
TYPE Original Research

PUBLISHED 09 November 2022

DOI 10.3389/fpubh.2022.1047714

OPEN ACCESS

EDITED BY

Yanwu Xu,

Baidu, China

REVIEWED BY

Lijun Lu,

Southern Medical University, China

Huiying Liu,

Institute for Infocomm Research

(A∗STAR), Singapore

Jiuping Liang,

Shenzhen, China

*CORRESPONDENCE

Ivan W. K. Tham

Ivantham@yahoo.com

Long Zhou

zhoulong21@zju.edu.cn

Jianhua Yan

jianhua.yan@gmail.com

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

RECEIVED 18 September 2022

ACCEPTED 19 October 2022

PUBLISHED 09 November 2022

CITATION

Guo H, Wu J, Xie Z, Tham IWK, Zhou L

and Yan J (2022) Investigation of small

lung lesion detection for lung cancer

screening in low dose FDG PET

imaging by deep neural networks.

Front. Public Health 10:1047714.

doi: 10.3389/fpubh.2022.1047714

COPYRIGHT

© 2022 Guo, Wu, Xie, Tham, Zhou and

Yan. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Investigation of small lung lesion
detection for lung cancer
screening in low dose FDG PET
imaging by deep neural
networks

Haijun Guo1†, Jun Wu2†, Zongneng Xie3,4, Ivan W. K. Tham5*,

Long Zhou6* and Jianhua Yan3,7,8*

1Department of Emergency Traumatic Surgery, Shanghai University of Medicine and Health

Sciences A�liated Zhoupu Hospital, Shanghai, China, 2Department of Nuclear Medicine, Fenyang

Hospital of Shanxi Province, Fenyang Hospital A�liated to Shanxi Medical University, Fenyang,

China, 3Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health

Sciences, Shanghai, China, 4School of Medical Instrument and Food Engineering, University of

Shanghai for Science and Technology, Shanghai, China, 5Department of Radiation Oncology, Mount

Elizabeth Novena Hospital, Singapore, Singapore, 6Department of Radiology, Sir Run Run Shaw

Hospital, Zhejiang University School of Medicine, Hangzhou, China, 7Department of Nuclear

Medicine, A�liated Hospital of Inner Mongolia Medical University, Key Laboratory of Molecular

Imaging, Inner Mongolia Autonomous Region, China, 8Molecular Imaging Precision Medicine

Collaborative Innovation Centre, Shanxi Medical University, Taiyuan, China

Purpose: FDG PET imaging is often recommended for the diagnosis of

pulmonary nodules after indeterminate low dose CT lung cancer screening.

Lowering FDG injecting is desirable for PET imaging. In this work, we aimed

to investigate the performance of a deep learning framework in the automatic

diagnoses of pulmonary nodules at di�erent count levels of PET imaging.

Materials and methods: Twenty patients with 18F-FDG-avid pulmonary

nodules were included and divided into independent training (60%), validation

(20%), and test (20%) subsets. We trained a convolutional neural network

(ResNet-50) on original DICOM images and used ImageNet pre-trained weight

to fine-tune the model. Simulated low-dose PET images at the 9 count levels

(20 × 106, 15 × 106, 10 × 106, 7.5 × 106, 5 × 106, 2 × 106, 1 × 106,

0.5 × 106, and 0.25 × 106 counts) were obtained by randomly discarding

events in the PET list mode data for each subject. For the test dataset with

4 patients at the 9 count levels, 3,307 and 3,384 image patches were produced

for lesion and background, respectively. The receiver-operator characteristic

(ROC) curve of the proposed model under the di�erent count levels with

di�erent lesion size groups were assessed and the areas under the ROC curve

(AUC) were compared.

Results: The AUC values were >0.98 for all count levels except for 0.5 and

0.25 million true counts (0.975 (CL 95%, 0.953–0.992) and 0.963 (CL 95%,

0.941–0.982), respectively). The AUC values were 0.941(CL 95%, 0.923–0.956),

0.993(CL 95%, 0.990–0.996) and 0.998(CL 95%, 0.996-0.999) for di�erent

groups of lesion size with e�ective diameter (R) <10mm, 10–20mm, and

>20mm, respectively. The count limit for achieving high AUC (≥0.96) for
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lesions with size R < 10mm and R > 10mm were 2 million (equivalent to

an e�ective dose of 0.08 mSv) and 0.25 million true counts (equivalent to an

e�ective dose of 0.01 mSv), respectively.

Conclusion: All of the above results suggest that the proposed deep learning

based method may detect small lesions <10mm at an e�ective radiation

dose <0.1 mSv.

Advances in knowledge: We investigated the advantages and limitations of a

fully automated lung cancer detectionmethod based on deep learningmodels

for data with di�erent lesion sizes and di�erent count levels, and gave guidance

for clinical application.

KEYWORDS

lung cancer, deep learning, PET/CT, low-dose, lesion detection

Introduction

Lung cancer is still the leading malignant disease for

women and men (1). Low dose computed tomography (CT)

was recommended for lung cancer screening for high-risk

populations. Positron Emission Tomography (PET) with 18-

fluorodeoxyglucose (FDG) has been widely used in the

management of lung cancer (2). In addition, FDG PET/CT

imaging is often recommended for the diagnosis of pulmonary

nodules after indeterminate low dose CT lung cancer screening

(3), especially for small nodules <10mm. However, since γ -ray

radiation associated with PET imaging may carry health risk

for patients, lowering PET tracer injection is highly desirable.

However, reducing tracer dose within the current imaging

protocols and reconstruction settings will inevitably lead to

poor image quality such as low signal-to-noise ratio (SNR) or

low contrast-to-background ratio, which may cause unreliable

diagnosis (4). Besides, the interpretation of FDGPET/CT images

is more challenging for low SNR images, especially for less-

experienced physicians. Given wide variations of interpretations

of images leading to different diagnoses and being a laborious

task which may be translated into high costs and human

errors, health professionals can benefit from computer-assisted

interventions. Computer assisted diagnosis based on machine

learning could help minimize the errors or improve the

clinical management.

Recently, deep learning (DL) has established noteworthy

progress in computer vision (5) and now attracted increasing

attention in medical imaging (6), including image classification,

object detection, registration, image denoising, segmentation

and image modality transaction (7, 8). All these technical

development could be translated into clinical benefit

including improve diagnosis, increasing working efficiency

and standardizing the protocol. The power of DL has been

demonstrated in the lung node or lung cancer detection

based on low dose CT images (9). There are less similar

works for FDG PET imaging. Poor quality of low-dose

PET images due to reduced injection dose limits the use of

deep learning models in low-dose PET images. Schwyzer

et al. (10) evaluated deep learning for the detection of

lung cancer in simulated low-dose FDG-PET imaging.

Sibille et al. (11) trained a convolutional neural network

(CNN) on PET/CT data to classify the malignancy of

lymphoma and lung cancer. Teramoto et al. (12) proposed

to use a CNN to improve false positive reduction for

the detection of pulmonary nodules in PET/CT images.

Abnormality detection is another effective way, which only

requires data with labeled by radiologists as either normal

or abnormal.

In the similar work (10), Schwyzer et al. firstly investigated

the utility of deep learning method in abnormality nodule

detection with FDG PET imaging and tested the performance

with lowering dose. Fully automated lung cancer detection

can be realized at a very low effective radiation dose

of 0.11 mSv. However, in that work, PET images were

converted to PNG format before training the deep learning

model, which may lose much information. In addition, the

dose limit for the detection of different size lesion was

not explored.

Inspired by the previous work (10), we fine-tuned the

commonly used ResNet50 on the original DICOM data to

detect lung nodule and investigated the benefits and limitations

of this approach on different count level data for different

lesion size.

The rest of paper is organized as follows. Section 2

introduces the methodology and experimental setup followed

by the results of Section 3. Finally, we discuss and presents a

concluding summary of this work in Section 4.
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Methods

Network

We used a 50-layer convolution neural network to for the

nodule diagnosis. The network used a ResNet50 architecture

(13), which won first place on the 2015 IMAGENET Large Scale

Visual Recognition Challenge (ILSVRC) classification task (14).

The main reason for choosing the residual network was to build

a deeper neural network without reducing accuracy. In order

to adapt for our purpose, we replaced the final fully connected

layer with one that has a single output, followed by a sigmoid

activation function.

For each image X of study type T in the training set, we

optimized the binary cross entropy loss

L(X, y) = –y log(p(Y = 1|X))–(1– y) log(p(Y = 0|X)) (1)

Where y is the label of the study, p(Y = i|X) is the probability

that the network assigns to the label i.

Before feeding images into the network, we scaled the

variable-sized images to 64× 64 and augmented the data during

training by applying random lateral inversions and rotations of

up to 90 degrees. The weights of the network were initialized

with weights from the ResNet50 model pre-trained on ImageNet

dataset. The network was trained end-to-end using Adam (15)

with default parameters β1 = 0.9 and β2 = 0.999. A mini-

batches of size 16 was used. The initial learning rate was set to

0.0001, after n epochs, a warm restart was performed where the

learning rate was reset to its initial value and the optimizer’s

momentum buffers were cleared creating a temporary period

of instability allowing the optimizer to escape sub-optimal

local minimums (16). All experiments were conducted using

the Keras (17) with Tensorflow backend on a NVIDA TITAN

GTX GPU.

Data pre-processing and experiment
settings

Twenty patients (weight 37.2–91 kg) with biopsy-proven

primary lung cancer were used for this study. All scans were

performed on a Biograph mCT (Siemens Healthcare Molecular

Imaging) after an uptake period of 60min with injection of

218.3 ± 5.18MBq FDG. The PET images were acquired in

list-mode format, and the true scan counts were obtained

by subtracting the smoothed delayed counts from the total

prompts (the true and scattered events). All patients were

scanned with 2 bed positions covering the lung for 10min,

resulting in 120 ± 25 million mean true coincident counts

per bed position (18). Low dose PET images were simulated

by randomly discarding events in the PET list-mode data to

FIGURE 1

Example of image patches with lesion (left) and background

(right). Each patch was annotated to either 0 if no nodule was

present (blue square), or 1 if an FDG-avid nodule was present

(red square).

obtain 9 different predefined true count levels with 20 × 106,

15 × 106, 10 × 106, 7.5 × 106, 5 × 106, 2 ×106, 1 ×

106, 0.5 × 106 and 0.25 × 106 counts. The reconstruction

was Ordinary Poisson Subset Expectation Maximization (OP-

OSEM), using Time of Flight (TOF) and Point Spread Function

(PSF), with 2 iterations, 21 subsets and 3mm Gaussian filtering.

The size of each reconstructed 3D PET data is 400 × 400 × 171

(2.04× 2.04× 2.03 mm).

The data were divided into training (12 patients), validation

(4 patients) and testing (4 patients) subsets. The validation was

used to guide the algorithm development and to select the

algorithm hyper-parameters, while the test set was exclusively

used to assess the performance. The lesion and background

images patch of PET images were chose by an experienced

physician and served as ground truth for the ResNet50. A total

of 1,145 PET image patches (64 × 64) were obtained. In order

to study the performance of deep learning model at different

count levels, a total of 10,307 PET image patches from 9 different

count levels at the same position as annotated were obtained.

At the same time, a total of 11,307 background patches in all

9 count levels were randomly cropped in normal organ tissue

with fixed patch size as same as lesion patches. We produced

SUV (Standardized uptake value) image via Eq. 2, rather than

converting to PNG image. Each patch was associated with either

a label 1 (pulmonary nodule is present on the patch) or a

label 0 (background), as mentioned above and illustrated in

Figure 1.

SUV =
Cimg(t)

ID/BW
(2)

Where Cimg(MBq/mL) is radioactivity concentration,

ID(MBq)is the injected dose at t = 0, and BW(kg) is the

body weight.

Statistics analysis

For the calculation of the ROC curves and AUC value, we

used the scikit-learn package (19) and Bootstrap method to

estimate confidence level.
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FIGURE 2

The accuracy and loss values on the training and validation datasets.

TABLE 1 The total number of image patches with di�erent lesion sizes

for the test (summation of all 9 count levels).

R [mm] [0, 10] [10,20] [>20]

Number of patches 549 1,143 1,620

Results

The accuracy and loss values on the training and validation

datasets were shown in Figure 2, and the performance of the

automated detection lung cancer was evaluated by using AUC. A

total of 3,312 and 3,384 patches for lesion and background were

chosen from 4 test patients at the all count levels, respectively.

For each lesion patch, we generated ROI in the full-dose images

by selecting all pixels within the annotated location with values

equal to or greater than threshold of 40% of the maximum

SUV value. The size of lesion was estimated by the effective

diameter (defined by ourself) by converting the lesion area to

diameter of a circle, and the number of different lesion sizes were

summarized in Table 1.

Count level study

The ROC curves comparison between all 9 different count

levels of PET images are illustrated in Figure 3a. In general,

the AUC values decrease as true count decreases and rapidly

reaches saturation after a count level>1× 106. Derived from the

AUC, the sensitivity and specificity for automated lung cancer

detection were 96.7 and 98.5% for true count 1 × 106, 92.9 and

94.9% for true count 0.5 × 106 and 83.3 and 99.2% for 0.25 ×

106, respectively.

Lesion size study

False negative findings are mainly represented by small

lesions (<10mm) al- though 18F-FDG PET sensitivity may be

reduced in specific tumor types showing variable FDG uptake

(2). Previous paper (10) also pointed out, their high false

negative rate (FNR) can be explained by lower tumor activity

and small lesion size (< 10mm). In this study, we made an

analysis of our model performance on different lesion sizes data

and the results are shown in Figure 3b. We found that the AUC

value increased with increasing lesion size and rapidly reached

saturation. The final obtained AUC values are 0.941 (CL 95%,

0.923–0.956), 0.993 (CL 95%, 0.990–0.996) and 0.998 (CL 95%,

0.996–0.999) for lesion size with effective diameter (R)< 10mm,

10–20mm, and > 20mm, respectively.

Detectability

In order to systematically study model performance and

to survey detectability of lung cancer lesions, we analyzed the

dependence of model performance with AUC values on all 9

count levels and three different lesion sizes data. The analysis

results are shown in Table 2. The AUC value increased rapidly

and reached saturation with the increase of lesion size and true

count. For lesions with size larger than 10mm, the model can

achieve a AUC≥ 96% for all count levels, even at the count level

of 0.25 × 106 counts. At least 1 × 106 counts were required to

achieve the AUC larger than 0.95 for the lesion with <10 mm.

Ablation study

We performed an ablation study to understand the

effectiveness of our designs using SUV scaling. All the

experiments were conducted with the same dataset so that both

the quantitative and qualitative performances can be evaluated.

Table 3 shows the experimental results, where the performances

of deep learning model with and without SUV scaling are

compared. The test results are presented by relative AUC

improvement (AUCimp), where the baseline is the model trained

without SUV scaling data, and we observed 4.7% improvement

for small size lesion (R < 10 mm).
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FIGURE 3

ROC curves in the test data set. (a) The ROC curves of di�erent count levels. FPR and TPR refer to false positive rate and true positive rate,

respectively. (b) The ROC curves for lesions of di�erent sizes without distinguish between count levels. Where R represents the e�ective

diameter of lesion and calculate by converting the lesion area to diameter of the circle.

TABLE 2 The AUC value for lesions with di�erent lesion size and true count level.

R [mm]\Count [1e6] 0.25 0.50 1.00 2.00 5.00 7.50 10.00 15.00 20.00

[0, 10] 0.503 0.798 0.951 0.983 0.979 0.996 0.987 0.983 0.986

10,20 0.985 0.964 0.999 0.999 1.000 0.999 0.996 0.999 0.996

>20 0.960 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The bold values represent AUC < 0.96 and maximum improvement, respectively.

TABLE 3 The AUC improvement via SUV scaling.

R [mm] [0, 10] [10,20] [>20]

AUCimp 4.7% 0.4% 0.2%

The bold values represent AUC < 0.96 and maximum improvement, respectively.

Model interpretation

We visualized the parts of the PET images which contribute

most to the model’s prediction of lung cancer by using class

activation mappings [CAMs (20)]. We input a PET image X into

the fully trained network to obtain the feature maps output by

the final convolutional layer. To compute the CAM M (X), we

took a weighted average of the feature maps using the weights

of the final fully connected layer. Denote the kth feature map

output by the network on image X by fk(X) and the kth fully

connected weight by wk. Formally,

M (x) =
∑

k

wkfk(x) (3)

To highlight the salient features in the original PET image,

which contributed the most to the network predictions, we

upscaled the CAM M (X) to the dimensions of the image and

overlay the image. Figure 4 shows the example PET images

and the corresponding CAMs output. The activation maps

for false negative (FN) and false positive (FP) cases revealed

that noise, low tumor activity and small lesion size are the

main causes.

Discussion and conclusion

We showed that a larger lesion size and smaller noise

level (larger true counts) for PET images performs better

than a smaller lesion size and larger noise level (smaller true

counts) for most of the lung cancer detection, which can be

explained by more discriminative features that are crucial for

detection and classification. In order to detect small size lung

cancer, we made several efforts, including new pre-process, e.g.

converting radioactivity value to SUV scale, and using stochastic

gradient descent with warm restarts (SGDR) (16) strategy

to improve model optimization during training. Besides, we

made a systemic study of model performance with a series
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FIGURE 4

Sample patches with di�erent categories. The area is highlighted by the model CAM. Where TP, TN, FP and FN are corresponds to true positive,

true negative, false positive and false negative, respectively.

of different lesion size data and different true counts data in

PET images. We observed the AUC value increased rapidly

and reached saturation with the increase of lesion size and

true count.

Although the results are promising, there still exist some

limitations. Firstly, the low-dose PET images are produced

base on a simulation, even though recent work (21) confirmed

that the emulated low-count scans are comparable to low-

dose scan. It is understood that real low-dose images might be

somewhat different from simulated low-dose images. This is

due to potentially different biodistribution and different count

statistics. Secondly, due to the limited collected PET/CT images,

we only used 2D CNN network to detect lung cancer patch-by-

patch. When we apply it into clinic, we need to perform sliding

window detection, which may affect the detection efficiency.

Finally, since lung cancer have a 3D structure, a 3D convolution

would be the more reasonable option. We also note that deep

learning has a wide range of applications in low-dose PET/CT

image noise reduction (22–24). If we combine the deep noise

reduction model with the lesion detection model, it will help

to improve the detection performance of the model at low

doses. In addition, combining PET and CT images would further

improve the model performance and reduce the false-positive

rate (12). In the future, we will collect enough annotated data

and consider using 3D CNN network to detect lung cancer as

well as combining noise reduction in low-dose PET/CT images

to improve detection performance and robustness.

The potential of lung cancer detection based on deep

learning in low-dose PET imaging has not been widely explored.

The recent published paper (10) on lung cancer detection

shows good performance, but they still didn’t investigate the

robustness to count level and lesion size. In addition, they

directly convert the PET images to PNG images during image

preprocessing by scaling the maximum value in PET image

to 255. However, the maximum value in the PET images

are not stable and are largely affected by noise, especially

at low-dose PET images. Such a conversion would lead to

a significant difference in pixel values of similar lesion in

PNG images. As shown in Eq. 2, it is defined as the ratio of

activity per unit volume of a region of interest (ROI) to the

activity per unit whole body volume and is considered to be

a semi-quantitative parameter. Abnormal SUV values are an

important feature for lung cancer, and this conversion leads

to loss of SUV information. In addition, our ablation study

also confirmed that the SUV scaling aids in the detection of

small lesions.

Lung cancer detection at low-dose PET/CT image has

important clinical applications: reading workflow could

potentially be simplified by preprocessing PET/CT to more

efficiently derive clinically relevant parameters such as

automatic parametric lesion description. Besides, automated

lung cancer detection could help combat radiologist fatigue.

Physician fatigue is a common problem that affects all

healthcare professionals, radiologists are particularly susceptible

(25). Thus, a model which can perform automatic lung cancer

detection and localization could highlight the portion of the

image that is recognized as abnormal by the model, drawing

the attention of the clinician (26). In the future, we will test the

model with prospective study and introduce this approach into

the current clinical workflow.

In conclusion, we proposed a deep learning method that

could automatically diagnose pulmonary nodule and explored

its performance with different lesion size at the different

count level.
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