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nomograms combined with
novel machine learning
algorithms to predict early death
of patients with metastatic
colorectal cancer
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1Department of Ultrasound Medicine, The Fifth A�liated Hospital of Guangxi Medical University,

Nanning, China, 2Department of Clinical Laboratory, The People’s Hospital of Guangxi Zhuang

Autonomous Region, Nanning, China

Purpose: The purpose of this study was to investigate the clinical and

non-clinical characteristics that may a�ect the early death rate of patients with

metastatic colorectal carcinoma (mCRC) and develop accurate prognostic

predictive models for mCRC.

Method: Medical records of 35,639 patients with mCRC diagnosed from

2010 to 2019 were obtained from the SEER database. All the patients were

randomly divided into a training cohort and a validation cohort in a ratio of

7:3. X-tile software was utilized to identify the optimal cuto� point for age and

tumor size. Univariate and multivariate logistic regression models were used

to determine the independent predictors associated with overall early death

and cancer-specific early death caused by mCRC. Simultaneously, predictive

and dynamic nomograms were constructed. Moreover, logistic regression,

random forest, CatBoost, LightGBM, and XGBoost were used to establish

machine learning (ML) models. In addition, receiver operating characteristic

curves (ROCs) and calibration plots were obtained to estimate the accuracy

of the models. Decision curve analysis (DCA) was employed to determine the

clinical benefits of ML models.

Results: The optimal cuto� points for age were 58 and 77 years and those for

tumor size of 45 and 76. A total of 15 independent risk factors, namely, age,

marital status, race, tumor localization, histologic type, grade, N-stage, tumor

size, surgery, radiation, chemotherapy, bone metastasis, brain metastasis, liver

metastasis, and lung metastasis, were significantly associated with the overall

early death rate of patients with mCRC and the cancer-specific early death

rate of patients with mCRC, following which nomograms were constructed.

The ML models revealed that the random forest model accurately predicted

outcomes, followed by logistic regression, CatBoost, XGBoost, and LightGBM

models. Compared with other algorithms, the random forest model provided

more clinical benefits than other models and can be used to make clinical

decisions in overall early death and specific early death caused by mCRC.
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Conclusion: ML algorithms combinedwith nomogramsmay play an important

role in distinguishing early deaths owing to mCRC and potentially help

clinicians make clinical decisions and follow-up strategies.

KEYWORDS

metastatic colorectal cancer, dynamic nomogram, novel machine learning, early

death, SEER

1. Introduction

Colorectal carcinoma (CRC) is an aggressive malignant

tumor and the third most common malignancy. It is the

fourth leading contributor to cancer-related deaths in the

world. In 2020, there were more than 1.1 million new CRC

cases, and about 570,000 deaths were caused by CRC (1).

Research has revealed that by 2030, the number of newly

diagnosed patients with CRC is expected to increase to more

than 2.2 million and the number of deaths to 1.1 million

(2). Distant metastasis is the main leading cause of poor

prognosis in patients with CRC, and about 25% of patients

with CRC have been found to have distant metastasis at

initial diagnosis (3). The risk of developing CRC depends on

lifestyle, behavioral characteristics, and genetic factors. With the

widespread knowledge of physical examination, the availability

of treatments (surgical resection, chemotherapy, radiotherapy,

and immunotherapy), and the discovery of early biomarkers, the

prognosis of patients with CRC has improved significantly (4, 5).

However, the prognosis of patients with mCRC is strikingly

poor: The 5-year survival rate is only 10%, and the median

survival time is about 5 months (6). Therefore, it is of great

importance to identify risk factors of early death in patients

with mCRC.

Clinical and pathological variables such as age, sex, race,

and tumor size have been recognized as risk factors for cancer

(7). The nomogram was found to be an advanced approach

capable of predicting individual oncologic prognosis based on

comprehensive characteristics (8). Moreover, as an emerging

intersectional method, ML is adept at relating multiple variables

and accurately predicting outcomes (9). Therefore, multiple

ML predictive models have recently been used in disease

diagnosis, prognostic prediction, and clinical decision-making

(10, 11).

The purpose of this research was not only to use

nomograms to evaluate the factors contributing to

early death in patients with mCRC but also to find an

approach with higher precision and clinical applicability

for predicting early death in patients with mCRC

based on machine learning algorithms, which could

potentially help clinicians make clinical decisions and

follow-up strategies.

2. Materials and methods

2.1. Patient cohorts

Surveillance, Epidemiology, and End Results (SEER, https://

seer.cancer.gov/) is the National Cancer Institute’s open public

database that contains cancer incidence and survival data of

17 established cancer registries across the United States and

accounts for approximately 26.5% of incidence and survival

rates of patients with cancer (12). In this study, SEER∗Stat

software (version 8.4.0) was used to extract clinical data of

patients with mCRC from 2010 to 2019 (reference number

11788-Nov2021). The inclusion criteria for patients with mCRC

in this investigation were as follows: (1) patients with tumor

location codes of C18.0, C18.2–18.7, C19.9, and C20.9; (2)

patients confirmed with stage IV CRC by histopathology; (3)

patients aged 18–99 years old; (4) patients with only one primary

site; and (5) patients with complete information on survival

status. Patients diagnosed only by autopsy were excluded.

The screening process is shown in Figure 1. According to

previous studies, early death was defined as death of patients

within 3 months of diagnosis (13–15). All the included patients

with mCRC were divided into a training cohort (accounting for

70%) and a validation cohort (accounting for 30%). X-tile was

used to calculate the optimal cutoff point of patients’ age and

tumor size (16).

2.2. Construction of nomograms and
novel machine learning

We compared the characteristics of the training and

validation groups and analyzed the factors to predict early

death in patients using univariate logistic analysis. Subsequently,

significant variables were evaluated using stepwise multivariate

logistic regression analysis, and the independent predictors

associated with early death in patients were determined.

According to the nomogram, the probability of early death in

patients can be calculated. Moreover, the likelihood of early

death in patients can be estimated by using the dynamic

nomograms. To ensure the stability of the model, 10-fold cross-

validation was used to evaluate the predictive ability of the
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FIGURE 1

Flowchart for selection procedure of patients with mCRC.

model. Our model was then repeatedly tested and tuned, and

the parameters to obtain the optimal model were determined.

Independent predictors were included in five ML algorithms,

and AUC was calculated to identify the top performing ML

model. The differences between AUCs were compared by a

bootstrap test. Calibration plots and DCA were used to assess

calibration capability and clinical benefits, respectively.

2.3. Statistical analysis

Demographic and clinical factors were described by

numbers and percentages. A pie chart was used to show

the overall distribution of the data in the study. Pearson’s

chi-square test was used to evaluate the clinicopathological

variables between the training and validation cohorts. Variables

with a P < 0.05 in the univariate logistic analysis were

screened for multivariate stepwise logistic regression to

identify the possible independent risk factors. In addition,

multicollinearity diagnostics in statistical modeling was

performed by evaluating correlations, variance inflation

factors, and eigenvalues. The forest plot obtained by using

the R package “forestplot” showed the multivariate logistic

analysis results of overall early death and cancer-specific early

death, respectively. Nomograms were constructed from the

results of univariate and multivariate analyses using the “rms”

package. Simultaneously, a more flexible and better visualized

dynamic nomogram was obtained through the “DynNom”

package. In this study, three newly developed gradient

boosting models (GBMs), namely, CatBoost, LightGBM, and

XGBoost, and random forest and logistic regression models

were implemented by “CatBoost,” “LightGBM,” “XGBoost,”

“random forest,” and “rms” packages, respectively. The “pROC,”

“rms,” and “rmda” packages were used to generate ROC,

calibration, and DCA curves, respectively (https://github.com/

mdbrown/rmda). All statistical analyses were performed using

R software (version 4.2.1, http://www.r-project.org/).

3. Results

3.1. Demographic and clinical
characteristics

A total of 35,639 patients with mCRC were included

in this study, and the patients were randomly divided into

the training cohort (n = 24,948) and validation cohort (n

= 10,691). The results analyzed by X-tile software revealed

that the optimal cutoff point for age was 58 and 77 years,

and the optimal cutoff point for tumor size was 45 and 76

(Figure 2). The data distribution was displayed by pie chart

(Supplementary Figure S1).

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1008137
https://github.com/mdbrown/rmda
http://www.r-project.org/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2022.1008137

FIGURE 2

Estimation of the appropriate cuto� value for age (A) and tumor size (B) by X-tile analysis.

As shown in Table 1, 29.2% (10,396/35,639) of patients with

mCRC have died within 3 months after diagnosis, and 26.8%

(9,535/35,639) of the patients died of cancer. Most of the patients

with mCRC were white (75.3%) and with household incomes

of $55,000–$69,999 (39.6%) and >$70,000 (33.1%), and liver

metastasis was the most common type (75%) when compared

with bone (6.7%), brain (1.5%), and lung (26.7%) metastases.

Only few of the patients with mCRC received radiation therapy

(11.7%), whereas many of the patients preferred chemotherapy

(63.3%). The tumor was more commonly located in the right

colon (34.3%) than in the left colon (28.2%), transverse colon

(6.3%), rectosigmoid (9.5%), and rectum (21.8%). The early

death rate was higher in white people (76.2%) than in other

ethnic groups and was higher in the right colon (39.2%) than

in the left colon (26.1%), transverse colon (7.6%), rectosigmoid

(9.1%), and rectum (17.9%). Treatments including surgery,

radiation, and chemotherapy significantly reduced early death

in patients with mCRC.

There were no significant differences in age, sex, marital

status, race, median household income, tumor localization,

histologic type, grade-stage, TN-stage (AJCC 8th version),

tumor size, surgery, radiotherapy, chemotherapy, non-primary

surgery, bone metastasis, brain metastasis, liver metastasis, and

lungmetastasis between the training and testing cohorts, with all

p> 0.05 (Table 2). Therefore, the training and validation cohorts

could be used for the follow-up research.

3.2. Logistic regression analysis

In the training cohort, the risk factors linked to the

overall early death and cancer-specific early death of patients
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TABLE 1 Demographic information of patients with mCRC.

Level Overall No early death Total early death Cancer-specific
early death

n 35,639 25,243 10,396 9,535

Age (%) ≤58 12,455 (34.9) 10,258 (40.6) 2,197 (21.1) 2,059 (21.6)

59–77 16,479 (46.2) 11,427 (45.3) 5,052 (48.6) 4,628 (48.5)

>77 6,705 (18.8) 3,558 (14.1) 3,147 (30.3) 2,848 (29.9)

Sex (%) Male 19,677 (55.2) 14,092 (55.8) 5,585 (53.7) 5,098 (53.5)

Female 15,962 (44.8) 11,151 (44.2) 4,811 (46.3) 4,437 (46.5)

Marital status (%) Married 17,116 (48.0) 12,938 (51.3) 4,178 (40.2) 3,850 (40.4)

Unmarried 16,524 (46.4) 10,960 (43.4) 5,564 (53.5) 5,099 (53.5)

Unknown 1,999 (5.6) 1,345 (5.3) 654 (6.3) 586 (6.1)

Race (%) White 26,830 (75.3) 18,908 (74.9) 7,922 (76.2) 7,277 (76.3)

Black 5,264 (14.8) 3,712 (14.7) 1,552 (14.9) 1,420 (14.9)

Other 3,464 (9.7) 2,581 (10.2) 883 (8.5) 807 (8.5)

Unknown 81 (0.2) 42 (0.2) 39 (0.4) 31 (0.3)

Median household

income (%)

<$40,000 2,139 (6.0) 1,510 (6.0) 629 (6.1) 579 (6.1)

$40,000–$54,999 7,568 (21.2) 5,300 (21.0) 2,268 (21.8) 2,096 (22.0)

$55,000–$69,999 14,128 (39.6) 9,967 (39.5) 4,161 (40.0) 3,820 (40.1)

>$70,000 11,803 (33.1) 8,465 (33.5) 3,338 (32.1) 3,040 (31.9)

Unknown 1 (0.0) 1 (0.0) 0 (0.0) 0 (0.0)

Tumor localization (%) Right colon 12,209 (34.3) 8,133 (32.2) 4,076 (39.2) 3,728 (39.1)

Transverse 2,240 (6.3) 1,445 (5.7) 795 (7.6) 753 (7.9)

Left colon 10,039 (28.2) 7,329 (29.0) 2,710 (26.1) 2,486 (26.1)

Rectosigmoid 3,391 (9.5) 2,442 (9.7) 949 (9.1) 877 (9.2)

Rectum 7,760 (21.8) 5,894 (23.3) 1,866 (17.9) 1,691 (17.7)

Histologic type (%) Adenocarcinoma 32,994 (92.6) 23,770 (94.2) 9,224 (88.7) 8,457 (88.7)

Not adenocarcinoma 2,645 (7.4) 1,473 (5.8) 1,172 (11.3) 1,078 (11.3)

Grade (%) I–II 17,583 (49.3) 13,916 (55.1) 3,667 (35.3) 3,327 (34.9)

III–IV 8,207 (23.0) 5,507 (21.8) 2,700 (26.0) 2,477 (26.0)

Unknown 9,849 (27.6) 5,820 (23.1) 4,029 (38.8) 3,731 (39.1)

T (%) T1-T2 3,746 (10.5) 2,581 (10.2) 1,165 (11.2) 1,070 (11.2)

T3-T4 20,261 (56.9) 15,668 (62.1) 4,593 (44.2) 4,196 (44.0)

Unknown 11,632 (32.6) 6,994 (27.7) 4,638 (44.6) 4,269 (44.8)

N (%) N0-N1 21,149 (59.3) 15,263 (60.5) 5,886 (56.6) 5,384 (56.5)

N2 8,582 (24.1) 6,656 (26.4) 1,926 (18.5) 1,771 (18.6)

Unknown 5,908 (16.6) 3,324 (13.2) 2,584 (24.9) 2,380 (25.0)

Tumor size (%) ≤45 8,455 (23.7) 6,650 (26.3) 1,805 (17.4) 1,633 (17.1)

46–76 10,293 (28.9) 7,691 (30.5) 2,602 (25.0) 2,390 (25.1)

>76 4,608 (12.9) 3,235 (12.8) 1,373 (13.2) 1,260 (13.2)

(Continued)
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TABLE 1 (Continued)

Level Overall No early death Total early death Cancer-specific
early death

Unknown 12,283 (34.5) 7,667 (30.4) 4,6g6g616 (44.4) 4,252 (44.6)

Surgery (%) Yes 16,420 (46.1) 13,116 (52.0) 3,304 (31.8) 2,985 (31.3)

No 19,141 (53.7) 12,073 (47.8) 7,068 (68.0) 6,526 (68.4)

Unknown 78 (0.2) 54 (0.2) 24 (0.2) 24 (0.3)

Non primary surgery

(%)

Yes 5,069 (14.2) 4,138 (16.4) 931 (9.0) 847 (8.9)

No 30,464 (85.5) 21,028 (83.3) 9,436 (90.8) 8,661 (90.8)

Unknown 106 (0.3) 77 (0.3) 29 (0.3) 27 (0.3)

Radiation (%) Yes 4,180 (11.7) 3,534 (14.0) 646 (6.2) 607 (6.4)

No/Unknown 31,459 (88.3) 21,709 (86.0) 9,750 (93.8) 8,928 (93.6)

Chemotherapy (%) Yes 22,559 (63.3) 20,051 (79.4) 2,508 (24.1) 2,336 (24.5)

No/Unknown 13,080 (36.7) 5,192 (20.6) 7,888 (75.9) 7,199 (75.5)

Bone metastasis (%) No 32,120 (90.1) 23,154 (91.7) 8,966 (86.2) 8,207 (86.1)

Yes 2,380 (6.7) 1,373 (5.4) 1,007 (9.7) 951 (10.0)

Unknown 1,139 (3.2) 716 (2.8) 423 (4.1) 377 (4.0)

Brain metastasis (%) No 33,862 (95.0) 24,210 (95.9) 9,652 (92.8) 8,856 (92.9)

Yes 552 (1.5) 271 (1.1) 281 (2.7) 265 (2.8)

Unknown 1,225 (3.4) 762 (3.0) 463 (4.5) 414 (4.3)

Liver metastasis (%) No 8,384 (23.5) 6,217 (24.6) 2,167 (20.8) 1,938 (20.3)

Yes 26,742 (75.0) 18,675 (74.0) 8,067 (77.6) 7,451 (78.1)

Unknown 513 (1.4) 351 (1.4) 162 (1.6) 146 (1.5)

Lung metastasis (%) No 24,917 (69.9) 18,041 (71.5) 6,876 (66.1) 6,276 (65.8)

Yes 9,530 (26.7) 6,456 (25.6) 3,074 (29.6) 2,855 (29.9)

Unknown 1,192 (3.3) 746 (3.0) 446 (4.3) 404 (4.2)

with mCRC were analyzed using univariate and multivariate

logistic regression analyses. Univariate logistic analysis revealed

that age at diagnosis, marital status, race, tumor localization,

histologic type, grade, T-stage, N-stage, tumor size, surgery,

non-primary surgery, radiation therapy, chemotherapy, bone,

brain, liver, and lung metastasis were all associated with

overall early death and cancer-specific early death of patients

with mCRC all p < 0.05 (Table 3). The significant factors

found by the univariate logistic analysis were included in

the stepwise multivariate logistic regression, and the results

illustrated that general characteristics (age, marital status, and

race), tumor localization, histologic type, grade, N-stage, tumor

size, and treatments (surgery, radiation, and chemotherapy),

and metastases (bone, brain, liver, and lung) were independent

risk factors of overall early death and cancer-specific early

death of patients with mCRC, with all p < 0.05. The

results of multivariate logistic regression were shown by forest

plot (Figure 3). The results of multicollinearity diagnostic

tests (pairwise correlations, variance inflation factors plot,

and eigenvalues plot) revealed that there were no severe

multicollinearity issues (Supplementary Figures S2, S3).

3.3. Dynamic nomogram construction

Predictive nomograms were constructed according to the

results of the stepwise multivariate logistic regression analysis.

In the nomogram prediction models, chemotherapy had the

greatest predictive value, followed by brain metastases, surgery,

tumor localization, grade, and bone metastases in overall early

death and cancer-specific early death (Figure 4). The odds

of early death in patients with mCRC can be predicted by

calculating the scores of each factor. Dynamic nomograms for

total early death that could assist researchers and clinicians can

be accessed at https://xiaoz7474.shinyapps.io/DynNomapp_all_

cause_early_death/, and those for cancer-specific early death
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TABLE 2 Demographic information of patients with mCRC in training and validation cohorts.

Level Overall Training
cohort

Validation
cohort

p

n 35,639 24,948 10,691

Age (%) ≤58 12,455 (34.9) 8,694 (34.8) 3,761 (35.2) 0.72

59–77 16,479 (46.2) 1,1536 (46.2) 4,943 (46.2)

>77 6,705 (18.8) 4,718 (18.9) 1,987 (18.6)

Sex (%) Male 19,677 (55.2) 13,782 (55.2) 5,895 (55.1) 0.867

Female 15,962 (44.8) 11,166 (44.8) 4,796 (44.9)

Marital status (%) Married 17,116 (48.0) 12,038 (48.3) 5,078 (47.5) 0.413

Unmarried 16,524 (46.4) 11,512 (46.1) 5,012 (46.9)

Unknown 1,999 (5.6) 1,398 (5.6) 601 (5.6)

Race (%) White 26,830 (75.3) 18,745 (75.1) 8,085 (75.6) 0.373

Black 5,264 (14.8) 3,710 (14.9) 1,554 (14.5)

Other 3,464 (9.7) 2,442 (9.8) 1,022 (9.6)

Unknown 81 (0.2) 51 (0.2) 30 (0.3)

Median household income (%) <$40,000 2,139 (6.0) 1,533 (6.1) 606 (5.7) 0.156

$40,000–$54,999 7,568 (21.2) 5,330 (21.4) 2,238 (20.9)

$55,000–$69,999 14,128 (39.6) 9,854 (39.5) 4,274 (40.0)

>$70,000 11,803 (33.1) 8,231 (33.0) 3,572 (33.4)

Unknown 1 (0.0) 0 (0.0) 1 (0.0)

Tumor localization (%) Right colon 12,209 (34.3) 8,578 (34.4) 3,631 (34.0) 0.26

Transverse 2,240 (6.3) 1,570 (6.3) 670 (6.3)

Left colon 10,039 (28.2) 7,053 (28.3) 2,986 (27.9)

Rectosigmoid 3,391 (9.5) 2,395 (9.6) 996 (9.3)

Rectum 7,760 (21.8) 5,352 (21.5) 2,408 (22.5)

Histologic type (%) Adenocarcinoma 32,994 (92.6) 23,104 (92.6) 9,890 (92.5) 0.756

Not adenocarcinoma 2,645 (7.4) 1,844 (7.4) 801 (7.5)

Grade (%) I–II 17,583 (49.3) 12,321 (49.4) 5,262 (49.2) 0.895

III–IV 8,207 (23.0) 5,728 (23.0) 2,479 (23.2)

Unknown 9,849 (27.6) 6,899 (27.7) 2,950 (27.6)

T (%) T1-T2 3,746 (10.5) 2,657 (10.7) 1,089 (10.2) 0.33

T3-T4 20,261 (56.9) 14,133 (56.6) 6,128 (57.3)

Unknown 11,632 (32.6) 8,158 (32.7) 3,474 (32.5)

N (%) N0-N1 21,149 (59.3) 14,831 (59.4) 6,318 (59.1) 0.772

N2 8,582 (24.1) 5,982 (24.0) 2,600 (24.3)

Unknown 5,908 (16.6) 4,135 (16.6) 1,773 (16.6)

Tumor size (%) ≤45 8,455 (23.7) 5,878 (23.6) 2,577 (24.1) 0.738

46–76 10,293 (28.9) 7,225 (29.0) 3,068 (28.7)

>76 4,608 (12.9) 3,227 (12.9) 1,381 (12.9)

Unknown 12,283 (34.5) 8,618 (34.5) 3,665 (34.3)

(Continued)
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TABLE 2 (Continued)

Level Overall Training
cohort

Validation
cohort

p

Surgery (%) Yes 16,420 (46.1) 11,442 (45.9) 4,978 (46.6) 0.351

No 19,141 (53.7) 13,448 (53.9) 5,693 (53.3)

Unknown 78 (0.2) 58 (0.2) 20 (0.2)

Non primary surgery (%) Yes 5,069 (14.2) 3,507 (14.1) 1,562 (14.6) 0.387

No 30,464 (85.5) 21,366 (85.6) 9,098 (85.1)

Unknown 106 (0.3) 75 (0.3) 31 (0.3)

Radiation (%) Yes 4,180 (11.7) 2,883 (11.6) 1,297 (12.1) 0.126

No/Unknown 31,459 (88.3) 22,065 (88.4) 9,394 (87.9)

Chemotherapy (%) Yes 22,559 (63.3) 15,792 (63.3) 6,767 (63.3) 1

No/Unknown 13,080 (36.7) 9,156 (36.7) 3,924 (36.7)

Bone metastasis (%) No 32,120 (90.1) 22,477 (90.1) 9,643 (90.2) 0.487

Yes 2,380 (6.7) 1,686 (6.8) 694 (6.5)

Unknown 1,139 (3.2) 785 (3.1) 354 (3.3)

Brain metastasis (%) No 33,862 (95.0) 23,708 (95.0) 10,154 (95.0) 0.536

Yes 552 (1.5) 395 (1.6) 157 (1.5)

Unknown 1,225 (3.4) 845 (3.4) 380 (3.6)

Liver metastasis (%) No 8,384 (23.5) 5,838 (23.4) 2,546 (23.8) 0.691

Yes 26,742 (75.0) 18,752 (75.2) 7,990 (74.7)

Unknown 513 (1.4) 358 (1.4) 155 (1.4)

Lung metastasis (%) No 24,917 (69.9) 17,395 (69.7) 7,522 (70.4) 0.059

Yes 9,530 (26.7) 6,744 (27.0) 2,786 (26.1)

Unknown 1,192 (3.3) 809 (3.2) 383 (3.6)

can be accessed at https://xiaoz7474.shinyapps.io/DynNomapp_

cancer_specific_early_death/.

3.4. Novel machine learning algorithm

To determine the accuracy of our predictive nomogram

model, novel ML algorithms were applied in the validation

cohort (n = 10,691). The feature importance of random forest

is shown in Figure 5. As shown in Figure 6, when it comes

to overall early death and cancer-specific early death, the

random forest model had the best performance with AUC

values of 0.861 and 0.852, respectively, when compared with

the XGBoost (AUC = 0.848, 0.838, respectively), LightGBM

(AUC = 0.844, 0.834, respectively), CatBoost models (AUC

= 0.851, 0.840, respectively), and logistic regression (AUC =

0.852, 0.842, respectively). According to the pairwise statistical

comparisons between AUC values in all-cause early death

(Table 4), the observed inter-individual differences in the overall

performance of random forest, CatBoost, and logistic regression

were statistically significantly higher than those of XGBoost

and LightGBM. However, there is a slight difference in cancer-

specific early death (Table 5), and the observed inter-individual

differences in the overall performance of random forest were

statistically significantly higher than those of logistic regression,

XGBoost, CatBoost, and LightGBM. The learning rate and

maximum depth used for each ML model are shown in

Supplementary Table S1.

The calibration plots of the five algorithms were

subsequently constructed. We found that the lines of the

validation cohort of overall early death and cancer-specific early

death were all around the 45◦ ideal line, which showed that

these algorithms had a certain predictive value. Moreover, the

overall early death and cancer-specific early death in patients

with mCRC predicted by the random forest model had the

strongest agreement with the observed results, followed by the

logistic regression, CatBoost, XGBoost, and LightGBM models

(Figure 7).
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TABLE 3 Univariate logistic analysis of overall early death and cancer-specific early death in patients with mCRC.

Overall early death Cancer-specific early death

OR 95% CI P OR 95% CI P

Age

≤58 Ref Ref

59–77 2.07 1.93–2.21 <0.001 1.97 1.84–2.12 <0.001

>77 4.18 3.86–4.53 <0.001 3.8 3.5–4.12 <0.001

Sex

Male Ref Ref

Female 1.02 0.94–1.1 0.671 1.01 0.94–1.1 0.741

Marital status

Married Ref Ref

Unmarried 0.86 0.78–0.94 0.001 0.85 0.77–0.94 0.001

Unknown 1.53 0.87–2.69 0.137 1.22 0.67–2.21 0.51

Race

White Ref Ref

Black 1.08 1.03–1.14 0.004 1.1 1.04–1.16 0.001

Other 1.56 1.47–1.65 <0.001 1.52 1.43–1.61 <0.001

Unknown 1.52 1.35–1.71 <0.001 1.42 1.26–1.61 <0.001

Median household income

<$40,000 Ref Ref

$40,000–$54,999 1.04 0.92–1.17 0.568 1.05 0.93–1.19 0.427

$55,000–$69,999 0.96 0.86–1.08 0.544 0.97 0.86–1.09 0.588

>$70,000 0.93 0.83–1.05 0.248 0.92 0.81–1.04 0.17

Tumor localization

Right colon Ref Ref

Transverse 1.15 1.02–1.28 0.017 1.19 1.07–1.34 0.002

Left colon 0.74 0.69–0.79 <0.001 0.75 0.69–0.8 <0.001

Rectosigmoid 0.76 0.69–0.84 <0.001 0.77 0.7–0.85 <0.001

Rectum 0.61 0.57–0.66 <0.001 0.61 0.57–0.66 <0.001

Histologic type

Adenocarcinoma Ref Ref

Not adenocarcinoma 2.03 1.84–2.23 <0.001 1.95 1.77–2.15 <0.001

Grade

I–II Ref Ref

III–IV 1.89 1.76–2.03 <0.001 1.9 1.77–2.04 <0.001

Unknown 2.65 2.49–2.83 <0.001 2.63 2.46–2.81 <0.001

T

T1-T2 Ref Ref

T3-T4 0.65 0.6–0.72 <0.001 0.66 0.6–0.73 <0.001

Unknown 1.46 1.33–1.6 <0.001 1.44 1.31–1.59 <0.001

(Continued)
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TABLE 3 (Continued)

Overall early death Cancer-specific early death

OR 95% CI P OR 95% CI P

N

N0-N1 Ref Ref

N2 0.75 0.7–0.81 <0.001 0.77 0.71–0.82 <0.001

Unknown 2.07 1.93–2.22 <0.001 2.02 1.88–2.17 <0.001

Tumor size

≤45 Ref Ref

46–76 2.31 2.18–2.45 <0.001 2.3 2.17–2.44 <0.001

>76 2.06 1.2–3.56 0.009 2.33 1.35–4.01 0.002

Unknown 1.98 1.81–2.16 <0.001 1.96 1.78–2.15 <0.001

Surgery

Yes Ref Ref

No 2.06 1.26–3.37 0.004 2.02 1.22–3.35 0.006

Unknown 2.44 2.2–2.7 <0.001 2.33 2.09–2.59 <0.001

Non primary surgery

Yes Ref Ref

No 12.35 11.58–13.18 <0.001 10.81 10.12–11.54 <0.001

Unknown 1.83 1.66–2.03 <0.001 1.88 1.7–2.09 <0.001

Radiation

Yes Ref Ref

No/Unknown 1.59 1.37–1.84 <0.001 1.52 1.31–1.76 <0.001

Chemotherapy

Yes Ref Ref

No/Unknown 2.6 2.13–3.17 <0.001 2.61 2.14–3.19 <0.001

Bone metastasis

No Ref Ref

Yes 1.5 1.31–1.73 <0.001 1.44 1.25–1.67 <0.001

Unknown 1.21 1.13–1.29 <0.001 1.25 1.17–1.34 <0.001

Brain metastasis

No Ref Ref

Yes 1.3 1.03–1.64 0.026 1.34 1.06–1.69 0.015

Unknown 1.23 1.16–1.31 <0.001 1.26 1.18–1.34 <0.001

Liver metastasis

No Ref Ref

Yes 1.69 1.46–1.95 <0.001 1.61 1.39–1.87 <0.001

Unknown 1.22 1.13–1.33 <0.001 1.25 1.15–1.36 <0.001

Lung metastasis

No Ref Ref

Yes 1.55 1.4–1.7 <0.001 1.54 1.39–1.7 <0.001

Unknown 2.2 2.04–2.38 <0.001 2.19 2.03–2.37 <0.001
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FIGURE 3

Independent predictors of stepwise logistic regression models predict overall early death (A) and cancer-specific early death (B).

The DCA plots of overall early death and cancer-

specific early death revealed that the random forest model

most accurately predicted clinical outcomes, followed by the

logistic regression, CatBoost, XGBoost, and LightGBM models

(Figure 8).

Combining the results of ROC, calibration, and DCA curves,

our study showed that the prediction models of novel ML

algorithms constructed based on the aforementioned factors

had higher precision and clinical applicability for predicting

overall early death and cancer-specific early death in patients

with mCRC than the logistic regression model.

4. Discussion

CRC is the fourth leading contributor to cancer-related

deaths in the world. With the rapid development of treatments

and the prolonged median survival time of patients with CRC

(17), the early death rate is still up to 20.7%, based on the

SEER database, as revealed by this research. CRC is prone to

distant metastases, and lung, liver, bone, and brain are the

most frequently metastatic sites (18). mCRC in more than

65% of patients recur after surgical treatment (19). The long-

term survival of patients with mCRC has attracted wide public

attention; however, studies focusing on early death in patients

with mCRC are rare and should be conducted (20, 21).

The risk of developing mCRC rests on different factors

including lifestyle, behavioral characteristics, and genetic factors.

Large cohort studies have found that the consumption of alcohol

and red meat, smoking, obesity, low levels of physical activity,

and inflammatory bowel diseases are risk factors of mCRC

(22, 23). Donnelly et al. (24) used univariate and multivariable

analyses and found that old age, being unmarried, and living

alone formed the independent risk factors of CRC in the

United Kingdom. Moreover, Tai et al. utilized Cox analysis

and found that eight factors including age, grade, surgery, and

primary site were significant prognostic factors of mCRC (20),

which is consistent with our research. However, compared with
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FIGURE 4

Nomogram of overall early death (A) and cancer-specific early death (B) of patients with mCRC.
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FIGURE 5

Feature importance of the random forest. Overall early death (A) and cancer-specific early death (B).

FIGURE 6

ROC curves of ML models. Overall early death (A) and cancer-specific early death (B).

previous studies, our study has some distinct advantages. First,

the population included in this study was larger, which makes

the results more reliable. Second, this is the first research that

combined nomograms andMLmodels to estimate the prognosis

of patients with mCRC. Third, the constructed models were

validated via a validation cohort, which makes the models more

stable and reliable.

Clinically, patients with mCRC are classified according

to the TNM staging system, which is recognized as the

standard method for cancer staging and provides the basis
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TABLE 4 P-values of the pairwise statistical comparisons of the ML model AUC (overall early death) values derived from the bootstrap test.

Logistic regression Catboost Xgboost Lightgbm RandomForest

Logistic regression 0.096 <0.001 <0.001 0.062

Catboost 0.044 <0.001 0.029

Xgboost 0.014 0.006

Lightgbm <0.001

RandomForest

TABLE 5 P-values of the pairwise statistical comparisons of the ML model AUC (cancer-specific early death) values derived from the bootstrap test.

Logistic regression Catboost Xgboost Lightgbm RandomForest

Logistic regression 0.118 0.006 <0.001 0.038

Catboost 0.138 <0.001 0.017

Xgboost 0.019 0.005

Lightgbm <0.001

RandomForest

FIGURE 7

Calibration plots of ML models. Overall early death (A) and cancer-specific early death (B).

for therapeutic decisions (25). However, there are some

limitations in the TNM staging system. When assessing

patient prognosis, it only emphasizes distant metastases,

lymph node involvement, and tumor site, while other factors

such as tumor size, chemotherapy, and surgery are not

considered (26, 27). Therefore, in this study, nomograms

and ML models were integrated with different clinical

features to comprehensively estimate survival of patients

with mCRC.

The entire population included our research was obtained

from the SEER database, and the patients were randomly divided

into the training cohort (accounting for 70%) and validation

cohort (accounting for 30%). The overall early death rate of

patients with mCRC was 29.2%, and the cancer-specific death

rate of patients with mCRC was 26.8%. Previous research

revealed that clinical and non-clinical information including

age, gender, and marital status were regarded as prognostic

predictors for CRC (28). In addition to these factors, our
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FIGURE 8

Decision curve of ML models. Overall early death (A) and cancer-specific early death (B).

research showed that the early death in patients with mCRC

was mostly associated with chemotherapy and metastatic status.

Consistent with the study of Ge (29), our results showed that

the overall early death in patients with left-sided mCRC is

better than that in patients with right-sided mCRC, with a

hazard ratio of 0.84 and a p < 0.001. Researchers have found

that microsatellite instability and gene expression are different

for different sites of colon cancer (30, 31), which may explain

why CRC at different sites has different prognoses. Our results

illustrated that patients with mCRC of higher grades have higher

hazard ratios. As it is known, the higher the grade, the higher

the degree of malignancy and the worse the prognosis. The

tumor histologic differentiation grade can provide a reference

for prognosis judgment and clinical treatment. Previous studies

have shown that surgery significantly improves the 5-year

OS of patients with mCRC (32). Tumor size is also a vital

variate factor in determining the prognosis of patients with

CRC. Studies have illustrated the correlation between tumor

size and survival in colon cancer (26, 33), and we found that

tumor size was an independent prognostic factor in patients

with mCRC.

Studies focusing on early death have been applied to

many advanced cancers, and it is of great importance in

cancer management. Wang et al. developed a nomogram

to predict the early death of patients with stage IV CRC

and found that the areas under the curve were up to

75.7% (34). In Zhu et al. (14) established a nomogram

model, which is an insightful method in distinguishing

the early death of patients with metastatic gastric cancer.

These studies have illustrated the significant predictive

ability of nomograms in predicting early death in patients

with cancer.

In recent years, ML has been efficient at handling multiple

variables and has been widely used in cancer detection

and prediction (35, 36). In this research, ML models were

constructed, and ROC, calibration, and DCA were utilized

to evaluate the function of the models. The results revealed

that the random forest model accurately predicted outcomes,

followed by logistic regression, CatBoost, XGBoost, and

LightGBM models. In summary, this research analyzed the

risk factors of early death in patients with mCRC and

used dynamic nomograms and novel ML algorithms to

construct prognostic models. The models were efficient in

predicting the prognosis of patients with mCRC and can

potentially help clinicians make clinical decisions and follow-

up strategies.

Although the results of this study are promising, there

are several limitations to this study. First, the model is

based on machine learning algorithms, so the clinical

interpretation of the important features screened out

by the model may be difficult. Second, the model is

based on the SEER database, which only contains data

of North American populations, so there may be gaps

in population applicability, necessitating the inclusion of

broader populations in future studies. Third, this study is

retrospective, and thus, prospective clinical data are needed to

provide more reliable evidence for the clinical application of

this study.
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5. Conclusion

Predictive nomograms and novel ML algorithms could

provide a new method for accurately predicting the early death

of patients with mCRC.
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