annual proportions of BMI below and above 23 are shown from 2007 to 2019 (Orange for BMI above 23 and green for BMI below 23).

such as medical and nursing expenses due to obesity, were estimated

at 11.5 trillion (KRW) per year by Korea (8). The review for

Europe which encompassed both direct and indirect costs estimated

obesity-related costs to range from 0.09 to 0.61% of total annual

gross domestic income in Western European countries (9, 10).

Moreover, social and economic factors are linked to obesity. If the

costs of illness attributable to obesity could be minimized, monetary

resources within national healthcare systems and economies could be

reallocated toward other uses.

Until the 1970s, obesity was defined against an ‘ideal body weight’,

derived from actuarial tables compiled by the life insurance industry.

The Body Mass Index (BMI) in adults is defined as the ratio of body

mass in kilograms to the square of the individual’s height in meters.

In the 1980s, the ideal body weight approach was replaced by BMI

(kg/m2) (11), and the commonly used cutoffs for normal weight

(BMI:18.5 ∼ 22.9), overweight (BMI: 23 ∼ 24.9), and obesity (25 ≤

BMI), for both men and women, were adopted to define obesity in

adults according to the Asia-Pacific guidelines (12, 13). Even though

there can be confusion andmisinformation associated with BMI, BMI

is the most commonly used measure of adiposity in epidemiological

research (14). We used BMI as our obesity criterion. The Korea

National Health and Nutrition Examination Survey (KNHANES) has

been conducted since 1998, and the BMI factor is included from

2007. The KNHANES is one of the principal sources for investigating

obesity in the population, with many variables and vast amounts of

data related to obesity-influenced diseases. According to the BMI

data of the KNHANES, in 2007, 23% of adults were overweight and

32% were obese, while in 2019, 23% were overweight and 34% were

obese. Over the 12 years, obesity increased by 2%, while there was

no increase in the proportion of overweight adults1 (see Figure 1).

Overall, there are more people who are overweight or obese than

those with a BMI below 23.

Recently, the use of machine learning models for disease

classification has been developing rapidly, both because of the

significant amount of data that is being generated by healthcare

devices and systems and the magnitude of computational resources

available for data calculation and processing (15–17). Obesity

researchers and healthcare professionals have access to a wealth of

1 https://knhanes.kdca.go.kr/knhanes

data. Importantly, this immense volume of data is utilized to train

models and facilitated the use of expert systems, machine learning

techniques, and classification techniques for finding trends and

patterns in the evaluation and classification of several diseases

(18). Machine learning techniques applied to large survey datasets

may provide a meaningful data-driven approach to categorizing

patients for population health management, which is a critical part

of combating obesity. Machine learning algorithms can be applied

to assess the factors leading up to the prevalence of obesity. Our

approach to estimating obesity was to use machine learning on the

South Korean KNHANES datasets to estimate obesity.

As obesity increases, so does the risk for a variety of diseases.

Identifying suspected clinical findings among the top-ranked factors

is important to preventing obesity. In this article, we aimed to

identify the metabolic factors affecting BMI or obesity in the

KNHANES datasets, and to predict obesity using various machine

learning algorithms. First, we carried out a correlation among the

risk factors for obesity. Second, we split the KNHANES dataset

into six groups; three age groups each split into two genders.

Third, we employed six machine learning algorithms: support

vector machine (SVM), logistic regression (LR), random forest (RF),

multi-layer perceptron (MLP), light gradient boosting (LGBM),

and extreme gradient boosting (XGB). In addition, we measured

the performance of machine learning classification algorithms in

terms of performance metrics such as specificity, accuracy, AUC,

precision, recall, and F1-score. Furthermore, we identified the

eight most important age- and gender-specific risk factors through

feature importance methods (random forest and sharp value).

We also determined the impact of this top eight ranked risk

factors on the performance, accuracy, and AUC of the machine

learning algorithms.

2. Literature review

Since the causes of obesity are very diverse, numerous studies

have tried to predict obesity. Different machine learning methods

have been used to predict obesity using a wide range of input factors.

We examined the results of previous studies that predicted

obesity by applying various classifiers of machine learning to various

factors involved in adult obesity and compare and differentiate them

with our study results (see Table 1). Reviewingmany research articles,
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TABLE 1 Machine learning models and the risk factors related to adult obesity.

References Type of model Risk factors Best classifier evaluation

This study MLP, RF, LR,

LGBM, XGB, SVM

Eight items of (ALT, glu,

TG, sbp, dbp, Ast, HbA1c,

chol, Bplt, WBC, RBC,

crea, PLS, and UA)

in KNHANES

19–39 age(male, female)

MLP: AUC = (77, 78)%

RF:accuracy = (72, 76)%

Cheng et al. (19) LR, Naïve Bayes, J48,

Radial Basis Function,

J48, Random subspace,

Local KNN, MLP,

Decision table Random tree

physical activity

in NHANES

random subspace:

accuracy = 70.01%,

AUC = 63.3%

Thamrin et al. (20) LR, Naïve Bayes,

CART

location, marital status,

age group, education, work category,

sugary foods, sweet drinks,

instant foods, energy drinks,

salty foods, fatty/oily foods,

grilled foods, preserved foods,

smoking, seasoning powders,

soft/carbonated drinks,

alcoholic drinks,

mental-emotional disorders,

diagnosed hypertension,

physical activity, fruit and

vegetables consumptions, RISKESDAS

LR:

accuracy = 72.22%,

AUC = 79.79%

Ferdowsy et al. (21) KNN, RF, LR, GB,

MLP, SVM, DT,

ADAB, Naïve Bayes, GBM

Daily activities,

Food routines,

Height, Weight

LR:

accuracy = 97.09%

Jindal et al. (5) Ensemble utilized RF Age, Height,

Weight, BMI

ensemble: RF

accuracy = 89.68%

Montañez et al. (22) GBM, GLMNET, RF,

KNN, SVMRadial,

CART, NNET

Age, Gender, Genetic variants

or single Nucleotide

Polymorphisms (13-SNPs)

SVM:

AUC = 90.5%.

there is no research that applied machine learning algorithms to

predict obesity from mainly metabolic factors (Table 1).

Table 1 displays the comparison between our work and other

works. Cheng et al. (19) classified factors using data from the

NHANES. They predicted whether an individual was overweight or

obese based on physical activity levels. They used 11 algorithms for

the estimates. They obtained the best performance from the random

subspace classifier, which had the highest overall accuracy of 70.01

and 63.3% area under the ROC curve (AUC). Thamrin et al. (20) used

three models for 22 features in predicting obesity status in adults. The

logistic regression classifier had the highest accuracy of 72.22% and

produced the highest result with 79.79% area under the ROC curve

(AUC), with a 10-fold CV for performance evaluation. Ferdowsy et al.

(21) applied nine machine learning algorithms to four features. The

logistic regression algorithm achieved the highest accuracy of 97.09%.

Jindal et al. (5) performed ensemble machine learning approaches

for obesity prediction based on the four key determinants. The

ensemble model utilized a random forest, a generalized linear model,

and partial least squares, with a prediction accuracy of 89.68%.

To predict the future risk of developing complex diseases such as

obesity, from ones BMI status and SNP profile, Abdulaimma et al.

(22) introduced a genetic profile predictive study using machine

learning algorithms and used the publicly available participants’

profiles, genetic variants, and Single Nucleotide Polymorphisms

(SNPs). Seven machine learning algorithms for the prediction of

obesity were used on the 13 SNPs, and the support vector machine

generated the highest area under the curve value of 90.5%.

According to the works of the review literature on obesity, most

studies on obesity prediction used features focused on certain aspects

of the participants’ lifestyles or behavior. Unlike the variables selected

in previous studies, we tried to predict obesity by selecting variables

that are involved in the metabolic cause of obesity. Our research

utilized participants’ metabolic factors in the KNHANES and we

compare them with our study results. Figure 2 presents a schematic

diagram for identifying and predicting obesity risk factors using

machine learning algorithms.

3. Descriptions of data and features

3.1. Data sources

Our datasets are prepared and published through the Korea

National Health and Nutrition Examination Survey (Korea Division

of Health and Nutrition Survey and Analysis, KDCA), to provide

full access. The Korea National Health and Nutrition Examination

Survey (KNHANES) is a national program that is designed to assess

the health and nutritional status of adults and children in Korea. Since

1998, the KNHANES has collected data obtained by direct physical

examination, clinical and laboratory tests, personal interviews, and

related measurement procedures. The KNHANES was conducted on

a triennial basis from 1998 to 2005. In 2007, the survey became a

continuous, annual survey program conducted by the KDCA, and

many new health measurements were added to the basic design to
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FIGURE 2

Schematic diagram for identifying and predicting obesity risk factors.

meet emerging data needs (23). In 2007, BMIwas added, and uric acid

has been included as a survey variable since 2016 (see text footnote 1,

respectively).

Two stages of stratified clustering, consisting of primary sampling

units and households, were applied to the data collected from the

population and housing census in Korea. In general, blood and

urine samples are collected from participants aged 10 years and

above (24). The extent of examination differs, depending on the

age of the participant, but targeted individuals start at the age of

1 year (see text footnote 1, respectively). These data are used to

estimate the prevalence of chronic diseases in the total population or

monitor trends in the prevalence and risk behaviors. Approximately

10, 000 people are sampled in total, in all 192 variables for the

primary sample units per year (23). The data are composed of

demographic variables, health questionnaires, medical examination,

and a nutritional survey (see text footnote 1, respectively) (23).

The data in the KNHANES consist of categorical data, numeric

data, and text data, and we refined the numeric data into obesity

risk factors. The dataset can be accessed at the Korea National

Health and Nutrition Examination Survey (see text footnote 1,

respectively).

The KNHANES is a national program that is designed to assess

the health and nutritional status of adults and children in Korea.

Obesity is defined as BMI above 25 according to the Asia-Pacific

adult guidelines (12). In our data, we combined obese (BMI of

>25) and overweight (BMI of >23 and BMI of <25) into our

definition of obese. After removing missing values, the total number

of participants was about 21,100 (male 10,000 and female 11,100).

As can be seen from Figure 1, the proportion of overweight and

obese people between 2016 and 2018 was 58%, and in 2019, the

proportion was 57%. After we split the dataset into two parts by

gender, we divided both the male and female participants into three

age groups (19–39, 40–59, and 60–79), respectively. Therefore, our

dataset consists of six groups composed according to gender and

age group.

3.2. Oversampling

In machine learning applications, data preprocessing plays a

significant role in achieving better performance and accurate results.

Our data comprises of the KNHANES participants from 19 to 79

years of age between 2016 and 2019.We cleaned the data by excluding

all records with incomplete or missing values for the variable/feature

BMI, a core feature used to categorize obesity status. After we cleaned

missing values, there were about 21,100 participants for the top

selected features. After we split the dataset into two parts by gender,

we divided both male and female participants into three age groups

(19–39, 40–59, and 60–79), respectively.

As overweight and obese categories are both at risk, instances

belonging to these two classes have been combined and labeled as

‘BMI’. Although this slightly reduces the imbalance, most of the

algorithms are only able to classify the majority class with a high

degree of accuracy. One of the factors that deteriorates the accuracy

of the test dataset in AI classification modeling is class imbalance.

If the model is trained using data where the proportion of each

class is significantly different, the predictive model tends to be biased

toward a specific class or has difficulties evaluating properly, meaning

imbalance acts as a factor of performance degradation. Conducting

data analysis in a highly imbalanced dataset is not trivial, and often

leads to low sensitivity results being obtained (18). Our dataset

consists of six groups that are composed of gender and age groups.

Supplementary Table S1 illustrates that most of the participants

belong to the obesity category, which makes the datasets imbalanced.

The Synthetic Minority Over-Sampling Technique (SMOTE) is one

of the representative oversampling techniques. It is amethod to create

a new sample and add it to the data by using the KNN (k ≥ 2)

algorithm from samples of an underrepresented class (25). In this

study, the SMOTE technique with oversampling was used, which

resulted in two new datasets with 50% obese and 50% non-obese

entries. Each dataset used the training part to train the model (75%)

and the testing part to test the model (25%).
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TABLE 2 Metabolic factors causing BMI or obesity based on previous

studies.

Feature name References Feature name References

Serum creatinine

(cre)

(26) Hemoglobin (Hb) (27)

Red blood

cell (RBC)

(28) ALT(SGPT) (29), (30)

Fasting serum

glucose (glu)

(31) Uric acid (UA) (32), (33)

Ast (SGOT) (34) Cholestol (chol) (35)

Systolic (diastolic)

blood pressure

(sdp)/(dbp)

(4) Triglyceride (TG) (36), (37)

Glycated

hemoglobin

(HbA1c)

(38) Platelet (Bplt) (39), (40)

Hematocirit (Hct) (28) White blood cell

(WBC)

(41)

4. Results

4.1. Feature selection

Feature selection is used to identify the set of features that are

most important to the performance of the classifiers. Obesity is

caused by many factors, and a great many studies have identified

various factors that cause obesity. However, obesity prediction using

all factors in the KNHANES with models did not show reliable

performance. We chose risk factors according to the following

procedure. There are 192 variables in the KNHANES in total. Among

these variables, 19 were blood test variables and 3 were blood pressure

variables. These variables are quantitative variables. First, we found

metabolic variables and pulse pressure that affect obesity or BMI

increases based on previous studies. Table 2 shows the 15 influential

factors included in the KNHANES. From Ko and Oh (42), one blood

test variable (BUN) was added. Since being overweight or obese is

positively associated with pulse pressure, independently of age and

gender (43), we include one more factor of pulse pressure in our

features. Therefore, we narrowed down to just 17 factors out of the

KNHANES contributing to BMI or obesity. Next, we computed the

correlation coefficients between the selected 17 independent variables

and the dependent variable BMI. Figure 3 depicts the correlation

among the 17 selected features and illustrates the correlation

coefficient between the selected variables and the target feature, BMI.

The final selected features have a significant relationship for the

correlation coefficient between the 17 variables and BMI. Finally, we

carried out age-specific feature selection for each male and female

participants. We selected the top eight ranked factors out of 17, from

the ranking of the mean of the random forest values and SHAP

values (see Figure 4). We conducted feature importance analysis

through a tree model, such as a random forest. The disadvantage is

that Gini importance for calculating feature importance in random

forests can be biased due to the number of predictor categories

and the size of the measurement (44). We additionally used SHAP

feature importance. Shapley Additive explanation (SHAP) values

have been proposed for SHAP values as a unified measure of

feature importance (45). SHAP feature importance defines feature

importance as a mean absolute SHAP value. Each time a feature is

added, the contribution is calculated and averaged. When used for

tree-based models, SHAP has the great advantage of being able to

calculate Shapley values relatively quickly (46). The selected features

are made up of slightly different features according to age group and

gender. Therefore, we utilized SHAP to identify the principal features

inmodel prediction. we used themean of the random forest value and

mean absolute Shap value, and selected eight factors for each of the

six age-specific groups. The selected features were slightly different

for each of the six population groups. A total of 13 features, ALT

(SGPT), glucose (glu), triglyceride (TG), white blood cell (WBC),

glycated hemoglobin (HbA1c), creatinine (cre), systolic (diastolic)

blood pressure (sbp/sdp), AST (SGOT), cholesterol (chol), platelet

(Bplt), RBC, and uric acid (UA), are given in Figure 4. Variables

in Figure 4 were selected in the order of the highest correlation

coefficient with BMI in Figure 3.

4.2. Machine learning algorithms

The feature vectors selected in the above-mentioned process

are fed to six classifiers for training, and then testing. These

classifiers are random forest (RF), support vector machine (SVM),

logistic regression (LR), multi-layer perceptron (MLP), light gradient

boosting (LGBM), and extreme gradient boosting (XGB). We

distinguish the classifier with the best accuracy and AUC through

the performance of these classifiers. Each of these six algorithms has

certain parameters, with values that vary across all the algorithms.

These parameter values are used to train the model, and they are

discussed in Table 3.

The classification problem is designed for binary output because

our data will only consider a model for binary classification based

on BMI. A multi-layer perceptron is made up of a large number

of neurons. In general, it consists of three layers: an input layer,

a hidden layer, and an output layer, with an activation function

between each layer to give non-linearity. In supervised learning, since

inputs and outputs are given, only the weights are updated. MLP

utilizes backpropagation for training, which is a supervised learning

technique (47). A support vector machine (SVM) is mainly used

for classification and regression analysis and is a model that defines

decision boundaries for classification. The SVM builds a maximum

margin separator, which is used to make decision boundaries with

the largest possible distance (48).

Logistic regression (LR) predicts the probability that data will fall

into a certain category as a value between 0 and 1, and classifies it as

belonging to a more likely category based on that probability. Logistic

regression can be viewed as a classification technique because the

dependent variable is intended for categorical data. In particular, LR

is mainly used when the dependent variable is a binomial problem

(49). Random forest (RF) is a kind of ensemble learning method

that integrates predictions of multiple base models and outputs

classification results from multiple decision trees constructed during

the training process. So, random forest chooses a voting method

that collects classification results from a number of decision trees

configured through training to obtain a conclusion. A random forest

can quickly build a model even when the size of the data is huge, and

the decision tree, which is the base model, has the advantage that it

does not require a premise for data distribution (50).
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FIGURE 3

Correlation between BMI and 17 selected metabolic features given in the KNHANES.

GBM is a generalized method of boosting to any differentiable

loss function proposed by Friedman (51, 52). GBM mitigates

inaccuracies, a major drawback of decision trees, by averaging many

small trees (51). Light Gradient Boosting (LGBM) is a relatively new

model and a gradient learning framework based on a decision tree

and the idea of boosting (53). It uses histogram-based algorithms

to speed up the training process. GBM adds a maximum depth

limit to the top of the leaf to prevent overfitting while ensuring

high efficiency. The Extreme Gradient Boosting (XGB) is derived

from the Gradient Tree Boosting algorithm. XGB uses shrinkage and

subsampling to prevent overfitting (54).

For each of the six datasets, we measured the performance of

each classifier using the confusion matrix. One can check that the

confusion matrix for a 2-class classification is a 2 × 2 matrix. Its

entries are the number of true positives (TPs), false negatives (FNs),

false positives (FPs), and true negatives (TNs) for a 2-class problem

(21). True positives mean the number of positive examples that the

model correctly classified as positive, true negatives mean the number

of negative examples that the model correctly classified as negative,

false positives mean the number of negative examples that the model

incorrectly classified as positive, and false negatives mean the number

of positive examples that the model incorrectly classified as negative.

Table 4 defines sensitivity, specificity, and accuracy. F1-score is the

measurement of the harmonic mean of recall and precision. The TP,

TN, FP, and FN amounts are computed for each dataset using Table 4.

We implement a binary classification of obese or not obese based

on BMI. AUC or AUROC is area under ROC curve. The value of

AUC characterizes the model performance. Higher the AUC value,

higher the performance of the model. In our study, when classified

as obese, the actual percentage of being obese is called precision, and

when classified as not obese, the percentage that is not obese can be

known through precision, and the percentage of actual obese people
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FIGURE 4

The top eight important features, selected by age group and gender. To indicate feature importance, the orange bar represents the random forest value,

and the gray bar represents the average absolute sharp value. The blue bar shows the mean of the two values.

TABLE 3 Detailed specifications for the six algorithms.

Algorithms Specification of algorithms

MLP Alpha = [0.001, 0.001, 0.0001, 0.01, 0.01, 0.001]

Activation : relu

Hidden layer size [100, 100]

LGBM Number of leaves = [70, 100, 100, 70, 3, 100]

Maximum depth = [30, 30, 30, 30, 2, 30]

RFC Maximum depth = [30, 30, 30, 30, 5, 30]

num. estimators = [100, 100, 100, 70, 100, 100]

SVM C = [50, 30, 30, 10, 50, 50]

Gamma = [50, 50, 50, 50, 1, 50]

Kernel: radial basis function

LR Maximum num. iterations = 1,000

Penalty = l2

XGB Maximum depth =[30, 50, 30, 30, 2, 50]

gamma = [0.2, 0.1, 0.1, 0.2, 0, 0]

num. estimators = [40, 70, 40, 100, 40, 20, 50]

The order of [,] is according to male age and female age.

classified as not obese can also be known through recall. In addition,

if not obese, the ratio that is classified as not obese is the specificity,

and if the person is not obese, the ratio that is classified as obese can

also be known through specificity. Accuracy is the percentage of data

that are correctly classified, such as a person who is obese is classified

TABLE 4 Some metrics for the evaluation of a classifier based on the

confusion matrix.

/Metric Equation

Accuracy TP+TN
TP+TN+FP+FN

Specificity TN
FP+TN

Precision TP
TP+FP

Recall (sensitivity) TP
TP+FN

F1-score 2×Precision×recall
Precision+recall

as obese and a person who is not obese is classified as not obese. We

evaluated the accuracy and AUC of the classifiers.

4.3. Age-specific obesity classification

The KNHANES is a national program that is designed to assess

the health and nutritional status of adults and children in Korea.

Obesity is defined as BMI above 25 according to the Asia-Pacific

adult guidelines (12). In our data, we combined obese (BMI of

>25) and overweight (BMI of >23 and BMI of <25) into our

definition of obese. After removingmissing values, there were around

21,100 participants (male 10,000 and female 11,100). As can be seen

from Figure 1, the proportion of overweight and obese people from

2016 to 2018 was 58%, and in 2019, the proportion of people with

BMI of >23 was 57%. After we split the dataset into two parts by

gender, we divided both the male and female participants into three

age groups (19–39, 40–59, and 60–79), respectively. Therefore, our
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FIGURE 5

Age-specific ROC curves for each MLP, RF, SVM, LR, LGBM, and XGB. The left panel of each pair is male, while the right panel is female.

dataset consists of six groups composed according to gender and

age group.

To predict obesity, it is very important to identify the risk factors

of obesity. So, we identified metabolic features that contribute to high

BMI or obesity. First, appropriate metabolic variables were selected

based on previous research, from which we identify those that

principally contribute to BMI in the KNHANES. And even though

we did not find any association with studies suggesting that pulse rate

causes obesity, being overweight or obese is positively associated with

pulse pressure, independently of age and gender (43). Finally, we used

the mean of the random forest value and the sharp value and selected

the eight most significant factors for each of the six age-specific

groups. The selected features were slightly different for each of the

six population groups. The selected features for each group are given

in Figure 4. The features are ALT (SGPT), glucose (glu), triglyceride

(TG), white blood cell (WBC), glycated hemoglobin (HbA1c),

creatinine (cre), systolic (diastolic) blood pressure (sbp/sdp), AST

(SGOT), cholesterol (chol), hematocrit (Hct), platelet (Bplt), and uric

acid (UA). The features ALT (SGPT), triglyceride (TG), HbA1c, and

UA are selected for all groups (Figure 4). For all three male groups,

ALT (SGPT) was the most important feature in both the sharp value

and random Forest. For the female participants, triglyceride (TG)

was the most important feature, except for the 60–79 age group. In

the 60–79 age female group, HbA1c was the most important feature.

The feature creatinine (crea) was only selected from the 40 to 59

and 60 to 79 age male groups. The feature Ast was selected for only

19–39 age male group and a Bplt feature was selected for only 40–

59 age female group. Note that the SMOTE technique is used for

oversampling due to class imbalance in the dataset. The number of

obese and normal classes seems imbalanced. Supplementary Table S1

gives more detailed imbalance information of the six datasets. The

SMOTE technique with oversampling was used, which resulted in

two new datasets that are 50% obese and 50% not obese. Next, we

employed six different machine learning algorithms to predict age-

and gender-specific obesity for adults (19–79 years) in Korea. The

six machine learning algorithms were performed using the top eight

features as shown in Figure 4.

Furthermore, we measured the performance of these

classifications in terms of several selected performance metrics.

First of all, we have carried out 5-fold cross validation for train

dataset as shown in Supplementary Table S2. Table 5 illustrates

commonly used performance metrics by machine learning methods.

Figure 5 shows the ROC curves of the performance of the algorithms

for the three age groups per gender. The best performance classifier

among the six groups is the MLP, which has the best performance for

five age groups, all except for the 60–79 age female group. The MLP

achieved an area under the ROC curve (AUC) of 0.78 in the 19–39

age female group, while achieving an AUC of 0.77 in the 19–39 age

male group. However, in the 60–79 age group and both male and

female groups, MLP achieved a lower AUC of 0.7. The RF and LF
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TABLE 5 Metric-wise performance of all classifiers used for each gender and age group.

Algorithm Evaluation Male Female

19–39 40–59 60–79 19–39 40–59 60–79

MLP Accuracy

Recall

Specificity

Precision

F1 score

AUROC

0.70

0.72

0.68

0.81

0.76

0.77

0.67

0.63

0.76

0.86

0.73

0.75

0.60

0.56

0.67

0.75

0.64

0.68

0.73

0.68

0.76

0.59

0.63

0.78

0.67

0.66

0.69

0.69

0.67

0.72

0.62

0.64

0.58

0.74

0.69

0.65

RF Accuracy

Recall

Specificity

Precision

F1 score

AUROC

0.72

0.77

0.61

0.79

0.78

0.76

0.72

0.80

0.53

0.80

0.80

0.74

0.64

0.74

0.46

0.71

0.72

0.65

0.76

0.57

0.85

0.67

0.61

0.78

0.67

0.65

0.69

0.70

0.67

0.72

0.66

0.78

0.44

0.72

0.75

0.66

SVM Accuracy

Recall

Specificity

Precision

F1 score

AUCROC

0.65

0.70

0.53

0.74

0.72

0.66

0.66

0.70

0.55

0.79

0.74

0.69

0.60

0.69

0.44

0.68

0.68

0.58

0.69

0.53

0.78

0.55

0.54

0.68

0.67

0.63

0.70

0.70

0.66

0.72

0.58

0.62

0.51

0.70

0.66

0.59

LR Accuracy

Recall

Specificity

Precision

F1 score

AUROC

0.67

0.63

0.76

0.83

0.71

0.76

0.65

0.62

0.72

0.84

0.71

0.73

0.57

0.54

0.64

0.72

0.61

0.64

0.73

0.65

0.77

0.59

0.62

0.77

0.67

0.64

0.70

0.70

0.67

0.71

0.61

0.58

0.67

0.76

0.66

0.66

LGBM Accuracy

Recall

Specificity

Precision

F1 score

AUROC

0.70

0.80

0.53

0.76

0.78

0.74

0.71

0.86

0.38

0.76

0.81

0.69

0.62

0.73

0.41

0.69

0.71

0.63

0.74

0.53

0.84

0.64

0.58

0.76

0.67

0.65

0.69

0.69

0.67

0.72

0.65

0.79

0.39

0.70

0.75

0.62

XGB Accuracy

Recall

Specificity

Precision

F1 score

AUROC

0.69

0.77

0.55

0.76

0.77

0.75

0.71

0.84

0.40

0.76

0.8

0.70

0.61

0.72

0.40

0.68

0.7

0.62

0.75

0.58

0.83

0.64

0.61

0.77

0.66

0.65

0.67

0.68

0.67

0.72

0.64

0.78

0.39

0.7

0.74

0.64

algorithms achieved the same AUC of 0.66 in the 60–79 age female

group (Figure 5). In particular, MLP, RF, LGBM, and XGB achieved

the same AUC of 0.72, while the LR achieved an AUC of 0.71 for the

40–59 age female group (Table 5). Those algorithms achieved better

performance in each dataset. However, the SVM performed poorly

(Table 5).

The accuracy of each classifier differed for male and female

participants, and the accuracy of female participants was higher than

the accuracy of male participants for the 19–39 and 60–79 age groups.

The RF algorithm achieved the best accuracy in all six groups, but for

two groups of female and the male 60–79 age group, it accomplished

below 0.7 accuracy. For male participants, RF achieved a higher 0.72

accuracy in the 40–59 age group and achieved 0.72 accuracy in the

19–39 age group. Across both genders, all algorithms achieved below

0.7 accuracy for the 60–79 age group. Table 5 shows that the SVM

classifier achieved lower accuracy for all age groups and gender, and

lost the performance of each of the six algorithms. The performance

ability is determined according to its accuracy, sensitivity, specificity,

precision, recall, F1-score, and ROC-AUC for the six age groups. The

accuracy and AUC were the highest in the female aged 19–39 age

group. The best algorithm for accuracy was RF, and for AUC the best

was the MLP and LR algorithms.

Finally, as the features changed up to the top eight, the accuracy

was measured by performing each algorithm for the six datasets

(Figure 6). Even if the number of features increased to (5, 6, 7, up

to 8), we cannot obtain the relationship between the accuracy and

the number of features. Meanwhile, the accuracy of SVM tended

to decrease in the female 19–39 age group. Also, the accuracy

of algorithms shows little increase up to the top five or six. In

the case of male participants, the 19–39 and 40–59 age groups

tend to show a slight increase in the RF and LGBM algorithms.

However, the algorithmic accuracy of the datasets did not change

significantly depending on the number of the top eight or more

features. We also carried out classification using KNN and GBM

methods, and the results are given in Supplementary Figures S1, S2

and Supplementary Tables S3, S4.

5. Discussions

This study identifies risk factors for obesity in adults among

the extensive dataset provided by the KDCA from 2016 to 2019

in Korea. First, in all six datasets, each of the top eight features

was selected, which are shown in Figure 4. The eight features
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FIGURE 6

Accuracy is displayed as the number of features from 1 to 8 under three age groups and two genders. These features are extracted from the RF feature

importance and mean absolute SHAP values in Figure 4.

obtained by the mean of random forest value and mean absolute

Shapley values include ALT (SGPT), glucose, triglyceride, white

blood cell, glycated hemoglobin, creatinine, systolic (diastolic)

blood pressure, AST (SGOT), cholesterol, hematocrit, platelet, and

uric acid. For the three male datasets, the ALT (SGPT) was

the most important feature in the mean of sharp value and

random forest. For female datasets, triglyceride was the most

important feature, except for the 60–79 age group. In the 60–79 age

female group, HbA1c was the most important feature. The feature

creatinine was only a top factor for the male 40–59 and 60–79

age groups.

Further research needs to be carried out using these factors

with individual variances. Well-known factors for predicting obesity

are age, gender, waist circumference, and race. These factors state

the consequences of obesity. Moreover, various factors that cause

obesity have been studied, and there have been many predictive

studies using factors that affect obesity (1, 50, 55). Although a

few researchers have included metabolic factors as key features in

predicting obesity, most researchers have used individual factors, and

individual lifestyle/behavioral and environmental factors as essential

features (1, 5, 21). We identified essential metabolic factors affecting

obesity and performed machine learning utilizing metabolic factors

as key features. Our performance could not be compared with other

research results, because the selected features are different (1, 56, 57).

In fact, there are other important factors that might influence

obesity, such as food consumption, food production, physical activity,

social psychology, genetic, or physiological and cultural influences,

that were not included in our analysis because they are not suited for

a machine learning approach. In addition, we used the KNHANES as

data, but medical diagnostic records were not used.

Therefore, one of the main limitations of the study is that

our features are not yet standard features for predicting obesity.

It is important to evaluate and build predictive models for obesity

using common risk factors. It would be desirable to improve the

standardized of common factors affecting obesity because the current

works have all dealt with different features. Another limitation of our

model is the imbalanced data set from the KDCA, which contains

a larger high-BMI population (people with BMI >23) than low-

BMI population (people with BMI <23). A limitation of our study

is that it did not use features such as gut microbiota composition,

physiological, psychological, genetic, and environmental factors that

cause obesity. Among the risk factors for obesity, we only used

factors involved in metabolism as risk factors. We need to establish

a set of risk factors for obesity in adults among the available study

variables from those domains. Future research needs to identify and

integrate risk factors in these areas. To facilitate future research,

one needs to identify and integrate risk factors in these areas, and

common features to predict obesity are required since there are

many various factors that cause obesity. Hence, if standard factor

assumptions are possible, common features to predict obesity may

be used to carry out more elaborate predictions and sophisticated

mathematical analysis.
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6. Conclusion

We have investigated age- and gender-specific factors for obesity

prediction. The top four significant features in all age-gender

groups for predicting obesity are triglycerides, ALT (SGPT), glycated

hemoglobin, and urine acid. For all three male groups, ALT (SGPT)

was the most important feature in both the sharp value and random

Forest. For the female groups, triglyceride (TG) was the most

important feature, except for the 60–79 age group. In the 60–79 age

female group, HbA1c was the most important feature. The feature

Creatinine (crea) was only selected from the 40 to 59 and 60 to 79

age male groups while this creatinine was not important in all female

and the 19–39 male group. Our findings show that the risk factors

for obesity are sensitive to age and gender under different Machine

Learning algorithms. The algorithms perform best for the male and

female 19–39 age groups, with over 70% accuracy and AUC while for

the 60–79 groups they show around 65% accuracy and AUC. Both the

male and female 40–59 age groups achieved the highest performance

of over 70% in AUC, but the females achieved lower than 70% in

accuracy. For both classifiers and age groups, there is no big difference

in accuracy when the number of features is more than six, except that

the accuracy ratio decreased in the female 19–39 age group.
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