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Chronic inflammation is closely related to chronic inflammatory diseases,

autoimmune diseases and cancer. Few studies have evaluated the e�ects

of exposure to multiple chemical combinations on immunoinflammatory

related indicators and their possible molecular mechanisms. This study

explored the e�ect of exposure to various chemicals on immune-inflammatory

biomarkers and its molecular mechanism. Using data from 1,723 participants

in the National Health and Nutrition Examination Survey (NHANES, 2011–

2012), the aim was to determine the association between chemical mixtures

and immunoinflammatory biomarkers [including White blood cell (Wbc),

neutrophil (Neu), lymphocytes (Lym), and Neutrophil-to-lymphocyte ratio

(NLR)] using linear regression model, weighted quantile sum regression

(WQSR) model, and bayesian nuclear machine regression (BKMR) model.

Meanwhile, functional enrichment analysis and protein–protein interaction

network establishment were performed to explore the molecular mechanism

of inflammation induced by high-weight chemicals. In the linear regression

model established for each single chemical, the four immunoinflammatory

biomarkers were positively correlated with polycyclic aromatic hydrocarbons

(PAHs), negatively correlated with perfluoroalkyl substances (PFASs), and

positively or negatively correlated with metallic and non-metallic elements.

WQSR model showed that cadmium (Cd), perfluorooctane sulfonic acid

(PFOS) and perfluorodecanoic acid (PFDE) had the highest weights. In BKMR

analysis, the overall e�ect of chemical mixtures was significantly associated

with Lym and showed an increasing trend. The hub genes in high-weight

chemicals inflammation-related genes were interleukin-6 (IL6), tumor necrosis

factor (TNF), and interleukin-1B (IL1B), etc. They were mainly enriched in

inflammatory response, Cytokine-cytokine receptor interaction, Th17 cell

di�erentiation and IL-17 signaling pathway. The above results show that

exposure to environmental chemical cocktails primarily promotes an increase
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in Lym across the immune-inflammatory spectrum. The mechanism leading

to the inflammatory response may be related to the activation of IL-6 amplifier

by the co-exposure of environmental chemicals.

KEYWORDS

chemical mixtures, inflammation, peripheral blood, co-exposure, environmental

pollution

Introduction

Immune system is a disease defense system composed of

a series of biological structures and processes in organisms.

Leukocyte is a part of immune system, which refers to the

general name of cells that can produce specific immune

response. Neutrophils and lymphocytes account for 60–70% and

18–42% of the total number of leukocytes, respectively. They

are responsible for immune surveillance, immune defense and

immune homeostasis in vivo, and their quantity and quality

are closely related to human health (1, 2). Neutrophils are

associated with acute injury and repair, chronic inflammatory

process, cancer and autoimmunity. Lymphocytes mediate

cellular immunity, humoral immunity and killing effect on

tumor cells and virus-infected cells (3). The neutrophil–

lymphocyte ratio (NLR) is a cost-effective biomarker reflecting

the balance between systemic inflammation and immunity. The

quantitative evidence presented suggests an association between

NLR and poor outcomes in patients across a wide spectrum

of diagnoses (such as coronary heart disease, psoriasis, stroke,

diabetes, obesity, metabolic syndrome, psychiatric diagnosis,

cancer of solid organs, anemia, stress, etc.), stages of disease and

courses of treatment (4–10).

More and more convincing evidence shows that chemical

exposure in the environment is related to the increasing

incidence of many chronic diseases, including tumors. It is

reported that perfluoroalkyl substances (PFASs) exposure

can increase the risk of some cancers/malignancies, and

may also lead to elevated cholesterol levels, changes in

liver enzymes, decreased vaccine response, cardiovascular

diseases, immune-mediated diseases, increased risk of

hypertension or preeclampsia in pregnant women, and a

slight decrease in the birth weight of babies (11). Long-

term exposure to polycyclic aromatic hydrocarbons (PAHs)

can mediate adverse effects on immune system, which is

teratogenic, genotoxicity, and carcinogenic. It is related to

cardiovascular diseases, diabetes, liver and kidney damage,

etc., and is also a risk factor for early childhood wheezing,

multiple sclerosis and stroke (12, 13). Metal exposure

occurs in a chronic way, leading to a pathogenic immune

response that lasts for months or years. Therefore, chronic

inflammatory reaction, allergic and autoimmune diseases

have been reported to be affected by environmental metal

exposure (14).

In a word, the above three kinds of environmental

pollutants are exposed to people almost every day, and

they are related to many chronic diseases, such as tumor

and immune diseases. Wbc, Neu, Lym, and NLR are very

important biomarkers related to immune inflammation.

The impact of these environmental pollutants on the three

immune-inflammatory biomarkers may be a potential

mechanism for the high incidence of various diseases. To

our knowledge, there are few large-scale epidemiological

studies on the effects of co-exposure of PFASs, PAHs,

metallic and nonmetallic elements on immune-inflammatory

biomarkers. In the present research, a cross-sectional study

was conducted based on population data from the NHANES

(2011–2012). The impact of single chemical contaminant

was analyzed using multiple logistic regression. Furthermore,

weighted quantile sum regression (WQSR) and Bayesian

kernel machine regression (BKMR) models were applied to

investigate the roles of chemicals co-exposure (PFASs, PAHs,

metallic and non-metallic elements) in peripheral blood

immune-inflammatory indicators. The results provided novel

epidemiological evidence on the associations of chemicals

co-exposure with immune inflammatory risk, and contributed

to the identification of the hazardous factors of immune

inflammatory reaction.

Materials and methods

Study population

The National Health and Nutrition Examination Survey

(NHANES) is a cross-sectional study that aims to assess the

health and nutrition status of the American population by

collecting demographic, dietary, inspection and laboratory data.

NHANES survey was approved by the Ethics Review Committee

of the National Health Statistics Research Center. We have

integrated the data of six cycles from 2005 to 2016, and found

that only the data of this cycle from 2011 to 2012 is complete and

contains the measured values of Wbc, Neu, Lym, PFASs, PAHs,

metallic and non-metallic elements. Then we further integrated

the data of this cycle from 2011 to 2012. Finally, the basic

demographic information and the measurement data of Wbc,

Neu, Lym, PFASs, PAHs, metallic and non-metallic elements of

1,723 subjects were complete and had no missing values, which
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FIGURE 1

Flowchart for inclusion of study participants.

can be used as the final included data of this study. The flow chart

is presented in Figure 1.

Measurement of environmental
chemicals and outcomes

Blood and urine samples were collected at the Mobile

Testing Center (MECs) and stored temporarily at −20 ◦C until

analyzed by the Laboratory Science Division, Organic Analytical

Toxicology Division, National Center for Environmental Health

(Atlanta, GA). Complete information on chemical measurement

methods is available in the NHANES laboratory method. In

this study, we included 21 environmental chemicals (including

7 PFASs, 10 PAHs, and 4 metallic and non-metallic elements)

with potential effects on immunoinflammatory biomarkers

(Supplementary Table 1). According to the NHANES Analysis

Standard, the limit of detection (LOD) divided by the square

root of two was used to replace the values below the LOD. In

addition, natural logarithm transformation (LN transformation)

is performed on the concentration of environmental chemicals

to improve the normal distribution because of their right-

skewed distribution.

Covariate

The potential covariates were identified in this study based

on subjective knowledge, and a literature review (15–18). The

full model was then built using these variables. Covariates

including age, gender, ethnicity, education levels, income and

body mass index (BMI) were obtained by direct interview. Age

was treated as continuous variables. The categories of other

covariates were as follows: gender (female, male), ethnicity

(White, Black, Mexican, other), education levels (<6th grade, 6–

9th grade, 9–12th grade, College graduate or above, Some college

or AA degree), BMI (<25 kg/m2, 25 kg/m2 < 30 kg/m2, and 30

kg/m2), income (0–20,000$, 20,000–55,000$, 55,000–100,000$,

and >100,000$).

Statistical analysis

Correlation among chemicals and immune
inflammation indicators

We used the measured values of co-exposed chemicals and

immune-inflammatory markers to conduct Pearson correlation

analysis within and between groups to study the correlation
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strength among 21 chemicals and 4 immune inflammation

indicators. The R package “ggcorrplot (version 0.1.3)” was used

to calculate the correlation coefficient with a P-value < 0.01

being regarded as valid correlations.

Multivariate linear regression

First, geometric mean (GM), arithmetic mean (AM) and

interquartile ranges (IQR) were calculated for each exposure and

immune inflammation index. Then, we fitted the multivariate

linear regression to evaluate the effect of a single chemical

on immune inflammation indicators by comparing Q2, Q3,

Q4 to Q1. We estimated the effects of exposures on immune

inflammation indicators of each quantile compared with the

reference β (the coefficient of the multivariate linear model).

We also calculated the P for trend by fitting the level-converted

chemical concentration (ln-transformed) into our linear model

to ensure the dose-response evidence of our results. We adjusted

all the multiple linear models based on age, gender, ethnicity,

education levels and BMI.

WQSR model

The WQSR, a supervised approach, was used to evaluate the

impact of environmental mixtures and identify the predominant

exposure (19). As part of the procedure, the study sample

was randomly divided into a validation dataset (60%) and a

training dataset (40%). In the training dataset, every chemical

was first scored into quartiles. After that, a total quantile score

was created for each individual by summing the quartiles.

The empirical weights of each chemical in the mixture

were estimated through Bootstrapping using the training data

set. Then these weights were used to create WQSR scores

representing the whole mixture, and their statistical significance

was tested in the validation dataset (20). Chemicals with an

estimated weight > 0.048 (1/21) were considered to have a

significant contribution to WQSR score (20). As the WQSR

method was based on the assumption that all mixed chemicals

have the same effect on the outcome, we evaluated the positive

and negative WQSR scores, respectively. The weight of WQSR

score was estimated using 1,000 bootstrap samples from the

training data set (40%), and the statistical significance of WQSR

score of immune-inflammatory spectrum was tested in the

validation data set (60%) (19). WQSR is implemented with R

package“gWQS” (version 3.0.4).

BKMR model

BKMR is a supervised method to identify the uncertain

exposure-outcome relationship by non-parametric method

(kernel function) and then evaluate the exposure mixtures.

BKMR can model the exposure-response function flexibly

without prior explanation (21). Considering the high correlation

between similar chemicals and the non-additive and non-

linear relationship between chemicals, this method not only

parametrically models the additional covariates of interest,

but also estimates the potential interaction and non-linear

correlation. The equation expression of BKMR model is

as follows:

Yi = h(PFDEi, PFOSi, PFUAi, PFNAi, PFOAi, PFHSi,MPAHi,

P01i . . . )+ βqZi+ ei

The function h in the equation is an exposure-reaction

function that can take into account the non-linearity and/or

interaction among various chemical components in the mixture,

and Z = Z1, Z2 . . . , Zq indicates that there are q potential

confounding factors, Zi, and β represented covariates and their

coefficients, respectively. In this study, Gaussian kernel function

with component variable selection strategy was used, and all

chemicals were standardized and ln transformed. After 20,000

iterations of fitting the final model with Markov Chain Monte

Carlo (MCMC) sampler, the posterior inclusion probabilities

(PIPs) of each chemical was calculated, and the estimated value

of exposure-outcome function was generated. The PIP threshold

of 0.5 is usually used to judge whether this chemical is important

(22). BKMR is helpful to understand the health consequences of

single exposure and their interactions. In order to evaluate the

overall effect of chemical combination on immune inflammatory

cell indicators, we first compared the results when all chemicals

were set at 25th, 30th, 35th, 40th, 45th, 55th, 60th, 65th, 70th, or

75th percentile with those when all chemicals were set at 50th

percentile. Second, interactions between chemicals can also be

assessed by estimating the change in outcome level associated

with a change in individual chemical concentrations, at varying

levels (e.g. 25th, 50th, 75th percentile) of one or more additional

chemical (20). R software package “bkmr” (version 0.2.0) was

used for analysis.

Functional enrichment analysis and
protein–protein interaction network

Establishment

In the present study, the chemicals - genes associated

with inflammation were obtained from CTD (http://CTD.

mdibl.org), which is a robust, publicly available database

that provides manually curated information about chemical–

gene/protein interactions. In order to explore chemical-immune

inflammation genes function, pathway and disease enrichment

characteristics, Gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway and DisGeNET

(DGN) enrichment analyses were evaluated using R packages

“clusterProfiler (version 4.2.2) ” and “DOSE (version 3.20.1)”

(23). In order to further discover and explore the chemical-

immune inflammation genes interaction at the protein level,

chemical-immune inflammation genes were uploaded to the
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TABLE 1 Characteristics of study population (n = 1,723).

Covariate N (%)

Gender Male 879 (48.98)

Female 844 (51.02)

Age (years) 12–24 470 (27.28)

25–40 399 (23.16)

41–59 434 (25.19)

>60 420 (24.38)

Race/ethnicity White 606 (35.17)

Black 446 (25.89)

Mexican 193 (11.20)

Other 478 (27.74)

Body mass index <25 kg/m2 649 (37.67)

25 kg/m2 < 30 kg/m2 513 (29.78)

30 kg/m2 561 (32.56)

Income 0–20,000$ 397 (23.04)

20,000–55,000$ 701 (40.69)

55,000–100,000$ 328 (19.04)

>100,000$ 297 (17.24)

Education <6th grade 14 (0.81)

6–9th grade 297 (17.24)

9–12th grade 593 (24.42)

College graduate or above 393 (22.81)

Some college or AA degree 426 (24.72)

Search Tool for the Retrieval of Interacting Genes (STRING)

database (Version 10.0, http://string-db.org) and a combined

score > 0.4 (medium confidence score) was considered

significant. Cytoscape software (Version 3.4.0, http://www.

cytoscape.org/) was then used to construct a protein-protein

interaction (PPI) network (24).

Results

Characteristics of eligible subjects

A total of 1,723 participants were included in this study,

including 879 males, accounting for 51.02% of the total number

of participants, and 844 females, accounting for 48.98%. Other

demographic details (for example, age and race), socioeconomic

status (for example, education level and annual household

income), and Body Mass Index are shown in Table 1.

Associations between environmental
chemicals and immunoinflammatory

Biomarkers

Supplementary Table 1 describes the distribution of

21 chemical exposures and 4 peripheral blood immune-

inflammatory biomarkers. The detection rate of PFASs was

87.5%, PAHs was over 95%, As was 96.5%, the other three

metallic and nonmetallic elements were 88.4%, and the

detection rate of peripheral blood immune inflammatory

cells was 88.4%. Supplementary Figure 1 displays the Pearson

correlation coefficients (Corr) among 21 chemicals and 4

immune inflammation indicators (P-value < 0.01, Corr ranging

from −0.16 to 0.95). The same kind of chemicals tend to have

strong correlation, and most of them are positively correlated

with each other. For example, there is a strong correlation

between P04 and P03 (Corr = 0.95). The correlation between

different kinds of chemicals is weak and mostly negative, for

example, there is a weak negative correlation between P02 and

PFUA (Corr = −0.15). Environmental chemicals clustered and

altered in a categorical way, indicating that a highly coordinated

exposome regulatory network underlies the mechanism of

immune- inflammatory changes in human body.

Generalized linear regression model to
assess the association between
environmental chemicals and
immunoinflammatory biomarkers

We used multiple linear regression to assess the association

of each chemical with immunoinflammatory biomarkers

(Supplementary Table 2). In multiple linear regression analysis,

after adjusting for all covariates, Wbc was negatively correlated

with PFDE and PFUA in PFASs, positively correlated with all

PAHs, negatively correlated with As, and positively correlated

with Cd and Hg compared to the first quartile exposure level.

Neu was negatively correlated with PFDE, PFOS, PFUA and

PFNA in PFASs, positively correlated with all PAHs, negatively

correlated with As and Hg, and positively correlated with

Cd. Lym was positively correlated only with PFNA, P01, P02,

P03, P04, As, and Cd. NLR was negatively correlated with

PFDE, PFOS, PFUA, PFNA and PFOA, positively correlated

with P02, P03 and P04, P05, P07, P10, P17, and P19, and

negatively correlated with Hg. Overall, we found that four

immunoinflammatory biomarkers were positively correlated

with PAHs, negatively correlated with PFASs, and positively or

negatively correlated with metal or non-metal.

WQSR model to assess the association of
environmental chemicals co-exposure
with immunoinflammatory biomarkers

To analyze changes in the immune-inflammatory indicators

elicited by mixed exposures, we fitted a WQSR model to assess

the effects of exposure to 21 environmental chemicals on

immune-inflammatory indices (Supplementary Table 3).

Among the positive correlations, total exposure to
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TABLE 2 A summary of results using the three approaches to evaluate the link between 21 chemicals and immunoinflammatory biomarkers

(n = 1,723).

Approaches Indicators Wbc Neu Lym NLR

Linear regression

model (chemicals as

continuous

variables)

Strong negative associations (lightest β indicators) PFDE, PFUA, As PFDE, PFUA, PFOS As PFDE, Hg, PFUA

Strong positive associations (highest β indicators) P02, P04, P03 P02, P04, P03 P01, P02, P03 P02, P04, P01

QWSR model Highest negative weights PFOS, PFDE, MPAH Not significant Not significant PFDE, Hg, PFUA

Highest positive weights Cd, MPAH, P07 Cd, MPAH, P07 Cd, P01, PFNA Not significant

BKMR model Negative trend (highest PIPs) PFUA, As, PFDE PFUA, As, PFDE Not significant PFUA, P01, P17

Positive trend (highest PIPs) P04, P03, P01 P04, P03, P02 PFHS, As, PFOA PFDE, Hg, PFOS

environmental chemicals was positively correlated with

Wbc, Neu and Lym with Cd, MPAH, and P07 had greater effects

on Wbc and Neu, and Cd, P01, and PFNA were relatively high-

weight chemicals in the Lym model. In the negative correlation,

total environmental chemical exposure was significantly

negatively correlated with immune-inflammatory indices (Wbc,

NLR), with PFOS and PFDE having a greater effect onWbc, and

PFDE and Hg having a greater effect on NLR (Figure 2).

The relationship between chemical levels
and immunoinflammatory

Biomarkers using the BKMR model

We used the BKMR approach to further identify the impacts

of chemical mixtures, taking into account the previous study’s

limits of linearity and interactions. Supplementary Table 4

summarizes the PIPs determined by the BKMR model for the

chemical. PIPs were used as a variable importance measure,

with higher values (closer to 1) indicating greater significance.

PFUA had the highest PIPs of the total chemicals in models

of Wbc, Neu and NLR, with a downward trend, while PFHS

had the highest PIPs in Lym model, with an upward trend, and

the total chemicals were fixed at 25th, 50th, and 75th percentile

(Supplementary Figure 2).

The total effect of the different kinds of chemical mixtures

(total chemical mixtures, PFASs, PAHs and Metals) on

immunoinflammatory biomarkers is shown in Figure 3. When

total chemical mixtures were at above the 60th percentile,

compared to the 50th percentile, Wbc and Lym increased

significantly, while NLR decreased significantly, Neu has no

clear trend.

We have also investigated the univariate (single chemical)

exposure response functions of chemical exposure on

immunoinflammatory biomarkers (Supplementary Figure 3).

The results indicated that PFAHs contained negative

associations with the 4 immunoinflammatory biomarkers,

while PAHs exhibited inverse relationship. Metallic and

non-metallic elements have positive and negative trends.

Functional enrichment analysis and PPI
network establishment of high-weight
chemicals inflammation-related genes

Table 2 shows the results of immune inflammation-related

targets of 21 chemicals obtained through the analysis of 3

models. Finally, 9 high-weight chemicals including PFDE,

PFUA, PFOS, As, Hg, P01, P02, P04, and Cd were obtained.

From CTD data, 102 genes related to inflammation of high-

weight chemicals were obtained (Supplementary Table 5).

Through enrichment analysis of high-weight chemicals

inflammation-related genes, we learned the relationship between

these genes and functions, pathways, and diseases. These

genes were enriched in the function of inflammatory response

and positive regulation of cytokine production (Figure 4A).

The main pathways were the Cytokine-cytokine receptor

interaction, Th17 cell differentiation and the IL-17 signaling

pathway (Figure 4B). The diseases were mainly enriched in

Pneumonitis, Atopic dermatitis, Gastritis, and Middle Cerebral

Artery Occlusion (Figure 4C).

To elucidate the interaction between high-weight chemicals

inflammation-related genes, Cytoscape visualized the STRING-

based PPI network for inflammation-related genes of high-

weight chemicals. By analyzing the 102 genes, we got a network

interaction graph with 96 nodes and 1,387 edges, where nodes

represented genes, edges represented connections between two

genes, and degree value represented the strength of association

between genes (Figure 5). More precisely, the top 10 hub genes

of inflammation-related genes of high-weight chemicals were

IL6, TNF, IL1B, IL10, AKT1, CXCL8, CCL2, STAT3, VEGFA,

and MMP9 (Figure 5).

Discussion

In this study, single and multiple exposure models (BKMR

model and WQSR model) were integrated to evaluate the

immune-inflammatory response caused by exposure of mixed

chemicals, and the relationship between immune-inflammatory
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FIGURE 2

WQSR weights in the WQSR model between immunoinflammatory biomarkers and WQSR index of total 21 environmental chemical mixtures.
(A) Weights in WQSR index in the models of Wbc-positive. (B) Weights in WQSR index in the models of Wbc-negative. (C) Weights in WQSR
index in the models of Neu-positive. (D) Weights in WQSR index in the models of Lym-positive. (E) Weights in WQSR index in the models of
NLR-negative.

indicators and co-exposure of environmental chemicals was

comprehensively explored. Using three statistical models, the

study determined the effect of chemical combinations on

immunoinflammatory biomarkers. To our knowledge, this is

the first study to examine the association between chemical

exposure and parameters related to peripheral blood immune

inflammation. On the one hand, generalized linear regression

showed that three kinds of chemicals (PFASs, PAHs and

Metals) were related to peripheral blood immune inflammation

related indexes. In the positive WQSR model, WQSR showed

that Cd had the greatest influence on Wbc, Neu and Lym,

while in the negative WQSR model, WQSR showed that

PFOS and PFDE had the largest weights of Wbc and NLR,

respectively. On the other hand, in the BKMR model, we

found that the univariate exposure response function was

approximately correlated with the single exposure model, and

mixed exposure was significantly positively correlated with Lym

and significantly negatively correlated with NLR. Although

mixed exposure was not significant with Wbc, there was an

increasing trend, while there was no obvious monotonic trend

with Neu.

It is well known that generalized linear regressionmodels are

commonly used to assess the health effects of chemicals when

they are limited to one chemical or a group of similar chemicals,

which is simple and easy to understand. In this study, we found

high correlations among the same chemicals. Therefore, when

the research object is non-linear interaction, multicollinearity,

exposure to multiple chemicals, or there is a high correlation

between chemicals, the generalized linear regression model

is not applicable, and the positive or negative correlation

results between chemicals and immune inflammation related

indicators will be distorted due to the mixed influence of other

chemicals (25).

People seldom come into contact with a single chemical

substance in the real environment, but are generally affected by

a variety of chemical substances, and there are interactions and
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FIGURE 3

Combined e�ects of the total chemical mixtures and di�erent subgroups (PFASs, PAHs, Metals and non-metals) on Wbc, Neu, Lym, and NLR
when all the chemicals were held at particular percentiles compared to their medians. The results were assessed by the BKMR model and
adjusted for age, gender, ethnicity, education levels, BMI.

non-linear interrelations among them. Therefore, it is necessary

to explore the impact of mixed exposure on human health based

on the two new methods of WQSR and BKMR. When WQSR is

used to study the co-exposure effect of chemical mixtures, this

method can only evaluate the co-exposure effect of chemicals

in a single effect direction, but it has limitations in evaluating

the interaction between chemicals and the double effect

direction (19). BKMR is a supervised method for evaluating

exposure mixtures, which characterizes the co-exposure effects

under different effect directions by non-parametric methods

(especially kernel functions). The method can also evaluate

potential interactions and non-linear relationships. However,

BKMR has limitations when estimating involves simultaneous

exposure to high and low levels of chemicals (21). This

study integrates various statistical methods to evaluate the

effects of chemical mixture co-exposures on the immune-

inflammation indicators, demonstrating that mixed chemical

exposures (PFAHs, PAHs, Metallic and non-metallic elements)

can indeed affect the immune-inflammation indicators, which

in turn affects health.

In this study, we found different trends in the influence

of different chemicals on immune-inflammatory indicators.

Therefore, in the case of co-exposure to multiple chemicals, the

final influence trend of immune-inflammatory indicators may

be influenced by exposure measurement of different chemicals,

and the higher exposure measurement has a higher weight on

the overall trend. In this study, we found that PFDE, PFUA, As

and Hg in the comprehensive exposure chemicals had a high

negative weight on the immune inflammation spectrum, while

P01, P02, P04, and Cd had a high positive weight on the immune

inflammation spectrum.

PFASs belong to long-chain perfluoroalkyl carboxylic acids

(PFDE and PFUA, etc.) with significant persistence and

bioaccumulation potential (26), which have been widely used

in food packaging, household cleaning products, furniture,

interior decoration, textiles, cosmetics, medical equipment,

and other fields (27–29). Polycyclic aromatic hydrocarbons

(PAHs) are a group of chemicals formed during the incomplete

combustion of coal, oil, gas, and garbage including vehicle

exhaust, bitumen, coal tar, wildfires, agricultural burning, etc.,

(13, 30). Arsenic (As) is a toxic metal that is widely distributed

in the environment and is present in soil, food, and water,

leading to unavoidable human exposure to arsenic. Cadmium

is mainly released from nickel-cadmium batteries, coatings and

coatings, plastic stabilizers, fossil fuel combustion, phosphate

fertilizer and garbage incineration. Mercury pollution mainly
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FIGURE 4

Enrichment analysis of the chemicals – inflammation genes (A) Gene ontology (GO) functional enrichment analysis. (B) Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis. (C) DisGeNET (DGN) enrichment analysis.

comes from coal burning, non-ferrous metal production and

cement production (31).

Long-term abnormal action of immune-inflammatory cells

in the body can lead to IID (immune-inflammatory disease)

(32). One study noted an increased risk of myocardial infarction

(MI) with IIDs, 69% increased risk of RA, 41% increased risk

of psoriatic arthritis, and increased cardiovascular risk was also

observed in patients with psoriasis (33, 34). A recent study

showed that the presence of one IID increased the risk of patients

developing additional IIDs by 5–62%, and developing any two

secondary IIDs increases the risk by 3–75% (35).

This study found that when exposed to all chemicals

(PFAHs, PAHs, Metallic and non-metallic elements), Wbc and

Lym showed an increasing trend, NLR showed a decreasing

trend, while Neu showed no obvious monotonic trend. Since

neutrophils and lymphocytes are the main components of

white blood cells, NLR reflects the balance between the

two aspects of the immune system: acute and chronic

inflammation (indicated by neutrophil counts) and adaptive

immunity (lymphocyte counts) (6, 36). Therefore, lymphocyte

immunity is mainly activated under comprehensive chemical

exposure. Lymphocytes are composed of T lymphocytes, B

lymphocytes and NK cells, among which T lymphocytes are

involved in cellular immunity and are also considered to

be major drivers of many inflammatory and autoimmune

diseases (37).

Environmental pollutants (such as PAHs and PFASs) can

enter human body through respiratory tract, digestive tract

and skin, and interact with immune cells to enhance the

adaptive immune response of type 2 helper T lymphocytes

(Th2) and type 17 helper T lymphocytes (Th17) (38). Aromatic

hydrocarbon receptor (AhR) is a cytoplasmic environment

sensing receptor. High expression of AhR in Th17 cell can also

promote Th17 cell differentiation and is capable of crosstalk with

various inflammatory and antioxidant transcription factors,

such as RORγ T, STAT1, Nrf2 and NFκB (39). Dysregulation

of Th17 cell immunity can induce a variety of immune-

inflammatory diseases, such as asthma and chronic obstructive

pulmonary disease (COPD), periodontitis, rheumatoid arthritis,

systemic lupus erythematosus, psoriasis, systemic sclerosis, and

inflammatory bowel disease, etc., (40).

Inflammation is a complex process in which various cells,

such as B lymphocytes, T lymphocytes, epithelial cells, etc.),

pro-inflammatory cytokines [such as IL-1β, IL-6 and tumor
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FIGURE 5

Protein–protein interaction (PPI) network establishment of the chemicals – inflammation genes (A larger value leads to a larger size, and a larger
value leads to an orange color).

necrosis factor α (TNFα)], transcription factor nuclear factor κB

(NF-κB) and signal transduction and transcriptional activator

3 (STAT3) play important roles in inflammatory responses.

Among them, IL-6 is a pleiotropic cytokine that is a major

player in chronic inflammation (which is closely associated

with chronic inflammatory diseases, autoimmune diseases, and

cancer) and cytokine storm (such as the cytokine storm of

COVID-19) (41–45). The synergistic action of NF-κB and

STAT3 can induce super activation of NF-κB and subsequently

produce a variety of inflammatory factors (46). Since IL-6 is

a target of NF-κB, both NF-κB and STAT3 are activated in

non-immune cells, triggering a positive feedback loop for NF-

κB activation via the IL-6 STAT3 axis. This positive feedback

loop is called the IL-6 amplifier (IL-6 Amp), which can be

further enhanced because activated IL-6 Amp can enhance

chemokine production and recruit lymphocytes in lesions,

including Th17 cells (46–51). Inflammatory bowel disease,

including chronic inflammatory disease, autoimmune diseases

and cancer) is a non-immune cells and immune cells through

complex interactions between IL - 6 Amp induction, confirmed

the model between inflammation and cancer is a process of

continuous, rather than by tissue specificity immune tolerance
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and the destruction of the cancer-causing mutations cause

(52). In conclusion, exposure to mixed chemicals (PFASs,

PAHs, and Metals), as long-term pro-inflammatory factors

in human beings, induces chronic inflammation in human

body by triggering IL-6 Amp, which not only affects human

health, but also continuously increases medical expenditure

(53, 54).

This study is the first to describe the effects of a chemical

cocktail on immune inflammatory indicators. However, our

study has several limitations. First, due to the cross-sectional

design of the study, we were unable to determine a causal

relationship between immune-inflammatory markers and

chemical levels. Second, abnormal immune-inflammatory

indicators are a chronic biochemical process that develops over

a long period of time. Chemical exposure levels are determined

from blood or urine samples, which represent only recent

exposure and may not properly reflect long-term exposure.

Third, we have identified only a link between the chemical

mix in the general population and immune-inflammatory

indicators. More work is needed to further assess the effects

of chemical mixtures on immune-inflammatory indicators in

specific populations stratified by sex and age (workers, pregnant

women, etc.). Fourthly, due to the limited database of genes

induced by detected chemicals, some important weighted

chemicals in this study have not been retrieved in this database,

so there may be some deviations in the results obtained from

the analysis.

To our knowledge, this is the first study that environmental

chemicals (PFAHs, PAHs, metallic and non-metallic elements)

co-exposure measured in human blood or urine with peripheral

blood immune-inflammatory indicators. The results showed

that PFDE, PFUA, As and Hg had a high negative weight on

the immune inflammation spectrum, while P01, P02, P04, and

Cd had a high positive weight on the immune inflammation

spectrum, and the overall exposure trend was mainly to

promote lymphocyte-mediated immune inflammation. This

inflammatory response may be related to the activation of

IL-6 Amp by environmental chemicals. Although a potential

reverse causality cannot be ruled out due to the cross-

sectional study design. These results provide important evidence

and theoretical basis for exploring the promoting effects of

environmental chemical pollution on chronic inflammation

and immune- inflammatory diseases (chronic inflammatory

diseases, autoimmune diseases and cancer).

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: https://www.cdc.gov/nchs/nhanes/index.

htm.

Ethics statement

The studies involving human participants were reviewed

and approved by National Center for Health Statistics (NCHS)

Ethics Review Board.Written informed consent to participate in

this study was provided by the participants’ legal guardian/next

of kin.

Author contributions

YL: writing original draft, data curation, software, and

writing review and editing. ZZ: methodology, investigation,

and data curation. DH: methodology. YZ: investigation, data

curation, and funding acquisition. XY: project administration,

writing review and editing, and funding acquisition. SC: project

administration, writing review and editing, supervision, and

funding acquisition. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported by the Shaanxi Academy of

Traditional Chinese Medicine Nursery Cultivation Plan Project

(2021-09), National Natural Science Foundation of General

Project (82174386), and Shaanxi Provincial Key Industry

Innovation Chain (2021ZDLSF04-12 and 2019ZDLSF04-08).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.980987/full#supplementary-material

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.980987
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.frontiersin.org/articles/10.3389/fpubh.2022.980987/full#supplementary-material
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2022.980987

References

1. Alberts B, Johnson A, Lewis M, Raff M, Roberts K, Walter P. Leukocyte also
known asmacrophages functions and percentage breakdown. In:Molecular Biology
of the Cell. New York, NY: Garland Science (2002).

2. Omman RA, Kini AR. Leukocyte development, kinetics, and functions. In:
Keohane EM, Otto CN, Walenga JM, eds. Rodak’s Hematology. St. Louis, MO:
Elsevier (2020). p. 117–35.

3. Azab B, Bhatt VR, Phookan J, Murukutla S, Kohn N, Terjanian T, et al.
Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-
term mortality in breast cancer patients. Ann Surg Oncol. (2012) 19:217–
24. doi: 10.1245/s10434-011-1814-0

4. Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E, Berlanga-Taylor
AJ. Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of
systematic reviews and meta-analyses of observational studies. BMC Med. (2020)
18:360. doi: 10.1186/s12916-020-01817-1

5. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P,
Ocaña A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid
tumors: a systematic review and meta-analysis. J Natl Cancer Inst. (2014)
106:dju124. doi: 10.1093/jnci/dju124

6. Buonacera A, Stancanelli B, Colaci M, Malatino L. Neutrophil to lymphocyte
ratio: an emerging marker of the relationships between the immune system and
diseases. Int J Mol Sci. (2022) 23:3636. doi: 10.3390/ijms23073636

7. Mei Z, Shi L, Wang B, Yang J, Xiao Z, Du P, et al. Prognostic role of
pretreatment blood neutrophil-to-lymphocyte ratio in advanced cancer survivors:
a systematic review and meta-analysis of 66 cohort studies. Cancer Treat Rev.
(2017) 58:1–13. doi: 10.1016/j.ctrv.2017.05.005

8. Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future
perspectives. Bratisl Lek Listy. (2021) 122:474–88. doi: 10.4149/BLL_2021_078

9. Bhikram T, Sandor P. Neutrophil-lymphocyte ratios as inflammatory
biomarkers in psychiatric patients. Brain Behav Immun. (2022) 105:237–
46. doi: 10.1016/j.bbi.2022.07.006

10. Paliogiannis P, Satta R, Deligia G, Farina G, Bassu S, Mangoni
AA, et al. Associations between the neutrophil-to-lymphocyte and
the platelet-to-lymphocyte ratios and the presence and severity of
psoriasis: a systematic review and meta-analysis. Clin Exp Med. (2019)
19:37–45. doi: 10.1007/s10238-018-0538-x

11. Rogers RD, Reh CM, Breysse P. Advancing per- and polyfluoroalkyl
substances (PFAS) research: an overview of ATSDR and NCEH
activities and recommendations. J Expo Sci Environ Epidemiol. (2021)
31:961–71. doi: 10.1038/s41370-021-00316-6

12. Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental
pollutants and the immune response. Nat Immunol. (2020) 21:1486–
95. doi: 10.1038/s41590-020-0802-6

13. Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic
hydrocarbons: source, environmental impact, effect on human health and
remediation. Egyptian J Petrol. (2016) 25:107–23. doi: 10.1016/j.ejpe.2015.03.011

14. Herrera JAR, Thomsen ST, Jakobsen LS, Fagt S, Banasik K, Izarzugaza JM,
et al. The burden of disease of three food-associated heavy metals in clusters in the
Danish population - towards targeted public health strategies. Food Chem Toxicol.
(2021) 150:112072. doi: 10.1016/j.fct.2021.112072

15. Yuan Y, Meeker JD, Ferguson KK. Serum polybrominated diphenyl
ether (PBDE) concentrations in relation to biomarkers of oxidative stress and
inflammation: The National Health and Nutrition Examination Survey 2003–2004.
Sci Total Environ. (2017) 575:400-5. doi: 10.1016/j.scitotenv.2016.10.028

16. Geiger SD, Yao P, Vaughn MG, Qian Z. PFAS exposure and
overweight/obesity among children in a nationally representative sample.
Chemosphere. (2021) 268:128852. doi: 10.1016/j.chemosphere.2020.128852

17. Niehoff NM, Keil AP, O’Brien KM, Jackson BP, Karagas MR,
Weinberg CR, et al. Metals and trace elements in relation to body
mass index in a prospective study of US women. Environ Res. (2020)
184:109396. doi: 10.1016/j.envres.2020.109396

18. Scinicariello F, Buser MC. Urinary polycyclic aromatic hydrocarbons
and childhood obesity: NHANES. (2001–2006). Environ Health Perspect. (2014)
122:299–303. doi: 10.1289/ehp.1307234

19. Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization
of weighted quantile sum regression for highly correlated data in
a risk analysis setting. J Agric Biol Environ Stat. (2015) 20:100–
20. doi: 10.1007/s13253-014-0180-3

20. Shih YH, Howe CG, Scannell Bryan M, Shahriar M, Kibriya MG, Jasmine
F, et al. Exposure to metal mixtures in relation to blood pressure among children
5–7 years old: an observational study in Bangladesh. Environ Epidemiol. (2021)
5:e135. doi: 10.1097/EE9.0000000000000135

21. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO,
Mazumdar M, et al. Bayesian kernel machine regression for estimating
the health effects of multi-pollutant mixtures. Biostatistics. (2015)
16:493–508. doi: 10.1093/biostatistics/kxu058

22. Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, et al.
Association between prenatal exposure to multiple insecticides and child body
weight and body composition in the VHEMBE South African birth cohort. Environ
Int. (2018) 113:122–32. doi: 10.1016/j.envint.2018.01.016

23. Liu Y, Sun J, Han D, Cui S, Yan X. Identification of potential biomarkers
and small molecule drugs for cutaneous melanoma using integrated bioinformatic
analysis. Front Cell Dev Biol. (2022) 10:858633. doi: 10.3389/fcell.2022.858633

24. Liu Y, Cui S, Sun J, Yan X, Han D. Identification of potential biomarkers for
psoriasis by DNA methylation and gene expression datasets. Front Genet. (2021)
12:722803. doi: 10.3389/fgene.2021.722803

25. Marill KA. Advanced statistics: linear regression, part
II: multiple linear regression. Acad Emerg Med. (2004) 11:94–
102. doi: 10.1111/j.1553-2712.2004.tb01379.x

26. Shigei M, Ahrens L, Hazaymeh A, Dalahmeh SS. Per- and polyfluoroalkyl
substances in water and soil in wastewater-irrigated farmland in Jordan. Sci Total
Environ. (2020) 716:137057. doi: 10.1016/j.scitotenv.2020.137057

27. Li Y, Yan H, Liu Q, Li X, Ge J, Yu X. Accumulation and transport patterns of
six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions.
Chemosphere. (2020) 249:126457. doi: 10.1016/j.chemosphere.2020.126457

28. Rahman MF, Peldszus S, Anderson WB. Behaviour and fate of perfluoroalkyl
and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.
Water Res. (2014) 50:318–340. doi: 10.1016/j.watres.2013.10.045

29. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen
JG, et al. review of the pathways of human exposure to poly- and perfluoroalkyl
substances (PFASs) and present understanding of health effects. J Expo Sci Environ
Epidemiol. (2019) 29:131–47. doi: 10.1038/s41370-018-0094-1

30. Akinpelu AA, Ali ME, Johan MR, Saidur R, Qurban MA, Saleh TA.
Polycyclic aromatic hydrocarbons extraction and removal from wastewater
by carbon nanotubes: a review of the current technologies, challenges and
prospects. Process Saf Environ Protect. (2019) 122:68–82. doi: 10.1016/j.psep.2018.
11.006

31. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs)
(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead
(Pb)) on the total environment: an overview. Environ Monit Assess. (2019)
191:419. doi: 10.1007/s10661-019-7528-7

32. Rezk MF, Pieper B. Unlocking the Value of Anti-TNF biosimilars:
reducing disease burden and improving outcomes in chronic immune-
mediated inflammatory diseases: a narrative review. Adv Ther. (2020) 37:3732–
45. doi: 10.1007/s12325-020-01437-4

33. Schieir O, Tosevski C, Glazier RH, Hogg-Johnson S, Badley EM. Incident
myocardial infarction associated with major types of arthritis in the general
population: a systematic review and meta-analysis. Ann Rheum Dis. (2017)
76:1396–404. doi: 10.1136/annrheumdis-2016-210275

34. Elmets CA, Leonardi CL, Davis DMR, Gelfand JM, Lichten J, Mehta NN,
et al. Joint AAD-NPF guidelines of care for the management and treatment of
psoriasis with awareness and attention to comorbidities. J Am Acad Dermatol.
(2019) 80:1073–113. doi: 10.1016/j.jaad.2018.11.058

35. Aletaha D, Epstein AJ, Skup M, Zueger P, Garg V, Panaccione R. Risk of
Developing additional immune-mediated manifestations: a retrospective matched
cohort study. Adv Ther. (2019) 36:1672–83. doi: 10.1007/s12325-019-00964-z

36. Heymann WR. The neutrophil-to-lymphocyte ratio in cutaneous
oncology: simply elegant. J Am Acad Dermatol. (2022) 86:533–
4. doi: 10.1016/j.jaad.2021.11.060

37. Kumar BV, Connors TJ, Farber DL. Human T cell development,
localization, and function throughout life. Immunity. (2018) 48:202–
13. doi: 10.1016/j.immuni.2018.01.007

38. Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution
and its effects on the immune system. Free Radic Biol Med. (2020) 151:56–
68. doi: 10.1016/j.freeradbiomed.2020.01.179

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.980987
https://doi.org/10.1245/s10434-011-1814-0
https://doi.org/10.1186/s12916-020-01817-1
https://doi.org/10.1093/jnci/dju124
https://doi.org/10.3390/ijms23073636
https://doi.org/10.1016/j.ctrv.2017.05.005
https://doi.org/10.4149/BLL_2021_078
https://doi.org/10.1016/j.bbi.2022.07.006
https://doi.org/10.1007/s10238-018-0538-x
https://doi.org/10.1038/s41370-021-00316-6
https://doi.org/10.1038/s41590-020-0802-6
https://doi.org/10.1016/j.ejpe.2015.03.011
https://doi.org/10.1016/j.fct.2021.112072
https://doi.org/10.1016/j.scitotenv.2016.10.028
https://doi.org/10.1016/j.chemosphere.2020.128852
https://doi.org/10.1016/j.envres.2020.109396
https://doi.org/10.1289/ehp.1307234
https://doi.org/10.1007/s13253-014-0180-3
https://doi.org/10.1097/EE9.0000000000000135
https://doi.org/10.1093/biostatistics/kxu058
https://doi.org/10.1016/j.envint.2018.01.016
https://doi.org/10.3389/fcell.2022.858633
https://doi.org/10.3389/fgene.2021.722803
https://doi.org/10.1111/j.1553-2712.2004.tb01379.x
https://doi.org/10.1016/j.scitotenv.2020.137057
https://doi.org/10.1016/j.chemosphere.2020.126457
https://doi.org/10.1016/j.watres.2013.10.045
https://doi.org/10.1038/s41370-018-0094-1
https://doi.org/10.1016/j.psep.2018.11.006
https://doi.org/10.1007/s10661-019-7528-7
https://doi.org/10.1007/s12325-020-01437-4
https://doi.org/10.1136/annrheumdis-2016-210275
https://doi.org/10.1016/j.jaad.2018.11.058
https://doi.org/10.1007/s12325-019-00964-z
https://doi.org/10.1016/j.jaad.2021.11.060
https://doi.org/10.1016/j.immuni.2018.01.007
https://doi.org/10.1016/j.freeradbiomed.2020.01.179
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2022.980987

39. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon
receptor: multitasking in the immune system. Annu Rev Immunol. (2014) 32:403–
32. doi: 10.1146/annurev-immunol-032713-120245

40. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17
cells in autoimmune diseases. Semin Immunopathol. (2019) 41:283–
97. doi: 10.1007/s00281-019-00733-8

41. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol.
(1998) 16:249–84. doi: 10.3109/08830189809042997

42. Hu B,Huang S, Yin L. The cytokine storm andCOVID-19. JMedVirol. (2021)
93:250–6. doi: 10.1002/jmv.26232

43. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic
inflammatory proliferative disease. Cytokine Growth Factor Rev. (2002) 13:357–
68. doi: 10.1016/S1359-6101(02)00027-8

44. Jones SA, Jenkins BJ. Recent insights into targeting the
IL-6 cytokine family in inflammatory diseases and cancer. Nat
Rev Immunol. (2018) 18:773–89. doi: 10.1038/s41577-018-00
66-7

45. Murakami M, Harada M, Kamimura D, Ogura H, Okuyama Y,
Kumai N, et al. Disease-association analysis of an inflammation-related
feedback loop. Cell Rep. (2013) 3:946–59. doi: 10.1016/j.celrep.2013.01.
028

46. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a
leading role for STAT3. Nat Rev Cancer. (2009) 9:798–809. doi: 10.1038/nrc2734

47. Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, et al.
Inflammation amplifier, a new paradigm in cancer biology. Cancer Res. (2014)
74:8–14. doi: 10.1158/0008-5472.CAN-13-2322

48. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB
collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. (2010) 21:11–
9. doi: 10.1016/j.cytogfr.2009.11.005

49. Gyamfi J, Lee YH, Eom M, Choi J. Interleukin-6/STAT3 signalling regulates
adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep.
(2018) 8:8859. doi: 10.1038/s41598-018-27184-9

50. Hirano T. Interleukin 6 in autoimmune and inflammatory diseases:
a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci. (2010) 86:717–
30. doi: 10.2183/pjab.86.717

51. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C,
Kanamoto M, et al. Interleukin-17 promotes autoimmunity by triggering a
positive-feedback loop via interleukin-6 induction. Immunity. (2008) 29:628–
36. doi: 10.1016/j.immuni.2008.07.018

52. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol.
(2021) 33:127–48. doi: 10.1093/intimm/dxaa078

53. Vandenberghe D, Albrecht J. The financial burden of non-communicable
diseases in the European Union: a systematic review. Eur J Public Health. (2020)
30:833–9. doi: 10.1093/eurpub/ckz073

54. Wilkins LJ, Monga M, Miller AW. Defining dysbiosis for a cluster of chronic
diseases. Sci Rep. (2019) 9:12918. doi: 10.1038/s41598-019-49452-y

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2022.980987
https://doi.org/10.1146/annurev-immunol-032713-120245
https://doi.org/10.1007/s00281-019-00733-8
https://doi.org/10.3109/08830189809042997
https://doi.org/10.1002/jmv.26232
https://doi.org/10.1016/S1359-6101(02)00027-8
https://doi.org/10.1038/s41577-018-0066-7
https://doi.org/10.1016/j.celrep.2013.01.028
https://doi.org/10.1038/nrc2734
https://doi.org/10.1158/0008-5472.CAN-13-2322
https://doi.org/10.1016/j.cytogfr.2009.11.005
https://doi.org/10.1038/s41598-018-27184-9
https://doi.org/10.2183/pjab.86.717
https://doi.org/10.1016/j.immuni.2008.07.018
https://doi.org/10.1093/intimm/dxaa078
https://doi.org/10.1093/eurpub/ckz073
https://doi.org/10.1038/s41598-019-49452-y
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Association between environmental chemicals co-exposure and peripheral blood immune-inflammatory indicators
	Introduction
	Materials and methods
	Study population
	Measurement of environmental chemicals and outcomes
	Covariate
	Statistical analysis
	Correlation among chemicals and immune inflammation indicators
	Multivariate linear regression
	WQSR model
	BKMR model
	Functional enrichment analysis and protein–protein interaction network
	Establishment



	Results
	Characteristics of eligible subjects
	Associations between environmental chemicals and immunoinflammatory
	Biomarkers

	Generalized linear regression model to assess the association between environmental chemicals and immunoinflammatory biomarkers
	WQSR model to assess the association of environmental chemicals co-exposure with immunoinflammatory biomarkers
	The relationship between chemical levels and immunoinflammatory
	Biomarkers using the BKMR model

	Functional enrichment analysis and PPI network establishment of high-weight chemicals inflammation-related genes

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


