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Objective: We aimed to develop and validate a risk prediction model for liver

cancer based on routinely available risk factors using the data fromUK Biobank

prospective cohort study.

Methods: This analysis included 359,489 participants (2,894,807 person-years)

without a previous diagnosis of cancer. We used the Fine-Gray regression

model to predict the incident risk of liver cancer, accounting for the competing

risk of all-cause death. Model discrimination and calibration were validated

internally. Decision curve analysis was conducted to quantify the clinical utility

of the model. Nomogram was built based on regression coe�cients.

Results: Good discrimination performance of the model was observed in

both development and validation datasets, with an area under the curve (95%

confidence interval) for 5-year risk of 0.782 (0.748–0.816) and 0.771 (0.702–

0.840) respectively. The calibration showed fine agreement between observed

and predicted risks. The model yielded higher positive net benefits in the

decision curve analysis than considering either all participants as being at high

or low risk, which indicated good clinical utility.

Conclusion: A new risk prediction model for liver cancer composed

of routinely available risk factors was developed. The model had good

discrimination, calibration and clinical utility, which may help with the

screening andmanagement of liver cancer for general population in the public

health field.
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Introduction

Liver cancer is one of the most common cancers worldwide, ranking the fifth in men

and the ninth in women (1). According to World Cancer Research Fund (WCRF), there

were over 840,000 new cases in 2018 in 185 countries (1). In the United States, based on

the data from Centers for Disease Control and Prevention (CDC) and National Cancer

Institute (NCI), 34,638 new cases of liver cancer were reported and 27,685 people died

of liver cancer in 2018 (2). Despite the significant advances in therapies, mortality and

morbidity of liver cancer remain substantially high, posing a significant public health
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burden. Preventive strategies including screening, early

risk prediction and management are therefore essential for

prevention and improved survival of liver cancer (3).

There are several risk prediction models for liver cancer

in the literature. Multiple liver cancer risk prediction score

systems with emphasis of virological indexes had been proposed

previously (3–5). These indexes could markedly increase

the specificity of detecting liver cancer; nevertheless, they

demanded high economic cost and massive material resources.

By contrast, some prediction models were established based on

sociodemographic characteristics and clinical factors. However,

those models mainly focused on participants with a specific

disease or relied heavily on laboratory measures related to

liver function (6–10), which compromised their generalizability

or applicability. Likewise, prediction model based on genetic

risk scores may not be applicable for routine use in the busy

practice for the general population (11). There is an urgent

need for risk prediction models based on routinely available or

easily ascertained factors to help with effective risk prediction

and management for liver cancer. Therefore, in this study, we

developed, internally validated, and evaluated a risk prediction

model for liver cancer using data from the UK Biobank

prospective cohort study.

Materials and methods

Study population

Details on the UK Biobank study had been described

on the website (www.ukbiobank.ac.uk) and in the previous

literature (12). In brief, the UK Biobank is a large population-

based cohort study with over 0.5 million participants aged

37–73 years enrolled from 2006 to 2010. The study was

approved by the North West Multi-Centre Research Ethics

Committee. All participants provided written informed consent

before enrollment.

Participants with a baseline diagnosis of cancer were

excluded from analyses (n = 58,741). We included 359,489

participants with complete data on the outcome and potential

risk factors. We used the randomized grouping method

(seed= 12,345) and made a development/validation split,

where the model was fitted to 70% of the participants

(n= 251,642) and then evaluated on the remaining 30%

(n= 107,847). The flowchart for our study design is shown in

Supplementary Figure 1.

Variable selection

Baseline data were collected through participants’ self-

reported questionnaires, interviews with nurses and physical

measurements, with hospital in-patient records as supplements.

The selection of candidate predictors was based on clinical

knowledge and literature reviews. These candidate risk factors

included: (1) Sociodemographic factors, including age (years),

sex (male or female), residential area (urban or rural) and

Townsend deprivation index (TDI); (2) Physical measurement,

including bodymass index (BMI; kg/m2); (3) Lifestyle behaviors,

including smoking status (never, previous or current smoker),

alcohol drinking status (never, previous or current drinker),

consumption of regular vitamin supplements (yes or no) and

sleep pattern (healthy, intermediate or poor) (13); (4) Personal

medical history (yes or no), including non-viral liver diseases

(including cirrhosis, chronic hepatitis and fatty liver), viral

hepatitis, diabetes, high cholesterol and cardiovascular disease

(CVD); (5) Family medical history (yes or no), including

parental history of cancer. Further details of the variables are

described in Supplementary Box 1 and Supplementary Table 1.

Outcome measure

The study outcome was the incidence of liver cancer

during follow-up. Liver cancer was referred as malignant

neoplasm of liver and intrahepatic bile ducts, and was assessed

from cancer registries and hospital in-patient records. The

participants were followed up from the date of recruitment

(between 2006 and 2010) until the date of diagnosis of liver

cancer (ICD-10 code: C22), death or end of follow-up (31

March 2017 for England/Wales, 31 October 2016 for Scotland),

whichever occurred first.

Statistical analysis

For model development, continuous variables were

converted into categorical form for easy interpretation and

enhanced generalization, which was a general practice in the

literature for risk prediction models aiming at prompt use

and wide acceptability clinically (14, 15). The cut-off points

of those continuous variables were determined according

to clinical knowledge and current practice in the literature

(8, 14, 16). Each candidate variable was considered for model

inclusion if its P-value was below 0.2 in the univariate analysis

to demonstrate its face validity (Supplementary Table 3). Based

on clinical expertise and statistical knowledge, after group

discussion we included 12 predictors to construct the prediction

model: sex (male or female), age (40–49, 50–59, or ≥60 years)

(8, 14), BMI (<25, 25–29.9, or ≥30 kg/m2) (16), smoking status

(never, previous, or current smoker), drinking status (never,

previous, or current drinker), sleep pattern (poor, intermediate,

or healthy), family history of cancer (yes or no), diabetes (yes or

no), high cholesterol (yes or no), CVD (yes or no), viral hepatitis

(yes or no), liver disease (yes or no).
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TABLE 1 Description of participant characteristics in the development and validation dataset.

Characteristic The development dataset The validation dataset

No liver cancer

(n = 251,445)

Liver cancer

(n = 197)

No liver cancer

(n = 107,764)

Liver cancer

(n = 83)

Age (years)

<50 63,069 (25.08) 9 (4.57) 26,953 (25.01) 1 (1.20)

50–59 85,302 (33.92) 55 (27.92) 36,500 (33.87) 28 (33.73)

≥60 103,074 (40.99) 133 (67.51) 44,311 (41.12) 54 (65.06)

Townsend deprivation index

<-2.5 114,933 (45.71) 90 (45.69) 49,147 (45.61) 32 (38.55)

−2.5–0 67,207 (26.73) 56 (28.43) 29,103 (27.01) 24 (28.92)

0–2.4 36,591 (14.55) 27 (13.71) 15,529 (14.41) 14 (16.87)

≥2.5 32,394 (12.88) 24 (12.18) 13,867 (12.87) 13 (15.66)

Sex

Female 134,947 (53.67) 78 (39.59) 57,552 (53.41) 27 (32.53)

Male 116,498 (46.33) 119 (60.41) 50,212 (46.59) 56 (67.47)

College degree and higher

No 166,290 (66.13) 140 (71.07) 71,101 (65.98) 59 (71.08)

Yes 83,138 (33.06) 57 (28.93) 35,796 (33.22) 23 (27.71)

Ethnicity

White 237,650 (94.51) 182 (92.39) 101,833 (94.50) 82 (98.80)

Others 13,133 (5.22) 14 (7.11) 5,611 (5.21) 1 (1.20)

Residential area

Rural 35,741 (14.21) 20 (10.15) 15,250 (14.15) 14 (16.87)

Urban 213,188 (84.79) 176 (89.34) 91,416 (84.83) 67 (80.72)

BMI (kg/m2)

<25 83,263 (33.11) 53 (26.90) 35,411 (32.86) 22 (26.51)

25–29.9 107,294 (42.67) 75 (38.07) 46,293 (42.96) 32 (38.55)

≥30 60,888 (24.22) 69 (35.03) 26,060 (24.18) 29 (34.94)

Physical activity (METminutes/week)

<600 34,392 (13.68) 35 (17.77) 14,655 (13.60) 19 (22.89)

600–3,999 125,246 (49.81) 91 (46.19) 53,978 (50.09) 39 (46.99)

≥4,000 45,256 (18.00) 30 (15.23) 19,267 (17.88) 13 (15.66)

Smoking status

Never 138,327 (55.01) 72 (36.55) 59,513 (55.23) 30 (36.14)

Previous 86,969 (34.59) 102 (51.78) 37,185 (34.51) 42 (50.60)

Current 26,149 (10.40) 23 (11.68) 11,066 (10.27) 11 (13.25)

Drinking status

Never 10,453 (4.16) 8 (4.06) 4,552 (4.22) 5 (6.02)

Previous 8,518 (3.39) 12 (6.09) 3,534 (3.28) 6 (7.23)

Current 232,474 (92.46) 177 (89.85) 99,678 (92.50) 72 (86.75)

Coffee intake

No 55,933 (22.24) 48 (24.37) 23,753 (22.04) 21 (25.30)

Yes 195,512 (77.76) 149 (75.63) 84,011 (77.96) 62 (74.70)

Vitamin supplement

No 171,075 (68.04) 139 (70.56) 73,467 (68.17) 58 (69.88)

Yes 79,551 (31.64) 57 (28.93) 33,937 (31.49) 24 (28.92)

(Continued)

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.955287
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2022.955287

TABLE 1 (Continued)

Characteristic The development dataset The validation dataset

No liver cancer

(n = 251,445)

Liver cancer

(n = 197)

No liver cancer

(n = 107,764)

Liver cancer

(n = 83)

Mineral supplement

No 143,726 (57.16) 125 (63.45) 61,796 (57.34) 48 (57.83)

Yes 107,331 (42.69) 72 (36.55) 45,779 (42.48) 35 (42.17)

Sleep pattern

Poor 5,971 (2.37) 14 (7.11) 2,592 (2.41) 5 (6.02)

Intermediate 98,940 (39.35) 92 (46.70) 42,093 (39.06) 35 (42.17)

Healthy 146,534 (58.28) 91 (46.19) 63,079 (58.53) 43 (51.81)

Family history of cancer

No 174,862 (69.54) 130 (65.99) 75,281 (69.86) 54 (65.06)

Yes 76,583 (30.46) 67 (34.01) 32,483 (30.14) 29 (34.94)

Diabetes

No 234,971 (93.45) 151 (76.65) 100,771 (93.51) 65 (78.31)

Yes 16,474 (6.55) 46 (23.35) 6,993 (6.49) 18 (21.69)

High cholesterol

No 204,958 (81.51) 137 (69.54) 87,736 (81.41) 56 (67.47)

Yes 46,487 (18.49) 60 (30.46) 20,028 (18.59) 27 (32.53)

CVD

No 100,739 (40.06) 45 (22.84) 43,026 (39.93) 16 (19.28)

Yes 150,706 (59.94) 152 (77.16) 64,738 (60.07) 67 (80.72)

Viral hepatitis

No 250,821 (99.75) 184 (93.40) 107,484 (99.74) 81 (97.59)

Yes 624 (0.25) 13 (6.60) 280 (0.26) 2 (2.41)

Liver disease

No 250,924 (99.79) 181 (91.88) 107,552 (99.80) 75 (90.36)

Yes 521 (0.21) 16 (8.12) 212 (0.20) 8 (9.64)

BMI, Body mass index; MET, Metabolic Equivalent of Task; CVD, Cardiovascular disease.

Fine-Gray regression model was performed to estimate the

absolute risk of liver cancer, accounting for the competing risk

of all-cause death, while data of death were collected from

death registry. Five-year risks of liver cancer were computed

from the cumulative incidence function (CIF) obtained by the

competing risk regression model (17). Subhazard ratio (sHR)

and corresponding 95% confidence interval (95% CI) were used

to describe the relationship between the predictors and liver

cancer risk.

Model discrimination and calibration were validated
internally. We used receiver operating characteristic (ROC)

curves, area under the curve (AUC) with corresponding 95% CI,
and the Somers’ D statistics to assess model discrimination (18).

Model calibration was measured through plotting the predicted

mean risks against the observed risks by a tenth of the predicted

risks (19, 20), where the observed risks were calculated by

using the Nelson-Aalen method. Nomogram was conducted

to generate a user-friendly graphical interface of our model

(Supplementary Box 2; Supplementary Figure 3) (21–23).

All analyses were carried out using SAS (SAS/STAT User’s

Guide, Version 9.4; SAS Institute, Cary, NC) and R (version

4.1.0; The R Foundation, Vienna, Austria). All statistical tests

were two-sided, and we considered P<0.05 to be statistically

significant. R packages rms and riskRegression were used for the

analysis (24, 25).

Clinical utility

Decision curve analysis (DCA), a comprehensive method

for the assessment of diagnostic tests and prediction models,

was conducted to evaluate the clinical utility of our prediction

model (21, 22, 26, 27). Net benefit, a key measure in DCA,

was computed by weighting the true positive rate minus the

false positive rate weighted on the risk threshold. Decision curve

plotted the predicted net benefit of the prediction model against

assuming all participants at high risk or low risk across all
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TABLE 2 Subhazard ratios and 95% confidence intervals for the

predictors included in the multivariable Fine-Gray regression model.

Predictors sHR 95% CI P-value

Male sex 1.54 1.15, 2.06 0.004

Age

<50 Ref - -

50–59 3.95 1.93, 8.07 <0.001

≥60 7.52 3.73, 15.20 <0.001

BMI

<25 Ref - -

25–29.9 0.80 0.56, 1.15 0.232

≥30 1.04 0.70, 1.56 0.844

Smoking status

Never Ref - -

Previous 1.68 1.23, 2.31 0.001

Current 1.51 0.94, 2.41 0.085

Drinking status

Never Ref - -

Previous 1.04 0.42, 2.60 0.933

Current 1.02 0.48, 2.15 0.963

Sleep pattern

Poor Ref - -

Intermediate 0.53 0.29, 0.95 0.033

Healthy 0.41 0.22, 0.75 0.004

Family history of cancer 1.15 0.86, 1.54 0.355

Diabetes 3.10 2.05, 4.69 <0.001

High cholesterol 0.76 0.51, 1.13 0.170

CVD 1.31 0.91, 1.87 0.145

Viral hepatitis 16.83 8.92, 31.76 <0.001

Liver disease 15.46 8.29, 28.86 <0.001

sHR, Subhazard Ratio; CI, Confidence Interval; BMI, Body Mass Index; CVD,

Cardiovascular disease.

possible risk thresholds. A higher positive net benefit indicated

a better clinical utility. R package dcurves was employed for

the DCA analysis (28). Further details of DCA are described in

Supplementary Box 3. The R codes used for the analyses in this

study are shown in Supplementary Box 4.

Results

Descriptions of participant characteristics

Among the 359,489 included participants (2,894,807 person-

years), there were a total of 280 incident liver cancer events

(197 in the development and 83 in the validation dataset)

and 9,791 deaths (6,947 in the development and 2,844 in the

validation dataset) documented. Within the 5-year follow up,

there were 159 liver cancer events (113 in the development

and 46 in the validation dataset) and 4,494 deaths (3,162

in the development and 1,332 in the validation dataset)

found. Supplementary Figure 2 displays the CIF curve of liver

cancer during follow-up. Characteristics of the participants are

presented in Table 1. There were no statistical differences in

baseline characteristics between the development and validation

datasets (Supplementary Table 2). When compared with those

without liver cancer, participants diagnosed with liver cancer

were older, more likely to be males and overweight, had a

poorer sleep pattern, and were more likely to have family history

of cancer, diabetes, high cholesterol, CVD, viral hepatitis and

non-viral liver diseases.

Development of the risk prediction model

The sHR (95% CI) from the multivariable Fine-Gray

competing risk prediction model in the development

dataset are listed in Table 2. It was found that males,

older age (50–59, and ≥60), previous smoking status,

diabetes, viral hepatitis and non-viral liver diseases

were significantly associated with increased risk of liver

cancer, with sHR ranging from 1.54 to 16.83 (all P <

0.05). A better sleep pattern (intermediate, and healthy)

was significantly associated with decreased risk of liver

cancer (P < 0.05). High cholesterol was non-significantly

associated with a decreased risk of liver cancer (sHR

= 0.76, 95% CI: 0.51–1.13), while it was significantly

related with increased risk of liver cancer from the

univariate analysis (sHR = 1.99, 95% CI: 1.55–2.56;

Supplementary Table 3).

Performance of the model

The calibration and discrimination performances

are displayed in Figure 1. According to the calibration

plots in Figure 1A (the development dataset) and

Figure 1D (the validation dataset), the observed 5-year

probabilities agreed well with the predicted 5-year risks,

which indicated that the risk prediction model was

well calibrated.

The ROC curves for the prediction model are shown

in Figure 1B (the development dataset) and Figure 1E (the

validation dataset). The sensitivity and specificity of the model

are plotted by the 5-year predicted probability in Figure 1C

(the development dataset) and Figure 1F (the validation

dataset). Within 5-years of follow-up, the prediction model

had an AUC of 0.782 (95% CI: 0.748–0.816) and Somers’

D statistics of 0.563 in the development dataset (Table 3).

Results from internal validation showed an AUC of 0.771

(95% CI: 0.702 - 0.840) and Somers’ D statistics of 0.541

in the validation dataset. In the development dataset, the

maximum Youden index of 0.42 was identified to reach the
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FIGURE 1

The calibration and discrimination of the Fine-Gray model in both development and validation datasets. (A), The observed 5-year probability of

liver cancer of the development dataset. (B), Receiver operating characteristic curve of the development dataset (AUC: 0.782, 95% CI:

0.748–0.816). (C), Sensitivity and specificity on the basis of the predicted probability cuto� of the development dataset. (D), The observed 5-year

probability of liver cancer of the validation dataset. (E), Receiver operating characteristic curve of the validation dataset (AUC: 0.771, 95% CI:

0.702–0.840). (F), Sensitivity and specificity on the basis of the predicted probability cuto� of the validation dataset.

TABLE 3 Performance of the prediction model for liver cancer within 5 years of follow-up in both development and validation datasets.

Dataset AUC (95% CI) Youden index Risk threshold per 100,000 Sensitivity (%) Specificity (%) Somers’ D

Development 0.782 (0.748–0.816) 0.42 51.3 68.1 74.1 0.563

Validation 0.771 (0.702–0.840) 0.40 46.0 69.6 70.0 0.541

AUC, area under the curve; CI, confidence interval.

best discrimination performance, which corresponded to a risk

threshold of 51.3 per 100,000, a specificity of 74.1% and a

sensitivity of 68.1% (Table 3). A maximum Youden index of

0.40 in the validation dataset would yield a risk threshold

of 46.0 per 100,000, a specificity of 70.0% and a sensitivity

of 69.6%.

The nomogram of our prediction model is shown

in Supplementary Figure 3. The score points of the

nomogram are displayed in Supplementary Table 4, while

Supplementary Table 5 demonstrates the 5-year risks of liver

cancer corresponding to the total score points.

DCA for clinical utility

Figure 2 shows the net benefit curves for the prediction

model within 5-years of follow-up in both development

and validation datasets. The horizontal axis is the 5-year

risk threshold used to define high risk, while the vertical

axis is the net benefit at the current risk threshold. We

compared the prediction model with the extreme strategies

of assuming all or none participants at high risk. The

analysis showed that the prediction model yielded a higher

positive net benefit than all the other alternatives across
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FIGURE 2

Decision curve obtained from plotting the net benefit of detecting liver cancer at di�erent 5-year absolute risk thresholds in both development

dataset (A) and validation dataset (B).

5-year absolute risk thresholds ranging from 0 to 500 per

100,000.

Discussion

Based on data from the large-scale prospective cohort study,

we developed and internally validated a risk prediction model

for the absolute 5-year cumulative risk of liver cancer. The

prediction model showed good calibration and discrimination,

and had a good clinical utility.

The risk prediction model was composed of predictors that

were routinely available in clinical practice. As expected, male

sex, old age, previous smoking status, diabetes, viral hepatitis

and non-viral liver diseases were significantly associated with

increased risk of liver cancer. Viral hepatitis and non-viral liver

diseases that were typical disorders related to liver function,

could substantially rise the risk of liver cancer. Data on them

could be easily collected from patients’ health records or

self-report in the general population. Given the large HRs

for the relationship between viral hepatitis and non-viral

liver diseases and liver cancer risk, we conducted a post-

hoc multivariable Fine-Gray model without these two factors

to assess the prediction ability of other variables. The new

prediction model had an AUC of 0.746 (95% CI: 0.712–0.780) in

the development dataset, which did not significantly differ from

the original model with an AUC of 0.782 (95% CI: 0.748–0.816).

Therefore, our model was robust even with the presence of viral

hepatitis and liver diseases that were highly related with liver

cancer risk.

Our study showed that a healthy sleep pattern was

significantly related to decreased risk of liver cancer, which

was consistent with previous observational studies (29). For

example, one study showed that sleep quality predicted up to

20.4% of the variability of liver stiffness after adjusting for

potential confounders (30). Compelling evidence reported that

sleep insufficiency had significant effects including reduction

of leptin and elevation of ghrelin, which might predispose to

liver diseases by means of proinflammatory markers and stress

response (30). Baseline high cholesterol was non-significantly

associated with decreased risk of liver cancer in our model,

which may be due to at least in part, the cholesterol-lowering

medications used in those with high cholesterol. Being effective

in preventing CVD morbidity and mortality, the use of statins

had been shown to inversely relate to risk of various cancers

(31). For instance, a meta-analysis reported that the use of

statins was significantly associated with reduced risk of liver

cancer in those taking statins for CVD prevention (RR = 0.58,

95% CI: 0.51 - 0.67) (32). Moreover, previous clinical research

indicated that statins possessed synergismwith other therapeutic

agents in vitro and in vivo for liver cancer (32). Another study

indicated that statins might involve the ubiquinone inhibition,

which might subsequently lead to the apoptosis of preneoplastic

liver cells (31). Nevertheless, the relationship between high

cholesterol and decreased risk of liver cancer required more

high-quality research for further exploration and validation.
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Comparison with previous studies

There had been multiple liver cancer risk prediction

models in the literature (3–8). Previous risk score systems

mainly focused on virological indexes to increase accuracy

of detecting liver cancer; however this would cost healthcare

resources and impose laboratory burden especially in under-

resourced areas (3–5). Furthermore, these prediction systems

were exclusively limited to HBV or HCV carriers, which

would significantly limit their application to the general

population. By contrast, several risk prediction models had

been established based on sociodemographic characteristics and

metabolic indexes for the general population (6, 7). Nevertheless,

the previous study targeted on participants with diabetes and

incorporated complex algorithms of machine learning, which

would therefore compromise its intake and application in real-

world clinical practice (6). Although the Taiwan study aimed

for the general average-risk population, the corresponding

cohort was constructed from participants engaged in a medical

screening program who had an above-average socioeconomic

status (7). Moreover, it unduly emphasized laboratory measures

for assessment of the current liver function, generating difficulty

in application in general population and busy clinical practice.

One recent observational research based on data from

the China Kadoorie Biobank (CKB) Study with 0.5 million

participants was published to build a personalized risk

prediction model for 10-year liver cancer risk (CKB-PLR)

(8). The CKB-PLR model was composed of sociodemographic

data, lifestyle characteristics and blood biochemistry measures.

However, complicated mathematical incorporation in the CKB-

PLR model would jeopardize its applicability for physicians and

patients. Quantitative values of predictors including physical

activity and random glucose were required in the model, which

was challenging for measurement in busy clinical practice.

Moreover, the use of random glucose in the CKB-PLR model

was inappropriate given its substantial variability affected by

multiple conditions. Inclusion of random glucose may provide

a snapshot of the instant glucose level at best, and may be

misleading or even incur biased results when building the

prediction model.

In our study, we focused on established factors

of liver cancer that were routinely available or easily

captured. Furthermore, each variable was grouped into

categorical form in the model to maximize its prompt

use and easy intake. We also generated the nomogram

and performed DCA to improve the straightforward

visualization and clinical applicability for our model. Thus,

if externally validated, our model had the potential to be

implemented in clinical practice for quick risk prediction

and decision-making.

Strength and limitations

This study has several strengths. First, we used high-

quality data from the large-scale UK Biobank cohort for model

building and evaluation, while the UK Biobank had already

been used for risk prediction models for cancers (8, 11, 14, 33).

Second, competing risk bias was adequately address by using the

competing risk model given the long follow-up in the cohort.

Third, the inclusion of sleep pattern in themodel was the first for

liver cancer risk prediction, to the best of our knowledge. Forth,

our endeavors for simplicity and straightforwardness would

enhance the model applicability in real-world settings.

There are several limitations to this study. Initially, we were

unable to externally validate the proposed risk prediction model

due to lack of external data, although internal validation was

conducted with robust findings reported. Furthermore, direct

comparison with other models is difficult due to differences in

study design, predictor definitions, and risk factor patterns in

the study populations. External validation of our model, and

comparisons with other clinical features or existed prediction

tools would be worthwhile endeavors to further justify the

validity and applicability of our model, especially for high-

risk population (3–7). Second, the study participants were

dominantly from European descent, which might affect the

generalizability of the model to other populations with different

average risks (1). Our study reported a relatively low incidence

of liver cancer of 0.078% (280/359,489), which was in line

with some epidemiological studies based on large-scale datasets

that reported an incidence of liver cancer ranging from 0.041

to 0.5% (8, 34, 35). Furthermore, even though recognizing

the importance of other potential predictors including physical

activity and medication intake, they were not selected for model

development tomaximize its applicability in practice, whichmay

impair the predictive validity of our prediction model. Besides,

we only used baseline data for model building and did not

consider data on temporal changes, which might also affect the

model performance. Moreover, subtypes of liver cancer were not

considered in our study due to insufficiency of incident events.

Conclusion

In conclusion, we developed and internally validated a liver

cancer risk prediction model based on routinely available data,

using data of the UK Biobank study. The prediction model had

acceptable calibration and discrimination, and a good clinical

utility. If externally validated, the model had the potential to

be used in clinical practice for liver cancer screening, risk

prediction and management in the public health field.
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