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Background:Risk stratification of elderly patients with ischemic stroke (IS) who

are admitted to the intensive care unit (ICU) remains a challenging task. This

study aims to establish and validate predictive models that are based on novel

machine learning (ML) algorithms for 28-day in-hospital mortality in elderly

patients with IS who were admitted to the ICU.

Methods: Data of elderly patients with IS were extracted from the electronic

intensive care unit (eICU) Collaborative Research Database (eICU-CRD)

records of those elderly patients admitted between 2014 and 2015. All selected

participants were randomly divided into two sets: a training set and a validation

set in the ratio of 8:2. ML algorithms, such as Naïve Bayes (NB), eXtreme

Gradient Boosting (xgboost), and logistic regression (LR), were applied for

model construction utilizing 10-fold cross-validation. The performance of

models was measured by the area under the receiver operating characteristic

curve (AUC) analysis and accuracy. The present study uses interpretable ML

methods to provide insight into the model’s prediction and outcome using the

SHapley Additive exPlanations (SHAP) method.

Results: As regards the population demographics and clinical characteristics,

the analysis in the present study included 1,236 elderly patients with IS in

the ICU, of whom 164 (13.3%) died during hospitalization. As regards feature

selection, a total of eight features were selected for model construction. In
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the training set, both the xgboost and NB models showed specificity values of

0.989 and 0.767, respectively. In the internal validation set, the xgboost model

identified patients who died with an AUC value of 0.733 better than the LR

model which identified patients who died with an AUC value of 0.627 or the

NB model 0.672.

Conclusion: The xgboost model shows the best predictive performance that

predicts mortality in elderly patients with IS in the ICU. Bymaking theMLmodel

explainable, physicians would be able to understand better the reasoning

behind the outcome.

KEYWORDS

ischemic stroke, elderly patients, machine learning, hospital mortality, prediction

model

Introduction

Ischemic stroke (IS) approximately accounts for 80% of

strokes in elderly patients, which has become the second most

serious cause of death in the world (1). Patients may need

intensive care unit (ICU) treatment due to stroke-associated

cerebral damage, concomitantly compromising other vital organ

functions. As treatment and support options expand, the need

for intensive care and acute stroke care will increasingly

intertwine, and the number of stroke patients admitted to the

ICUwill rise (2). Notably, short-termmortality rates for patients

with stroke who require intensive care treatment were high,

and the survival curve gradient stabilized over time. In ICU-

admitted patients with stroke, the 30-day mortality rate was

31% for ischemic stroke (3). Consequently, it is imperative to

determine the risk of early death in the course of treatment for

patients with IS who w admitted to the ICU.

Somemodels have also been developed to predict in-hospital

mortality in cases of acute ischemic stroke. Mittal and Goel

(4) reported a predictive score by investigating 188 consecutive

patients with IS, and their predictive factors included admission,

hypoxia (saturation of oxygen <94%), National Institute of

Health Stroke Scale (NIHSS) score >15, modified Rankin score

(mRS) >3, Glascow Coma Scale (GCS) <8, hyperglycemia

(random blood sugar (RBS)>200 mg/dL), raised total leukocyte

count (TLC), and high-sensitivity C-reactive protein (HS-CRP)

(>10 mg/L). Both Saposnik et al. (5) and O’Donnell et al. (6)

developed good models for acute IS patients. Wang et al. (7)

reported an xgboost model with 30 variables, better than the LR

reference model 0.891.

However, these models were not applicable to the elderly

population in the ICU, and the performance of the model

predicting the mortality among the elderly admitted to the

ICU was unknown. The elderly patients should be given more

attention because the majority of ischemic stroke cases occur

in these elderly patients, while young patients who suffer from

IS have a low mortality rate. In addition, with prolonged

life expectancy, the aging population experiences a significant

increase in stroke incidence. Additionally, elderly patients

exhibit physiological changes including neuronal plasticity and

decreased repair ability, as well as changes in the structure

of the vascular system and complications, which increase the

complexity of prediction. Limited data regarding short-term

mortality predictors for elderly patients with IS are available.

A model based on the LR method was constructed with 469

older patients (8). Furthermore, based on the LR method,

Tuttolomondo et al. (9) reported that age, white blood cell

(WBC) count, glucose blood level at admission, and Charlson

comorbidity index score were directly associated with in-

hospital mortality in the elderly.

Several factors were found to be associated with the

increased short-term mortality, including age (5), sex (5), stroke

severity and subtype (5), smoking (5), atrial fibrillation (5),

serum calcium (10), serum troponin (11), Chronic Kidney

Disease (12–15), hypertension (15), the National Institute of

Health Stroke Scale (NIHSS) (15, 16), neutrophil-to-lymphocyte

ratio (17), low triiodothyronine (T3) (18), hyperglycemia (19,

20), plasma brain natriuretic peptide (21), non-alcoholic fatty

liver disease (NAFLD) (22), and elevated blood urea nitrogen

(BUN)-to-creatinine ratio (23). With numerous variables

involved, the complexity of stroke data lends itself well to

machine learning (ML) algorithms that incorporate these

variables into a predictive model (24). ML algorithms are

thought to outperform clinical prediction models based on

regression because they make fewer assumptions and can learn

complex relationships between predictors and outcomes (25).

In this study, we aimed to develop prediction models for

28-day in-hospital mortality in elderly patients with IS using

ML algorithms. The model was based on variables collected

at admission. This will improve clinical decision-making and

healthcare quality through early risk stratification after acute IS

in elderly patients.
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Methods

Design and participants

Data of elderly patients with IS were extracted from the eICU

Collaborative Research Database (eICU-CRD) version 2.0 (26).

All data were extracted from the eICU Collaborative Research

Database (eICU-CRD, https://eicu-crd.mit.edu/) (certification

ID: 42039823). The eICU-CRD database is a publicly available

multi-center critical care database made available by Philips

Healthcare in partnership with the MIT Laboratory for

Computational Physiology and contains de-identified clinical

data of over 200,000 patients admitted in the ICU from 2014

to 2015. Individuals were selected if their hospital discharge

records contained at least one of the following: International

Classification of Diseases (ICD)-9-Clinical Modification (CM)

(ICD-9-CM) diagnoses of IS: 434.91 (cerebral artery occlusion,

unspecified with cerebral infarction) and IS: I63.50 (cerebral

infarction due to unspecified occlusion or stenosis of unspecified

cerebral artery). The inclusion criteria for the present study were

as follows: (1) first-ever ICU admission and (2) age ≥ 65 years.

The exclusion criteria for the present study were as follows: (1)

ICU stay<24 h or more than 28 days; (2) individuals with severe

liver disease; (3) individuals with heart failure; (4) individuals

with metastatic solid tumor; and (5) individuals with more

than 30% of missing values. With the clinical information from

patients de-identified, the database’s official ethics committee has

approved the public release of these clinical data. A consent

waiver was also given because of anonymized retrospective

patient data.

Outcome variables and predictors

The primary outcome event was in-hospital death within

28 days in elderly ICU patients with IS. The clinical data

were collected within 24 h of admission. To identify candidate

predictor variables, a review of literature was done and the

present study selected variables that were available in the

eICU. The finally selected 51 variables, including vital signs,

demographics, laboratory tests, and comorbidities, are listed in

Table 1. To ensure the accuracy of the results, variables with

more than 30% missing values are excluded, and the K-Nearest

Neighbor algorithm (KNN) is used to fill in thosemissing values.

Selection procedure

The database was randomly divided into two sets: the

training set and the validation set in the ratio of 8:2. The

recursive feature elimination (RFE) algorithm was used to filter

features until the model’s AUC value was >0.7.

Machine learning model development

The present study applied four common machine learning

(ML) algorithms to predict the 28-day in-hospital mortality

among ICU elderly patients with IS, including Naïve Bayes (NB),

eXtreme Gradient Boosting (xgboost), and logistic regression

(LR). A validation set of 241 patients who never participated

in the model training was used to evaluate all of those ML

metrics. To improve the stability of the prediction model, all

continuous features are rescaled to a distribution with a mean

of 0 and standard deviation of 1, and the scale conversion is

performed. After 10-fold cross-validation, the performances of

the three prediction models were compared with each other

using areas under the curve, specificity, sensitivity, accuracy,

positive predictive value (PPV), negative predictive value (NPV),

and F1 score. The best model was selected by the area under

the receiver operating characteristic curve (AUC) values of the

testing set.

Statistical analysis

Normally distributed continuous data were expressed as

the mean with standard errors. To analyze all non-normal

homogeneous distributions’ continuous characteristics, the

Wilcoxon rank sum test was used, which is expressed as the

median and interquartile range (IQR). Chi-square analysis or

Fisher’s exact tests were used to analyze categorical features

expressed in frequencies (percentages). Outliers for features will

be removed. The imbalance in the distribution of data structures

is solved by the SMOTE (synthetic minority oversampling

technique) method. The R packages “Nortest” and “CBCgrps”

were used for univariate analysis. The RFE function was used

for the filtering feature (fivefold cross-validation). Receiver

operating characteristic (ROC) mapping and AUC calculation

are performed by the “pROC” package, and the interpretability

analysis is performed by the “shapviz” package in R (version

4.2.0), data visualization is carried out with the ggplot2 package,

and a value of P < 0.05 is considered statistically significant.

Results

Population demographics

A total of 2,435 patients were diagnosed with IS at admission.

Finally, a total of 1,518 patients with IS were enrolled in this

study according to the inclusion criteria and exclusion criteria

(Figure 1), including 636 (51%) women and 600 (49%) men,

with a median age of 77 years (IQR, 71–84 years). After 28 days

in the hospital, 1,072 patients with IS survived, while 164 died.

The differences in characteristics between the survival group

and the death group are described in Table 1. A comparison of
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TABLE 1 The population demographics and clinical characteristics.

Variables Total
(n = 1,236)

Survival
(n = 1,072)

Death
(n = 164)

P-value

Age, Median (Q1, Q3) 77 (71, 84) 77 (71, 84) 77 (71.75, 85) 0.544

Gender, N (%) 0.514

Women 636 (51) 556 (52) 80 (49)

Men 600 (49) 516 (48) 84 (51)

Ethnicity, N (%) 0.181

Non-white 256 (21) 229 (21) 27 (16)

White 980 (79) 843 (79) 137 (84)

BMI, Median (Q1, Q3) 26.74 (23.34, 31.14) 26.66 (23.31, 30.97) 27.25 (23.68, 31.55) 0.535

Aniongap, median (Q1, Q3) 10 (8, 13) 10 (8, 13) 10 (8, 13) 0.312

Albumin, median (Q1, Q3) 3.65 (3.35, 3.85) 3.7 (3.4, 3.85) 3.55 (3.2, 3.8) < 0.001

Bilirubin, median (Q1, Q3) 0.55 (0.45, 0.7) 0.55 (0.45, 0.7) 0.6 (0.5, 0.8) 0.002

ALT, median (Q1, Q3) 21.75 (17, 27) 21.5 (17, 26.5) 23.25 (18.5, 29) 0.005

AST, median (Q1, Q3) 22 (18.5, 27) 21.5 (18, 26) 24.75 (20, 35.5) < 0.001

Alp, median (Q1, Q3) 76 (69.5, 91.5) 75.5 (69.5, 91) 81 (71, 94) 0.014

BUN, median (Q1, Q3) 20 (15, 25) 19 (15, 25) 23 (19, 31) < 0.001

Creatinine, median (Q1, Q3) 1 (0.81, 1.3) 1 (0.8, 1.27) 1.13 (0.84, 1.4) < 0.001

Sodium, median (Q1, Q3) 139 (136, 141) 139 (136, 141) 139 (136, 141) 0.348

Calcium, median (Q1, Q3) 9 (8.5, 9.4) 9 (8.6, 9.4) 8.9 (8.4, 9.3) 0.039

Chloride, median (Q1, Q3) 104 (101, 107) 104 (101, 107) 104 (100, 106) 0.849

Potassium, median (Q1, Q3) 4 (3.7, 4.4) 4 (3.7, 4.4) 4.2 (3.8, 4.5) 0.006

Glucose, median (Q1, Q3) 126 (105, 155) 125 (104, 152) 134.5 (112, 194.25) < 0.001

Bicarbonate, median (Q1, Q3) 25 (23, 27) 25 (23, 27) 24 (22, 27) 0.007

WBC, median (Q1, Q3) 8.8 (7.1, 11.6) 8.6 (7, 11.2) 10.92 (8.3, 13.9) < 0.001

Hematocrit, median (Q1, Q3) 39.1 (35.3, 42.9) 39.1 (35.5, 42.92) 38.7 (34.75, 42.35) 0.485

Hemoglobin, median (Q1, Q3) 13 (11.7, 14.4) 13.1 (11.7, 14.4) 12.9 (11.6, 14.2) 0.504

Platelets, median (Q1, Q3) 211 (174, 260) 210 (176, 260) 212.5 (166.75, 260.5) 0.783

INR, median (Q1, Q3) 1.05 (1, 1.11) 1.04 (1, 1.1) 1.1 (1, 1.2) < 0.001

PTT, median (Q1, Q3) 28 (26.4, 30) 28 (26.6, 30) 27.9 (25.58, 30.8) 0.416

RBC, median (Q1, Q3) 4.32 (3.88, 4.74) 4.33 (3.9, 4.75) 4.24 (3.8, 4.69) 0.196

Mcv, median (Q1, Q3) 91 (87.57, 94) 91 (87.4, 94) 91.05 (87.7, 95) 0.245

Mchc, median (Q1, Q3) 33.3 (32.5, 34) 33.3 (32.5, 34) 33.2 (32.5, 34.1) 1

Mch, median (Q1, Q3) 30.5 (29.1, 31.65) 30.5 (29, 31.6) 30.5 (29.3, 31.7) 0.538

Rdw, median (Q1, Q3) 13.93 (13.35, 14.8) 13.9 (13.3, 14.8) 14.1 (13.5, 14.9) 0.056

Lymphs.Pct, median (Q1, Q3) 19 (12, 25) 19.6 (13, 26) 15.35 (9, 20.89) < 0.001

Monos.Pct, median (Q1, Q3) 7.57 (6.2, 9) 7.6 (6.5, 9) 7 (5.6, 8.7) 0.004

Eos, median (Q1, Q3) 1.45 (1, 2) 1.5 (1, 2.22) 1.1 (1, 1.8) < 0.001

Polys, median (Q1, Q3) 69.4 (63.5, 77) 69 (63, 76.1) 72.53 (67.22, 83) < 0.001

Total Protein, median (Q1, Q3) 6.7 (6.4, 7.15) 6.7 (6.4, 7.2) 6.75 (6.4, 7.06) 0.471

PT, median (Q1, Q3) 13 (11.9, 14) 12.95 (11.85, 13.8) 13.3 (12.44, 14.43) < 0.001

(Continued)
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TABLE 1 (Continued)

Variables Total
(n = 1,236)

Survival
(n = 1,072)

Death
(n = 164)

P-value

Triglycerides, median (Q1, Q3) 104 (79, 129) 104 (78, 129) 101.25 (81, 130.25) 0.882

Total cholesterol, median (Q1, Q3) 156.25 (134, 178) 156 (135, 178) 159.25 (125, 180) 0.746

Heart rate, median (Q1, Q3) 78.25 (69, 92) 78 (68, 91) 84 (72, 99.25) <0.001

Respiratory rate, median (Q1, Q3) 18 (16, 21) 18 (16, 21) 18 (16, 22) 0.369

SpO2 , median (Q1, Q3) 97 (96, 99) 97 (96, 99) 98 (96.5, 99) 0.012

Nibp.Systolic, median (Q1, Q3) 151 (131, 166.25) 151 (131, 166) 151.5 (130.75, 169) 0.788

Nibp.Diastolic, median (Q1, Q3) 78 (66, 90) 78 (67, 90) 75.5 (62, 91) 0.144

Stroke, N (%) 0.772

No 979 (79) 851 (79) 128 (78)

Yes 257 (21) 221 (21) 36 (22)

Renal disease, N (%) 0.212

No 1,148 (93) 1,000 (93) 148 (90)

Yes 88 (7) 72 (7) 16 (10)

Diabetes, N (%) 0.482

No 906 (73) 790 (74) 116 (71)

Yes 330 (27) 282 (26) 48 (29)

Myocardial infarction, N (%) 0.758

No 1,142 (92) 989 (92) 153 (93)

Yes 94 (8) 83 (8) 11 (7)

Dementia, N (%) 0.885

No 1,169 (95) 1,013 (94) 156 (95)

Yes 67 (5) 59 (6) 8 (5)

Chronic pulmonary disease, N (%) 0.493

No 1,136 (92) 988 (92) 148 (90)

Yes 100 (8) 84 (8) 16 (10)

Mild liver disease, N (%) 0.048

No 1,233 (100) 1,071 (100) 162 (99)

Yes 3 (0) 1 (0) 2 (1)

Hypertension, N (%) 0.919

No 807 (65) 701 (65) 106 (65)

Yes 429 (35) 371 (35) 58 (35)

Atrial fibrillation, N (%) 0.15

No 983 (80) 860 (80) 123 (75)

Yes 253 (20) 212 (20) 41 (25)

Apsiii, median (Q1, Q3) 35 (26, 50) 33 (25, 46) 51 (37.38, 70) < 0.001

APACHE II, median (Q1, Q3) 53 (44, 68.62) 51 (43, 65) 69.5 (56, 89) < 0.001

GCS.Min, median (Q1, Q3) 12 (8, 14) 13 (9, 14) 5.5 (3, 8) < 0.001

Oasis, median (Q1, Q3) 24 (19, 31) 23 (18, 30) 31 (24.75, 39) < 0.001

Polys, percentage of polymorphonuclear granulocytes; GCS, Glasgow coma scale; ALT, alanine transaminase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; BUN, blood urea

nitrogen; WBC, white blood cells; INR, the international standardization percentage ratio; PT, prothrombin time; SpO2 , pulse oximetry, APSIII, acute physiology score III. There were

significant differences in Physiology Score III; APACHE, Acute physiology and chronic health evaluation II score; OASIS, Oxford acute severity of illness score.
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FIGURE 1

(A, B) An overview of the variable selection process for the ML model. ML, machine learning.

baseline characteristics after the SMOTEmethod is shown in the

Supplementary Table.

The levels of albumin, blood calcium, bicarbonate,

percentage of lymphocytes, percentage of monocytes, percentage

of eosinophils, percentage of polymorphonuclear granulocytes

(Polys), and GlasgowComa Scale (GCS) score weremuch higher

in the survival group compared to the death group (P < 0.05).

However, the levels of bilirubin, alanine transaminase (ALT),

aspartate aminotransferase (AST), alkaline phosphatase (ALP),

BUN, creatinine, potassium, glucose, WBC, the international

standardization percentage ratio (INR), prothrombin time (PT),

pulse oximetry (SpO2), Acute Physiology Score III (APSIII),

Acute Physiology And Chronic Health Evaluation II Score

(APACHE II) score, and Oxford Acute Severity of Illness Score

(OASIS) were higher in the death group. The death group also

had more patients with mild liver disease (P < 0.05).
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FIGURE 2

Recursive feature elimination regression analysis.

Feature selection

After feature selection using the recursive feature

elimination (RFE) algorithm, eight features remained (Figure 2).

Features that included SpO2, BUN, percentage of lymphocytes,

AST, polymorphonuclear granulocytes (Polys), heart rate,

WBC, and creatinine could be used as predictors of the

prediction model.

Model evaluation and comparison

We attempted to use several widely applied machine

learning (ML) algorithms (NB, xgboost) for the construction of

the prediction models.

We used a receiver operating characteristic (ROC) curve,

specificity, sensitivity, accuracy, PPV, NPV, and F1 score to

evaluate the prediction model in both training and validation

data. Before evaluation, optimal cutoffs were determined by

maximizing the Youden index (i.e., sensitivity + specificity –

1) by the ROC curve in the validation set. In the validation

set, ROC curves revealed that xgboost had the best predictive

performances, with an area under the curve of 0.733, better than

that of the area under the curves of NB (0.672) and LR (0.627)

(Figure 3).

In the training set, the accuracy of the xgboost model (0.994)

was higher than the accuracies of the other models. All details

about the parameters of the models developed with different

algorithms are shown in Table 2.

Model interpretation

As shown in Figure 4, the Tree-Explainer class imported

from the SHapley Additive exPlanations (SHAP) package is

used to analyze the independent validation set in the xgboost

model (27). Figure 4 shows the relationship between the value of

the feature and the corresponding SHAP value, which suggests

the magnitude of the feature’s contribution to the occurrence

of the ending event. Following the SHAP summary plot of
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FIGURE 3

Receiver Operating Characteristic (ROC) curve of model (A). The area under receiver operating characteristic curve (AUC) values of all models in

the training set (B). AUC values for all models in the test set.

TABLE 2 Model performance metrics.

Model F1 Accuracy Sensitivity Specificity PPV NPV

Training set

xgboost 0.963 0.969 0.943 0.989 0.985 0.959

NB 0.695 0.738 0.699 0.767 0.692 0.772

LR 0.555 0.665 0.489 0.796 0.643 0.675

Validation set

xgboost 0.622 0.665 0.644 0.681 0.602 0.718

NB 0.604 0.626 0.667 0.595 0.552 0.704

LR 0.471 0.663 0.442 0.779 0.504 0.732

28-day death in elderly ICU patients with IS, the associated

characteristics with the highest importance score were SpO2,

BUN, percentage of lymphocytes, AST, Polys, heart rate, WBC,

and creatinine.

ML explainability results for two patients

Using the SHAP force plot, the Shapley value for each

feature, which increases (positive value) or decreases (negative

value) the prediction from its baseline, was visualized (28). A

Shapley value is based on the average of all predictions, and in

this case, 53.4% of the held-out validation set.

Patient 1

This is an elderly patient who was admitted to the ICU for IS.

The patient died on the 28th day. The predicted probability for

mortality is high at 72.4%, compared with the baseline of 53.4%

(average mortality of the validation set). The features detected

by the model for predicting a higher mortality in this patient

include Polys, WBC, BUN, AST, and creatinine. In Patient 1,

all characteristics, except creatinine, supported the occurrence of

the outcome. It was predicted by the ML model that this patient

would die, and it truly occurred during admission (true positive).

From a physician’s point of view, the ICU observation for

this IS patient is reasonable, considering the higher BUN, AST,

and creatinine levels in the ICU.
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FIGURE 4

(A) SHAP summary plot. (B) SHAP bee plot. Interpretation for the eight clinical features contributing to our machine learning (ML) model’s

prediction for mortality. SpO2, oxygen saturation; BUN, blood urea nitrogen; AST, aminotransferase aspartate; Polys, percentage of

polymorphonuclear granulocytes; WBC, white blood cells.

Patient 2

This is an elderly patient who was admitted to the ICU

for IS. The patient survived on the 28th day. The predicted

probability for mortality by the model was 52.0% compared with

the baseline of 53.4%. The features detected by the model for

predicting mortality were all normal. In Patient 2, all features,

except creatinine and AST, did not support the occurrence of

the outcome. It was predicted by the ML model that this patient

would survive, and it occurred during admission (true negative)

(Figure 5).

From a physician’s perspective, the ICU observation for

this IS patient is reasonable, considering the normal values in

the ICU.

Discussion

The novelty of this study is the use of machine learning

(ML) to come up with a model that is superior to the traditional

LR model. We used this machine learning (ML)-based model

that was built on objective indicators to predict the short-term

in-hospital mortality risk of elderly people. The model can be

used as an automatic warning system to indicate the risk of

death of patients. Previous studies proved that the C statistic

can improve by 0.12 with the NIHSS score added to the model

(29). The C statistic of our model is 0.733, which is higher

than those of the previously published models without variables

about the disease severity (29, 30). Despite the lack of an NIHSS

score, our model was based only on objective indicators that

could alert physicians to refine the NIHSS score in time, thus

enhancing further the accuracy of the model. With our alerting

model, clinical physicians may detect changes in condition in

time, which is important for these elderly patients. Moreover,

nurses can also provide early warning to indicate the risk of

patient death with our alerting model. In addition, for those

patients in ICU who have difficulty in body checking or elderly

patients with no obvious changes in physical signs, objective

indicators would be useful tools to find changes more quickly

and timely.

Main findings

Ischemic stroke is the most common type of stroke, which

predominantly affects older adults and has a high short-term

mortality rate after admission to the ICU. Therefore, establishing

a death prediction model is essential for the risk stratification of

these elderly patients with IS.

The present study is the first to use machine learning

(ML) models to predict the short-term prognosis of elderly

patients with IS admitted to the ICU, which provides a basis

for identifying those critically ill older IS patients early. The

present study compares the performance of multiple supervised

machine learning (ML) algorithms with that of traditional
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FIGURE 5

SHapley Additive exPlanations (SHAP) force plot for two patients from the held-out validation set of the machine learning (ML) model.

LR methods to explore the best model for predicting short-

term death in elderly patients with IS. Each model’s prediction

performance on the test set resembles that on the training set,

indicating that the model has good robustness. In particular,

xgboost model based on machine learning shows the best

short-term death prediction accuracy compared with those

of the traditional LR method and another common machine

learning algorithm.

The existing scores for 30-day mortality prediction are

PLAN (pre-admission comorbidities, level of consciousness, age,

and neurologic deficit) (6) and IScore (5). PLAN was externally

validated with an AUC of 0.87 and IScore with an AUC of

0.8. Bonkhoff et al. (16) also reported a predictive model with

an AUC of 0.90. Smith et al. (29) established a validation

data set prediction performance AUC of 0.72. These models

are not designed for elderly patients in the ICU. The present

study includes a different population that consists of elderly

patients with ischemic stroke in the ICU. Due to a lack of

certain variables [PLAN score: stroke subtype, cancer, Canadian

Neurological Scale (CNS) score, and symptomatic parameters;

IScore: stroke severity, stroke subtype, and cancer; Bonkhoff

et al. (16): Situation of living, stroke severity, and symptoms

at admission; Smith et al. (29): Mode of arrival, NIHSS score,

and smoke], the present study could not externally validate

these models and evaluate the applicability for the elderly in

the ICU.

In addition, the present study provides a simpler prediction

tool that displays clinically useful discrimination of in-hospital

risk of mortality for elderly patients with IS in the ICU. Our

model is based on readily available variables of the eICU-

CRD database, including patient demographics, history, and

examination information. The database did not include variables

about disease severity such as the Canadian Neurological

Scale (CNS) and the National Institutes of Health Stroke

Scale (NIHSS). A more widespread use of stroke severity

assessments is probably held back by the time needed to

complete even a short assessment. NIHSS strongly influences

mortality and improvement. When the NIHSS score was added

to the model, the C statistic can improve by 0.12 (29). The

C statistic of our model is 0.733, which is higher than those

of the previously published models without variables about

the disease severity (29, 30). This is to say, with the data of
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NIHSS, our model will improve the C statistic of the xgboost

model. While both Wang et al. (7) and our study prove that

machine learning was better in the prediction of outcomes

in patients with IS than the LR models, our model may

present a better performance than PLAN and IScore without

NIHSS data.

Some ML models for IS patients (7) have limited clinical

applications, and the lack of interpretability of these models

is the major barrier. Our results for elderly IS patients in the

ICU are more reliable and transparent using the SHAP method,

which not only help to get explanations for individual patients

but also offer a global explanation for our cohort.

We found elevated oxygen saturation, AST, Polys, heart

rate, WBC, and creatinine levels and decreased BUN level,

and the percentage of lymphocytes could be used as predictors

of the prediction model for 28-day in-hospital mortality

in elderly patients with IS admitted to the ICU. Bhatia

et al. (31) found impaired consciousness, high total leukocyte

count, raised erythrocyte sedimentation rate (ESR), elevated

creatinine and ALT, estimated within 24 h of hospitalization,

as the most important indicators of 30-day mortality in

patients with first-time ischemic stroke. WBC, BUN, and

creatinine are associated with the mortality of patients with

IS in the ICU (32). Our ML model also emphasizes the

importance of WBC, ALT, BUN, and creatinine levels. AST

and BUN were reported to be associated with mortality in the

ICU (33).

Limitations

We conceived and developed an observational study that

is known to increase the risk of selection bias. Additionally,

in the eICU-CRD database, data are collected from electronic

health records of 208 hospitals across the country; however,

each hospital populates the data differently, which results in

significant missing data. Our statistical models did not include

variables with more than 30% missing data, which was a major

limitation. In addition, the predicting models were built with the

US elderly population as a reference; therefore, its application to

different ethnic groups and non-elderly people requires further

investigation and validation.

Implications

Predicting mortality helps physicians make better

decisions and judgments, as well as coordinate services,

communicate with patients, and adjust care plans. Moreover,

it provides a reference for assessing stroke mortality and

hospital performance.
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