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The COVID-19 pandemic has highlighted the lack of preparedness of

many healthcare systems against pandemic situations. In response, many

population-level computational modeling approaches have been proposed

for predicting outbreaks, spatiotemporally forecasting disease spread, and

assessing as well as predicting the e�ectiveness of (non-) pharmaceutical

interventions. However, in several countries, these modeling e�orts have

only limited impact on governmental decision-making so far. In light of this

situation, the review aims to provide a critical review of existing modeling

approaches and to discuss the potential for future developments.
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Introduction

In December 2019, a new virus (SARS-CoV-2), causing a respiratory disease - later

named COVID-191, was discovered. At the time of the outbreak, many healthcare

systems around the world were not well prepared for the pandemic that later emerged.

While the virus was initially detected in China, measures to prevent its spread to other

regions of the world were often hesitant and taken too late. Whereas compartmental

spatio-temporal models of disease spread in epidemiology have been known in principle

for a long time (1), many countries initially lacked robust and systematically collected

surveillance data to which these models could be fitted. In general, it has been difficult to

translate insights from modeling into actionable decision support for the government.

Based on these considerations, the French-German collaborative project AIOLOS

(Artificial Intelligence Tools for Outbreak Detection and Response) has recently started

1 https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.994949
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.994949&domain=pdf&date_stamp=2022-11-14
mailto:jonas.botz@scai.fraunhofer.de
mailto:holger.froehlich@scai.fraunhofer.de
https://doi.org/10.3389/fpubh.2022.994949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.994949/full
https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Botz et al. 10.3389/fpubh.2022.994949

with the aim to strengthen the resilience of national healthcare

systems against future outbreaks of respiratory infections2.

More specifically, AIOLOS identifies three areas, where

population-level computational modeling, including techniques

from Artificial Intelligence (AI) and machine learning (ML),

could potentially impact the preparedness against future

pandemics based on various data sources (Figure 1):

1. early warning of a new outbreak,

2. monitoring the spatio-temporal spread of a disease,

3. predicting the impact and effectiveness of different

interventions to support decision-making at scientific and

policy levels.

This paper aims to review existing population-level

computational modeling work in each of these areas. Our

ambition is thus significantly different from published reviews,

which solely focused on mathematical models of COVID-19

disease spread (2) or AI/ML algorithms for patient-level disease

diagnosis and prognosis (3).

Early warning

Surveillance data

Health surveillance data is the traditional source of

information for detecting a pandemic outbreak. The goal of

respective computational approaches is to detect anomalies in

a data stream consisting of discrete events, i.e., cases reported

by doctors. For this purpose, several statistical tests have been

suggested in the literature, including methods proposed by

the Robert Koch Institute in Germany (4) and the Center

for Diseases Control and Prevention in the USA (5), the

Farrington method and its variants (6, 7) and Bayesian methods

(4). Altogether, the R-package “surveillance” lists almost 20

algorithms for the early detection of pandemic outbreaks using

surveillance data (8), covering three different scenarios:

1. spatio-temporal data of individual infectious events,

2. temporal event history of a defined set of individual units

(e.g., specified households),

3. events aggregated over regions and time periods.

Due to data privacy concerns, typically only data of the

last category are made publicly available and considered for

governmental decision-making. A comparative simulation study

pointed out elevated false positive rates for many algorithms

with sensitivities ranging between 20 and 67% (9). Furthermore,

a principal challenge is that traditional surveillance data in many

2 https://www.digitale-technologien.de/DT/Redaktion/EN/

Standardartikel/Internationale_Koop_Projekte/Frankreich/ki_

innovationsprojekte_de_fr_projekt_aiolos.html

countries are not systematically recorded in a fully automated

and digitalized manner. Moreover, surveillance data in several

countries do not cover several relevant aspects, such as

hospitalization and ICU admission rates. Hence, this data could

come too late for an early warning system. In response to this

situation, several authors have thus proposed to systematically

monitor wastewater for virus particles rather than waiting

for reports by doctors (10, 11), and according measures are

currently being implemented in the USA, Europe, and Israel.

Noteworthy, Israeli researchers already used such an approach

a few years ago to detect a silent polio outbreak (12, 13).

Social media

Given the shortcomings of traditional surveillance data,

several authors have more recently explored the potential

of social media. Jain and Kumar (14) proposed a keyword

extraction approach, in which they first used the term frequency-

inverse document frequency (TF-IDF) technique, identifying

relevant keywords from tweets, and secondly, used a linear

discriminant analysis (LDA)-based classifier to find relevant

keywords in newspaper really simple syndication (RSS) feeds.

Subsequently, the relevant keywords were used to analyze tweets

from the respective period, andmachine learning classifiers were

developed to filter out irrelevant tweets. They found that Support

Vector Machines (SVMs) and a Naive Bayes classifier most

accurately classified tweets (F1 = 0.77).

Lopreite et al. (15) performed statistical tests (Kolmogorov-

Smirnov and Anderson-Darling) to compare the cumulative

frequencies of pneumonia-related tweets from the winter

seasons of 2018/2019 and 2019/2020 in selected European

countries. They found an exceeding number of pneumonia-

related postings in the winter season of 2019/2020 before the

outbreak of COVID-19. In a similar direction, Mavragani (16)

retrieved Google Trends data for the topic of “Coronavirus”

and calculated Pearson correlation coefficients between Google

Trends data and the respective categories of cumulative/daily

cases/deaths. The results showed strong correlations of Google

Trends data with COVID-19 cases and deaths in the examined

European countries. The authors conclude that information

epidemiology is a viable instrument tomonitor the disease spread

and identify regions in which cases have not yet peaked, hence

contributing to an early warning system.

Going methodologically one step further, Yousefinaghani

et al. (17) used a real-time anomaly detection approach utilizing

the Seasonal-Hybrid Extreme Studentized Deviate algorithm

(18) to identify the onset and peak of COVID-19 waves in

Google Trends and Twitter data from the US and Canada.

This study also evaluated the correlation between tweets and

Google trends data with official COVID-19 case numbers.

Pearson correlation analysis demonstrated a strong correlation

between officially reported infected cases and the relevant posts
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FIGURE 1

Overview of potential impact areas of population-level computational modeling for increased preparedness against pandemic situations,

including relevant data sources.

TABLE 1 Included early warning studies.

Studies Data source Technique(s)

Höhle (4), Stroup et al. (5),

Farrington et al. (6), Noufaily

et al. (7), Meyer et al. (8),

Lastra et al. (10), Maida et al.

(11), Sharara et al. (12),

Brouwer et al. (13)

Surveillance Data

(health data,

wastewater)

R package

“surveillance,”

anomaly detection,

statistical tests

Jain and Kumar (14),

Mavragani (16),

Yousefinaghani et al. (17),

Hochenbaum et al. (18),

Broniatowski et al. (19),

Kogan et al. (20)

Social Media

(Twitter, Google

trends, Newspaper

feeds, UpToDate)

Keyword

extraction, TF-IDF,

anomaly detection,

classifier (SVM,

Naive Bayes),

statistical tests

(Kolmogorov-

Sminrvov,

Anderson-Darling,

Pearson

correlations), BM

TF-IDF, term frequency–inverse document frequency; SVM, Support Vector Machine;

BM, Bayesian Model.

and searches. Unlike other studies, the authors quantitatively

prioritized COVID-19 symptoms in detecting disease trends.

For example, “cough” and “fever” were better trend indicators

compared to “tiredness” and “loss of smell.”

Broniatowski et al. (19) identified health-related, influenza-

related, and case-reporting tweets with logistic regression, which

were used with Google Flu Trends to predict influenza outbreaks

at municipal and regional levels.

Further, Kogan et al. (20) used a Bayesian probabilistic

model to develop an early warning algorithm for COVID-19

based on social media (Google Trends, Twitter, UpToDate),

fever incidence rates, and predictions made by the global

epidemic and mobility model (21), resulting in a time-to-

event prediction. The algorithm was validated on COVID-19

surveillance data as well as incidence rates of influenza-like

illness, demonstrating that an uptrend in COVID-19 infections

could be predicted up to 7 days in advance with an accuracy

of ∼75%. Table 1 summarizes the techniques employed by the

discussed papers.

Disease monitoring

Spatio-temporal modeling of disease
spread

There are different approaches for modeling the spatio-

temporal spread of an epidemic situation described in the

literature (see Tables 2–5):

• mechanistic compartmental models formulated as

differential equation systems, which have been classically

used in epidemiology (22, 26–33, 35–38, 40, 64),

• machine learning approaches, including Bayesian learning

techniques (41–49),

• agent-based modeling approaches (50–55),

• hybrid modeling approaches combining several of the

aforementioned techniques (39, 56, 58–63, 65).

Compartmental models

General principle

To model and understand the evolution of an epidemic,

compartmental models are often used. The underlying idea

is to distribute the population into several interconnected

compartments. The relationship between these compartments

is given by a system of differential equations. With given

or estimated initial conditions this mathematical system can

be solved at any point in time The foundation of today’s
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TABLE 2 Included studies covering spatio-temporal monitoring of

disease spread with compartmental models and their key aspects.

Study Key aspects

Zhang (22) Include factor for incubation time, immunity,

and control efforts

Shaman et al. (23) Use an EAKF to adjust (un)observable state

variables

Leonenko and Ivanov (24) Model dynamics of influenza outbreaks on

city level

Osthus et al. (25) Relate SEIR to state-space model and expand

parameter vector

Aravindakshan et al. (26) Estimate connection between NPIs and social

mobility: used in the model

Bahri (27) Splits between young and older population

and estimates efficacy of NPIs

Bertozzi et al. (28) Compare three basic models for different

stages of pandemic

Chang et al. (29) Introduce mobility networks between CBGs

and POIs

Coudeville et al. (30) Estimate effect of NPIs on industry decisions

Giordano et al. (31) Model distinguishes between detected and

undetected and among SOI

Götz and Heidrich (32) Use registered deaths as parameter including

a delay-term

Khan et al. (33) Include detected and undetected cases and

measure the effect of NPIs

Pei et al. (34) Investigate spatial dynamic coupling across

locations for asynchronous NPIs

Prague et al. (35) Augment data to account for random effects

and to increase accuracy

Coudeville et al. (36) Study vaccination with different

immunization programs

Humphrey et al. (37) Introduce isolation compartment to study

social distancing

Kheder et al. (38) Introduce multiple discrete stages to account

for multiple waves

Sartorius et al. (39) Study different spatial patterns (e.g., of

mortality) in small areas

Schüler et al. (40) Implement effect of NPIs by using a

piecewise constant transmission rate

EAKF, ensemble adjustment Kalman filter; SEIR, susceptible-exposed-infected-

recovered; NPI, non-pharmaceutical intervention; CBGs, census block groups; POIs,

points of interest; SOI, severity of illness.

compartmental models was formulated nearly a century ago

(1). In their study, Kermack and McKendrick examined the

evolution of various pandemics and established the commonly

used susceptible-infected-removed (SIR) model which is based

on three compartments:

TABLE 3 Included studies covering spatio-temporal monitoring of

disease spread with machine learning and Bayesian models and their

key aspects.

Study Key aspects

Stojanović et al. (41) Introduced a spatio-temporal kernel function

Al-qaness et al. (42) Forecast for the upcoming days with a fair

amount of data

Fong et al. (43) Develop forecasting model with insufficient

amount of available data

Mehta et al. (44) Estimate outbreak probability on county level

Pavlyshenko et al. (45) Investigated impact on stock market

Suzuki et al. (46) Use binary classification to see if number of

cases will exceed a threshold

Ibrahim et al. (47) Implement urban characteristics and index

for NPIs

Nader et al. (48) Estimate growth rate depending on specific

NPI

Yeung et al. (49) Compared non-time series ML algorithms to

model pandemic

NPI, Non-Pharmaceutical Intervention; ML, machine learning.

TABLE 4 Included studies covering spatio-temporal monitoring of

disease spread with agent-based modeling approaches and their key

aspects.

Study Key aspects

Hoertel et al. (50) Estimate impact of post-lockdown measures

and introduce shielding of PAR

Hinch et al. (51) Estimate effect of contact tracing with mobile

app

Keer et al. (52) Model by calculating probability of agent to

change state at a timepoint

Staffini et al. (53) Retrospectively study effect NPIs had and

additional NPIs could have had

Colosi et al. (54) Estimate reproduction numbers for different

VOC in schools

Shattock et al. (55) Analyze different NPI and vaccination

strategies

PAR, persons at risk; NPI, non-pharmaceutical intervention; VOC, variance of concern.

• S(t) - The susceptible population, i.e., the part of the

population that can become infected,

• I(t) - The infected population, i.e., the part of the

population that has the disease and can transmit the disease

to the susceptibles,

• R(t) - The removed or recovered population, i.e., the part

of the population that has recovered from the disease and

that is considered immune.

(With N = S(t)+ I(t)+ R(t) being the total population.)
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TABLE 5 Included studies covering spatio-temporal monitoring of

disease spread with hybrid models and their key aspects.

Study Key aspects

Dandekar and Barbastathis (56) Analyze NPIs in different countries to find

effective reproduction number

Menda et al. (57) Estimate dynamic transmission number with

NN, allowing for multi-peaks

Silva et al. (58) Build society with ABM and simulate

different NPI scenarios

Capobianco et al. (59) Combine ABM and SEIR with Markov model

and RL for NPI planning

Wang et al. (60) Combine spatial and temporal models

Watson et al. (61) Predict deaths by relation between cases and

population characteristics

Fritz et al. (62) Use a GNN to include local mobility and

connectedness data from Meta

Hadley et al. (63) Modify transmission and hospitalization

rates fitted to agent’s characteristics

NPI, non-pharmaceutical intervention; NN, neural network; ABM, agent-based

modeling; SEIR, susceptible-exposed-infected-recovered; RL, reinforcement learning;

GNN, graph neural network.

The dynamics of the SIR model get described by a set of

ordinary differential equations (ODEs), which include two free

parameters, β - the transmission rate and γ - the recovery rate:

dS

dt
= −βSI

dI

dt
= βSI − γ I

dR

dt
= γ I.

Due to its simple nature, there are also some limitations

and assumptions with this model. Here we will mention some

of them. First, the population size is assumed to be constant,

the birth nor the death rates are incorporated, and the model

does not allow for people to become reinfected. Second,

both the transmission and the recovery rates are constant.

Third, the model assumes that the infected person becomes

infectious immediately after getting infected, whereas in reality

there is a latency period. Another assumption is that there is

homogeneous mixing of the population, and no social networks

and mobility are considered.

To account for some of its limitations, the archetypical

SIR model can be extended to include an age structure or

additional compartments, e.g., compartment E for the - by

the virus-exposed - population (susceptible-exposed-infected-

removed: SEIR), compartment D for the disease-deceased

population or compartment H for the hospitalized population.

Applications to epidemic disease monitoring

There is a vast literature on compartmental disease models

over the last 50 years (66). Examples include the successful

modeling of several epidemic outbreaks, such as SARS (22) and

influenza (23–25). However, the highly dynamic development

of the COVID-19 pandemic with corresponding public

intervention measures required extensions and modifications

(26, 27, 30, 32, 36, 37, 40). For example, Götz and Heidrich (32)

used the number of registered deaths by COVID-19 rather than

the registered cases, with the idea to evade the dark figure of

undetected cases, including a delay term to account for the time

between infection and death. Bahri (27) split between a young

population (age <60 years) and an older population (age ≥60

years) stating that the younger population has more infections,

while the older population is at higher risk, with a much higher

death rate. Similarly, Coudeville et al. (30) introduced an age-

stratified SEIR model to estimate how different scenarios affect

industry decisions on different time scales. In another study, the

authors further used this model to derive the potential effects of

various immunization programs based on vaccination (36).

Aravindakshan et al. (26) used a compartmental model

including social distancing and mobility as parameters. The

authors further estimated the impact of different non-

pharmaceutical interventions (NPIs) on social distancing

including other covariates (e.g., weather, day of the week)

in a linear regression model and used its coefficients for

simulating different scenarios. Schüler et al. (40) included NPIs

by using a piecewise constant transmission rate depending on

the corresponding NPI and analyzed effects on the district level.

Similarly, Humphrey et al. (37) estimated the effect of testing

and tracing in combination with social distancing measures by

introducing an isolation compartment, resulting in a modified

transmission rate. Prague et al. (35) estimated several parameters

of an extended SEIR model from data about the incident and

hospitalized cases in France at a regional level via a non-linear

mixed effects model while considering NPIs. Moreover, the

model by Prague et al. considers the fact that only a fraction of

the actually infected patients is counted in surveillance data.

Bertozzi et al. (28) studied the disease spread in several

European countries, first looking at the exponential growth

and the self-exciting branching process and then using a

compartmental model, focusing on the impacts of social

distancing, enabling them to model and understand different

stages of the pandemic.

Khan et al. (33) modeled an NPI-dependent transmission

rate. Chang et al. (29) modeled the disease spread in the ten

largest US metropolitan areas using bipartite networks with

time-varying edges for mapping the hourly movement of census

block groups (CBGs) to specific points of interest (POIs). Then,

each mobility network gets paired with an extended SEIR

model with a corresponding transmission rate. To illustrate the

spatial dynamic coupling across locations, Pei et al. (34) used a

metapopulation SEIR model including daily work commuting
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and random movement among 3,142 US counties. Using

inference, they studied the effect of asynchronous interventions

across these locations in the US and performed counterfactual

simulations to estimate the evolution of the disease spread by

implementing NPIs at different times. To account for the fact

that COVID-19 is a pandemic with several waves, Khedher et al.

(38) introduced multiple discrete states into their model.

Sartorius et al. (39) developed a discrete-time SEIR model,

which incorporated information about population density and

mobility using a hierarchical Bayesian model. They estimated

their model via full Bayesian inference (Markov Chain Monte

Carlo sampling).

Machine learning models

In addition to compartmental models, machine learning

techniques, including neural networks, have become popular

approaches for modeling and predicting disease spread.

Examples include models for the disease spread in China

(43) and worldwide (47). Fong et al. (43) tried to overcome

the problem of a small dataset by using a polynomial

neural network with corrective feedback, while Ibrahim et al.

incorporated urban characteristics and NPIs via a variational

Long Short-TermMemory (LSTM) encoder.

In addition to neural networks, other machine learning

techniques have been proposed as well: for example, Al-qaness

et al. (42) combined an Adaptive Neuro-Fuzzy Inference System

(ANFIS) with a flower pollination algorithm (FPA) using

the salp swarm algorithm (SSA), creating the FPASSA-ANFIS

model. Nader et al. (48) developed a Random Forest algorithm;

other studies employed extreme stochastic gradient boosting

(XGBoost) (44, 46). Yeung et al. (49) compared different

classical machine learning regression methods (ridge, decision

tree, Random Forests, AdaBoost, and Support Vector Machines)

and found Random Forests and AdaBoost to perform best.

In general, classical, non-time series machine learning models

could predict future pandemic development rather accurately.

Pavlyshenko (45) used a Bayesian machine learning

approach for modeling the global spread of COVID-19 and its

effect on the stock market, while (41) additionally included the

spatial aspect via a spatio-temporal kernel function.

Agent based models

Agent-based modeling (ABM) is a sub-field of Artificial

Intelligence (AI). The idea in ABM is to simulate a set of

software agents, which can interact with each other according

to a defined set of rules. ABM approaches can implement

many characteristics such as social contacts of individuals or

sub-populations, disease characteristics (e.g., virus transmission

rates, virus variants), patient characteristics (e.g., age, sex,

comorbidities, and risk factors), mobility and contact networks

(e.g., household, workplace, school, community, tourism),

healthcare services (e.g., hospitalization, bed occupancy) and

governmental regulations or NPIs.

In the literature, ABM approaches have been used on

different scales. Staffini et al. (53) used socio-economic

and disease-related information to study the spread of the

SARS-CoV-2 virus and the influence of NPIs in Italy, Germany,

Sweden, and Brazil. Shattock et al. (55) included risk groups

and seasonal patterns in the transmission model and estimated

the effect of various NPIs as well as vaccination campaigns

on the pandemic evolution, hospitalization, and deaths in

Switzerland. Colosi et al. (54) used an ABM approach to

estimate school-specific reproduction numbers depending on

the COVID-19 variants.

Various authors further extended these models by including

demographic features as well as more profound contact

networks - through deeper population mobility simulations -

to simulate synthetic populations, the disease spread in this

population, and the effect of a large set of NPIs (50–52). Hoertel

et al. (50) focused on possible post-lockdown measures to

reduce epidemic rebounds and therewith estimated the effect

of protecting/shielding persons at risk; while Hinch et al. (51)

and Kerr et al. (52) both developed a simulation platform,

OpenABM, and Covasim, which enables to simulate the disease

spread depending on various settings, including different NPIs.

Hybrid models

One of the main limitations of machine learning is the

assumption of test data being drawn from the same statistical

distribution as training data. This results in a major challenge

if there is a covariate shift of test data relative to the

original training data, e.g., due to NPIs, seasonal effects,

new virus variants, or further unknown factors. Hence, the

utility of conventional machine learning models in a highly

dynamic situation such as the COVID-19 pandemic must

be questioned. In this regard hybrid modeling approaches

combining compartmental models and machine learning, or

compartmental models and ABM approaches could provide an

interesting alternative.

Several authors have explored hybrid models of the

spatio-temporal disease spread in this regard: For example,

Dandekar and Barbastathis (56) used a neural network to

model the influence of NPIs on the compartment of infected

patients. For model training, they employed the universal ODE

approach, which combines neural networks with ODEs in a

joint framework (67). Menda et al. (65) introduced a neural

network to relax the assumption of a constant transmission

rate. Their model is formulated as a non-Gaussian state-

space system, which is estimated via Certainty-Equivalent

Expectation-Maximization (57).

Wang et al. (60) combined their extended SIR model

with spatial cellular automata (CA) and then introduced a

Convolution Neural Network (CNN) paired with an LSTM
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recurrent neural network to learn the dynamical parameters of

a compartmental model, which also includes the population of

undetected or asymptomatic individuals.

Watson et al. (61) first used a probabilistic graphical model

estimated via Bayesian inference to predict the velocity of

cumulative cases. Moreover, they developed a Random Forest

model to give daily projections and interval estimates for cases

and deaths in different US states. Both models were then

combined into a compartmental model to make forecasts of

incidence rates.

A different type of hybrid model is presented by Fritz et al.

(62). They combined a statistical spatial regression with a Graph

Neural Network (GNN) incorporating social connectedness and

co-location maps.

Several authors combined ABM approaches with SEIR

models (58, 59, 63). Hadley et al. (63) derived the transmission

and hospitalization rates depending on the agent’s age,

comorbidity status, and testing status to forecast the ICU bed

demand. Silva et al. simulated a society (i.e., persons, houses,

businesses, government, and healthcare systems) including a

large set of social and demographic parameters and estimated

different scenarios based on social distancing measures.

Capobianco et al. introduced the PandemicSimulator including

– besides a SEIR model – a moving and interacting society, a

government that makes policy decisions, and optional testing

and contract tracing strategies. They also suggested adding a

hidden Markov model to adapt infection rates over time and a

reinforcement learning (RL) layer to find the optimal policy to

minimize the public health impact.

Social media and internet searches

The epidemic spread has been shown to be correlated with

search engine usage on the web in the past (68). Nowadays

people also share their opinion on social media networking sites

such as Twitter, Reddit, and Facebook. These opinions can also

be utilized to track epidemic disease spread. Masri et al. (69)

studied using tweets’ time and geolocation data to improve the

monitoring of the Zika virus (ZIKV) epidemic. The collected

tweets were counted and compared with weekly data of the

U.S. ZIKV cases, revealing a high Pearson correlation coefficient

value of 0.67 by applying a 1-week lag on tweets. Adding this

1-week-lag tweet data to the case counts in an auto-regression

prediction model improved the coefficient of determination

(R2) from 0.61 to 0.74, which showed that tweet metadata is a

significant predictor of future ZIKV cases.

Various authors have also used social media to support the

surveillance and monitoring of an epidemic (70–72). Missier

et al. (70) identified tweets related to dengue epidemics by

classifying them into mosquito, sickness, and news-related

classes. Chen et al. (73) created an ongoing collection of

so far 123 million COVID-19-related tweets identified using

various keywords and shared it with the research community for

further analysis.

To better understand andmodel the trajectory of COVID-19

in the US, Klein et al. (74) manually annotated 10,000 pre-

filtered tweets into three COVID-19 associated classes (probable,

possible, and other cases) and used Bidirectional Encoder

Representations from Transformers (BERT) to automatically

classify tweets. The classifier achieved an F1 score of 0.64 for

differentiating three classes. Given that “probable” or “possible”

tweets were primarily distributed in the states reporting

COVID-19 cases and posted before the first confirmed case,

the model could successfully identify candidate COVID-19 cases

and high-risk regions.

Similarly, Liu et al. (75) collected COVID-19-related Reddit

posts from North Carolina, which showed a similar trend of

observed confirmed cases and deaths as to the government

data. They further classified these posts while performing NER

to obtain mitigation types (such as distancing, disinfection,

personal protective equipment) and detection types (such as

symptoms, testing) and analyzed for a certain time period the

change of people’s sentiments toward masks in these posts.

For disease monitoring, Magge et al. (76) built a system to

collect symptoms and disease mentions from social media

platforms and normalized them to unified medical language

system (UMLS) terminology. Using deep learning methods

(such as BERT and RoBERTa) that were trained on multiple

available corpora (such as TwiMed, MedNorm, DS-NER), they

achieved an F1-score of 0.86 and 0.75 on DailyStrength and

Twitter datasets, respectively. They also applied their system on

Twitter posts to collect COVID-19 symptoms.

Users also share their opinions on COVID-19 measures

on Twitter by supporting, refuting, or just commenting on

them (77). These opinions from German-speaking countries

were manually labeled, and Beck et al. utilized predictions by

transformer-based models. Jalil et al. (71) performed sentiment

analysis on tweets’ text to classify them into positive, negative,

and neutral. For the analysis, they used the COVIDSenti dataset

(78) and reached the highest accuracy of 96.66% with the

proposed Multi-depth DistilBERT method. Table 6 provides an

overview of the use of social media and internet searches for

disease monitoring.

Pathogen sequences

Pathogens are, like any organism, under evolutionary

pressure and will thus mutate to optimize their adaptation to

the human host. Accordingly, different pathogenic variants will

occur over time. Deep learning approaches have recently been

introduced to identify such variants during sequencing (79).

In addition, phylogenetic tree inference, a classical approach

from computational biology based on a sequence alignment

followed by a statistical tree inference (either maximum
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TABLE 6 Included studies focusing on disease monitoring viamining

of social media and internet searches.

Study Aim Technique(s)

Ginsberg et al. (68) Analyzed search queries to

monitor influenza-like illness

Linear model

Missier et al. (70) Compared methods for

detecting disease related

tweets

SC and LDA

Jahanbin et al. (72) Developed text-mining

method for disease related

tweets

FAEMC-ID

Masri et al. (69) Used tweets to predict future

ZIKV cases

Auto-reg. prediction

Chen et al. (73) Collected COVID-19 related

tweets

Keyword collection

Klein et al. (74) Modeled the COVID-19

disease spread with associated

tweets

BERT

Beck et al. (77) Analyzed tweets about

reaction to COVID-19

measures

Ger-BERT

Liu et al. (75) Analyzed tweets for cases and

deaths and people’s

sentiments

NER

Magge et al. (76) Monitored COVID-19 disease

spread and collected

symptoms

BERT and RoBERTa

Jalil et al. (71) Analyzed tweets for people’s

sentiments and classified

them

DistilBERT

ZIKV, Zika-virus; SC, supervised classification; LDA, linear discriminant analysis;

FAEMC-ID, fuzzy algorithm for extraction; monitoring; and classification of infectious

diseases; Auto-reg., auto-regression; BERT, bidirectional encoder representations

from transformers; Ger-BERT, German bidirectional encoder representations

from transformers; NER, named entity recognition; RoBERTa, robustly optimized

bidirectional encoder representations from transformers approach; DistilBERT, distilled

bidirectional encoder representations from transformers.

likelihood or Markov Chain Monte Carlo) with a dedicated

likelihood function (80), is often used. Incorporation of spatio-

temporal information into the construction of phylogenies could

potentially provide important information on the spread of virus

variants. Still, phylogenies are not only informed by pathogen

sequences, but also by external factors, such as the sampling

process, the proportion of the pathogen genome sequenced in

each sample, the quality of the sequence data, and the mutation

rate of the pathogen itself (81).

Several authors have suggested approaches to construct

temporal phylogenies (82–84) and applied this strategy to SARS-

CoV-2 (85–87). More recently, Didelot et al. (88) showed

that transmission events between hosts could be estimated by

coloring different hosts in a phylogenetic tree reconstruction.

Müller et al. (89) extended phylogenies to networks by

incorporating recombination events and applied this strategy

to influenza.

New variants may influence the transmission rate of a

pathogen. Davies et al. (90) first retrospectively estimated the

lineage-dependent growth rates of SARS-CoV-2. Based on that,

they further calculated the expected competitive advantage of

a new lineage and predicted the impact on the reproduction

and the transmission rates via a discrete-time compartmental

spatio-temporal disease model.

Decision support

Healthcare resource planning

Modeling can not only help to alert and monitor a pandemic

situation, but forecasts generated by corresponding models can

also give guidance on necessary actions. Therefore, there is

no clear boundary between early warning, monitoring, and

decision support.

One important aspect of decision support is the

management and planning of available public healthcare

resources. In this regard, Ivorra et al. (91) developed a

compartmental model for China, in which they included

the hospitalization rate. With the help of their model, they

estimated and planned the demand for clinical beds. With

a similar ambition in mind, Hadley et al. (63) proposed an

agent-based modeling approach. Lorenzen et al. (92) developed

a machine learning model (Random Forest) using electronic

health records of more than 40,000 patients in Denmark, which

predicted the number of ICU admissions and ventilator use.

Kandula et al. (93) developed a compartmental model for

predicting influenza hospitalization rates using Google search

trends. Moa et al. (94) proposed a linear model to forecast the

overall severity of an influenza season in Australia based on only

five parameters.

Planning and evaluating NPIs

In addition to healthcare resource planning a further aspect

of modeling is to support the planning and evaluation of

NPIs. In this context three different types of studies have been

conducted (see Table 7):

• those that retrospectively evaluate the effects of NPIs (26,

27, 31–34, 40, 48, 49, 56, 60, 97, 98),

• those that make forecasts on the effects of a specified NPI in

the sense of scenario planning (26, 31, 35, 38, 50–55, 58, 96),

• and those that develop methods for optimal control policy

identification (59, 100–104).
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TABLE 7 Included studies covering decision support.

Studies Technique(s)

Healthcare resource planning

Ivorra (91), Kandula et al. (93) CM: including or predicting

hospitalization rates

Moa et al. (94) Linear model

Hadley et al. (63) Agent-based modeling

Lorenzen et al. (92) Random Forest using electronic

health records

NPI evaluation

Schüler et al. (40), Aravindakshan

et al. (26), Khedher et al. (38),

Giordano et al. (31), Prague et al.

(35), Dandekar and Barbastathis

(56)

CM: introducing NPI effect on

transmission rate and reproduction

number

Mader and Rüttenauer (95) SCT: analyze effect of vaccinations

NPI scenario planning and forecasts

Khedher et al. (38), Giordano et al.

(31), Prague et al. (35), Kissler et al.

(96)

CM

Staffini et al. (53), Shattock et al.

(55), Colosi et al. (54), Hoertel et al.

(50), Hinch et al. (51), Kerr et al.

(52), Silva et al. (58)

ABM and hybrid ABM

Flaxman et al. (97) Bayesian hierarchical model

Yeung et al. (49), Nader et al. (48),

Barros et al. (98), Haug et al. (99)

ML

NPI development

Kwak et al. (100), Colas et al. (101),

Khadilkar et al. (102),

Padmanabhan et al. (103), Chadi

and Mousannif (104)

CM and RL: including health and

economic costs

Capobianco et al. (59) Hybrid ABM and RL

CM, compartmental models; NPI, non-pharmaceutical intervention; SCT, synthetic

control technique; ABM, agent-based modeling; ML, machine learning; RL,

reinforcement learning.

Retrospective evaluation of NPIs is generally challenged by

the fact that NPIs are highly heterogeneous. Historically, often

several NPIs have been applied at the same time, and there

is neither a control group nor any kind of randomization.

Systematic differences across countries in terms of demography,

population density, climate, or cultural aspects complicates

using of one country as a control for another one, even if

typical statistical matching or weighting techniques known from

observational studies are applied.Moreover, there is the question

of the corresponding outcome to consider, given that observed

incident cases will depend on the applied test strategy and thus

underestimate the true number of infected people.

One type of approach has been to try to associate NPIs

with the spatio-temporal modeling of disease spread, e.g.,

by introducing the NPI effect on the transmission rate and

reproduction number in a compartmental model (26, 31, 35, 38,

40, 56). Correspondingly, authors have then used such models

to make scenario forecasts, e.g., regarding the effect of social

distancing (31, 35, 38, 96). Also, other types of spatio-temporal

disease spreading models have been used for the same purpose,

such as ABM approaches (50–55, 58), Bayesian hierarchical

modeling (97), and machine learning (48, 49, 98, 99). The work

of Yeung et al. specifically investigated the influence of socio-

cultural aspects on the growth rate of COVID-19 incidences

in 114 countries. The work by Barros et al. considered causal

machine learning techniques.

Also, more traditional statistical analysis approaches have

been applied recently, such as the synthetic control technique

(95), which uses incident case numbers from the same country in

the treatment and control group, depending on when anNPI has

been put in place. Additionally, Mader and Rüttenauer analyzed

the effect of vaccinations.

To find optimal control policies, offline RL strategies have

been proposed by several authors. While Kwak et al. (100)

solely relied on deep learning and only focused on health

aspects, other studies (101–104) focused on a hybrid modeling

strategy incorporating an extended SEIR compartmental model

for predicting potential NPI effects. Moreover, the latter studies

incorporated the economic costs of NPIs as well. Finally,

Capobianco et al. (59) combined their hybrid ABM approach

with offline RL to optimize the reopening policies.

Discussion

Statistical tests have been used traditionally to detect

outbreaks based on surveillance data. Recent years have

witnessed an increasing use of other data sources, such as social

media and internet searches. Even though such data types are

likely to contain relevant signals, these are most likely biased

toward certain user communities. Hence, early warning signals

detected via “digital traces” should be seen as a complement to

traditional surveillance data, but not as a replacement.

Regarding the monitoring of pandemics, specifically, the

existing modeling efforts for COVID-19 have highlighted

numerous challenges, such as the unknown number of truly

infected persons (due to limitations of tests and test strategies,

or due to asymptomatic disease) and the dependency on the

spatio-temporal spread on external factors, such as NPIs and the

compliance to those measures, weather, population density, and

socio-economic aspects. Hence, many authors have extended

traditional epidemiological compartment models and combined

them with statistical inference and machine learning techniques,

partially resulting in hybrid neural network /compartmental

modeling approaches. While these are clear advancements, it
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should be seen that the spatio-temporal spread of an infectious

disease is generally determined by a complex interplay between

a pathogen (e.g., its genetic adaptability), individual (e.g., genetic

variants, disease history, lifestyle, socio-economic conditions),

society (e.g., testing strategy, vaccination rate, NPIs and

compliance to those, population density) and environment (e.g.,

climate, weather). NLP techniques could help at this point to

mine social media and news articles to complement surveillance

data and to gain an understanding of the sentiment of the

population with respect to specific NPIs, while at the same time

taking into consideration the biases of this type of data and the

principally limited accuracy of text analytics as such. Altogether,

further developments ofmodeling approaches are needed, which

better combine data modalities across all relevant scales, i.e.,

ranging from the pathogen up to the environment level. This,

however, will in turn require better availability, integration,

and accessibility of necessary data, including electronic health

records. The investment into such a data infrastructure is thus a

prerequisite tomaking significant progress on themodeling side.

Models will only have an impact if they can support the

human decision process. In recognition of this fact, several

authors have tried to support scenario planning by associating

NPIs with the predicted spatio-temporal development of the

disease, or by forecasting healthcare resources and economic

impact. While forecasts under the scenario of no further taken

action might be improved by considering the aspects mentioned

above for spatio-temporal modeling, predicting the effect of

an NPI is principally challenged by several aspects: (i) The

NPI could be new and thus there is no direct historical

comparison, and (ii) there is always a lack of a proper control

group, i.e., it is not possible to perform a study akin to a

Randomized Clinical Trial. RL techniques are thus generally

challenged by this inability to experiment with a new policy. It

is thus unlikely that decision-makers would immediately trust

the recommendation of an optimal NPI estimated by an RL

algorithm. A better approach might hence be to offer a ranking

of the predicted effectiveness of multiple NPIs together with the

estimated economic costs, which should not be neglected.

Conclusion

In response to the ongoing COVID-19 pandemic, many

countries currently review their strategies to be better prepared

against future outbreaks. One important aspect in this context

is to invest in data analytical capabilities, including modeling.

Computational modeling approaches could help to earlier detect

an outbreak, monitor the spatio-temporal spread, and to support

the decision-making process by governmental authorities.

In this paper, we reviewed the diversity of existing modeling

approaches for all three areas. Of course, each model is adjusted

to a specific healthcare-related question by fitting it to particular

data. In conclusion, models for early outbreak detection as well

as spatio-temporal disease spread could be further improved

by better combining and integrating data modalities across

multiple scales. The ongoing COVID-19 pandemic in this

context provides a “global laboratory” with the opportunity to

retrospectively validate existing techniques as well as develop

new ones. At the same, there is a need for funding bodies

and governmental decision-makers to invest in corresponding

data ecosystems. Models are likely to increase their impact

on decision-making if they become more accurate and are

at the same time explainable. Showing point estimates of a

black-boxmodel without highlighting epistemic uncertainties or

providing further explanations of the most influential features is

thus discouraged.
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