Check for updates

OPEN ACCESS

EDITED BY Suneela Garg, University of Delhi, India

REVIEWED BY

Dana Kristjansson, Norwegian Institute of Public Health (NIPH), Norway Heidi E. Jones, City University of New York, United States Madhu Gupta, Post Graduate Institute of Medical Education and Research (PGIMER), India

*CORRESPONDENCE Francesca Licata f.licata@unicz.it

SPECIALTY SECTION

This article was submitted to Public Health Policy, a section of the journal Frontiers in Public Health

RECEIVED 26 July 2022 ACCEPTED 15 November 2022 PUBLISHED 08 December 2022

CITATION

Di Gennaro G, Licata F, Trovato A and Bianco A (2022) Does self-sampling for human papilloma virus testing have the potential to increase cervical cancer screening? An updated meta-analysis of observational studies and randomized clinical trials. *Front. Public Health* 10:1003461. doi: 10.3389/fpubh.2022.1003461

COPYRIGHT

© 2022 Di Gennaro, Licata, Trovato and Bianco. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Does self-sampling for human papilloma virus testing have the potential to increase cervical cancer screening? An updated meta-analysis of observational studies and randomized clinical trials

Gianfranco Di Gennaro, Francesca Licata*, Alessandro Trovato and Aida Bianco

Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy

Objectives: A meta-analysis was conducted to examine the effectiveness of HPV self-sampling proposal on cervical cancer screening (CCS) uptake when compared with an invitation to have a clinician to collect the sample. Secondary outcomes were acceptability and preference of self-sampling compared to clinician-collected samples.

Methods: The present systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies examining the CCS uptake comparing self-sampling over invitation to be sampled by an healthcare professional and examining the proportion of women accepting or preferring self-sampling vs. clinician-collected sampling were included. The CCS uptake was also explored according to strategy of self-samplers' distribution, collection device type and screening status. Peters' test and Funnel Plot inspection were used to assess the publication bias. Quality of the studies was assessed through Cochrane Risk of Bias and NIH Quality Assessment tools.

Results: One hundred fifty-four studies were globally identified, and 482,271 women were involved. Self-sampling procedures nearly doubled the probability (RR: 1.8; 95% CI: 1.7–2.0) of CCS uptake when compared with clinician-collected samples. The opt-out (RR: 2.1; 95% CI: 1.9–2.4) and the door-to-door (RR: 1.8; 95% CI: 1.6–2.0) did not statistically significant differ (p = 1.177) in improving the CCS uptake. A higher relative uptake was shown for brushes (RR: 1.6; 95% CI: 1.5–1.7) and swabs (RR: 2.5; 95% CI: 1.9–3.1) over clinician-collected samples. A high between-studies variability in characteristics of sampled women was shown. In all meta-analyses the level of heterogeneity was consistently high ($l^2 > 95\%$). Publication bias was unlikely.

Conclusions: Self-sampling has the potential to increase participation of under-screened women in the CCS, in addition to the standard invitation

to have a clinician to collect the sample. For small communities door-todoor distribution could be preferred to distribute the self-sampler while; for large communities opt-out strategies should be preferred over opt-in. Since no significant difference in acceptability and preference of device type was demonstrated among women, and swabs and brushes exhibited a potential stronger effect in improving CCS, these devices could be adopted.

KEYWORDS

human papillomavirus, cervical cancer screening, self-sampling, uptake, acceptability, preference, systematic review, meta-analysis

Introduction

Genital infection with human papillomaviruses (HPV) is the most common sexually transmitted infection in the world (1). In some women, HPV infection will persist over time, and if this goes undetected and untreated, it can lead to precancerous cervical lesions and possibly progress to cervical cancer (2). HPV causes about 8.6% of the cancers affecting women worldwide. In absolute terms, about 570, 000 cases/year are estimated, almost all attributable to the HPV16/18 genotypes (3).

The time from HPV infection to cervical cancer will usually take 10-20 years or longer, and leaves great opportunity for screening and early detection (4). Indeed, secondary prevention measures such as cervical cytology (Pap smear), visual inspection with acetic acid or HPV testing, have strongly contributed to the reduction of incidence and mortality of cervical cancer, by identifying those women at high risk (5, 6). However, the adherence to screening programs in some areas of the world remains very low due to the invasiveness of the test and the lack of confidence in its effectiveness. Therefore, it is quite evident that the relevance of this public health issue necessitates innovative early detection approaches (7, 8). HPV testing through self-collected specimens has gained attention for its potential to increase screening participation. Recent systematic reviews have shown that high-risk HPV (hrHPV) testing on self-sampled specimens has a similar accuracy to detect underlying cervical precancer when compared to cytology on clinician-obtained cervical smears and under the condition that validated polymerase chain reaction (PCR)-based HPV assays are used (9, 10). In addition, several systematic reviews of randomized trials in the context of population-based screening programs showed that offering hrHPV self-sampling to neverscreened and under-screened women increased participation compared with inviting women to have samples taken by healthcare professionals (HCPs) (11-13).

In recent years, numerous studies have investigated the acceptability of self-sampling methods (10, 14-16). Studies have considered women's attitudes toward self-collection and found that women have a high acceptance of and positive attitudes toward the use of self-collected HPV testing (9-11, 15, 16). Skepticism toward self-sampling has emerged, and it is attributable mainly to the fear of not carrying out a correct selfsampling or toward its underrated diagnostic performance (17, 18). Since the last published meta-analysis (19), several studies have measured the effectiveness of self-sampling in increasing the HPV-screening uptake. Moreover, it remains unclear which type of self-sampler offers a better performance. Therefore, we conducted an updated review and meta-analysis on women's attendance in cervical cancer screening (CCS) comparing selfsampled to clinician-collected specimens was conducted to assess whether the strategy of self-samplers' distribution (direct mailing to home, door-to-door distribution, or availability in clinics/pharmacies) and the type of device (brush, swab, lavage, tampon) and the screening status (never- or under-screneed vs. general population) could act as predictors of CCS uptake. Finally, the overall percentage of women who considered selfsampling to be acceptable and who preferred it over collection performed by healthcare personnel was estimated.

Methods

The present systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (20). The need for obtaining institutional review board approval or patient informed consent was waived for this study because it is a review of publicly available data.

Protocol registration

This study was registered in the International Register of Systematic Reviews (PROSPERO 2021: CRD42021266637) and the protocol is available for download.

Abbreviations: CCS, cervical cancer screening; CI, Confidence Interval; HCPs, Healthcare professionals; HPV, Human Papillomavirus; hrHPV, high-risk HPV; RR, Relative Risk; RCT, randomized controlled trial.

Eligibility criteria

Studies were eligible if the following criteria were met: (1) examining the CCS uptake comparing self-sampling over invitation to be sampled by an HCP; (2) reporting enough data to estimate an effect size (Odds- or Risk-Ratio) of CCS uptake; (3) examining the proportion of women accepting or preferring self-sampling vs. clinician-collected sampling; (4) the study population involved women ages 18–70 years both among the general population and among those who were never- or under-screened; (5) the study was in English and published by May, 2022.

Outcomes

The primary outcome was the CCS uptake comparing selfsampling with clinician-collected samples for HPV testing. The CCS uptake was also explored according to strategy of selfsamplers' distribution, collection device type and screening status. Self-samplers' distribution strategies evaluated were door-to-door (i.e., self-samplers were directly distributed to women), opt-out (i.e., mailing self-sampling kits directly to women's home addresses) and opt-in (i.e., receiving an invitation to actively order the kit by phone, by ordinary mail, or by picking it up at the pharmacy or local clinics).

Secondary outcomes were acceptability and preference of self-sampling compared to clinician-collected samples. Acceptability was defined as a unique answer (yes/no) to questions like "Did you find self-sampling acceptable?". Similarly to a previous meta-analysis, the proxy questions "Would you recommend self-sampling to a relative or friend of yours?" or "Would you be willing to use a self-sampler again in the future?" were taken into account (21). Studies in which acceptability was not reported as binary data but measured by a continuous or numerical ordinal variable (e.g., 0–10 scale) were not considered unless an acceptability cut off was established. With regard to the preference outcome, we considered studies in which, after using the self-sampler, women were asked whether they preferred self-sampling or clinician-collected samples for future HPV screening visits.

Data sources and search strategy

A detailed bibliographic literature search was conducted until May 2022. Two co-authors (GDG, FL) independently searched PubMed, Web of Science, Scopus, Cochrane Central and Google Scholar combinations of the following keywords/Medical Subject Headings (MeSH) terms: "HPV", "Human Papillomavirus", "self-sampler", "self-sampling", "self-test", "self-testing", "home-based testing", "communitybased test", "acceptability", "acceptance", "willingness",

"uptake", "participation", "preference". Electronic searches were supplemented by manual searches of the reference list of relevant articles. Both observational and randomized studies were searched. Gray literature was not considered.

Study selection

All articles retrieved from the systematic search were exported to the Mendeley reference manager (www.mendeley.com), wherein duplicates were sought and removed. Three authors (GDG, FL, AT) independently winnowed titles and abstracts of the candidate papers to make a first selection. Full-text of selected papers was read to assess their eligibility in terms of topics of interest and the target population. Disagreements were resolved through discussion with a third author (AB).

Relevant articles were reviewed in full if the study abstract met the inclusion criteria or if an article lacked sufficient information in the abstract to make an inclusion/exclusion judgement, to minimize errors of omission. Figure 1 summarizes the flow diagram of the literature search and the study selection process.

Data extraction

An electronic collection form was used to extract the following information for each study: first author, year of

publication, country, type of device (brush, swab, tampon or lavage), screening status (never or under-screened or general population), study design (observational or randomized). Women defined as "never-screened", "under-screened", "non-attendee" or "non-responders" to regular screening invitations were classified as "under-screened". The selfsamplers' distribution strategy (i.e., door-to-door, opt-out or opt-in strategy) was also retrieved. Regarding studies on acceptability and preference, information about the setting in which self-sampling occurred (at home or in a clinic) was also extracted.

Quality assessment

Study quality was independently assessed by three authors (GDG, FL, AT) through the revised Cochrane Risk of Bias (RoB2). Tools for parallel and cluster-randomized trials or the National Institutes of Health (NIH). Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, depending on the study design (22, 23). The ratings (good, fair or poor methodological quality) assigned by each reviewer were compared and disagreements were discussed between the two reviewers. If consensus was not reached, a third reviewer (AB) arbitrated.

Statistical analysis

As a primary analysis, the overall CCS uptake were pooled between distribution of self-samplers' and clinician-collected samples, using a DerSimonian and Laird random-effects model (24). Subgroup analyses were successively performed to assess whether differences in the CCS uptake were attributable to the self-samplers' distribution strategy, device type, women's screening status and study design (RCTs vs. observational). Relative Risks (RRs) were reported in the forest plots as measure of the effect size.

Secondary outcomes were analyzed by meta-analysis of proportions. Since outcome proportions were often higher than 80%, the confidence intervals were calculated through Freeman-Tukey double-arcsin transformation, and subsequently retro-transformed to avoid compression of standard errors and consequent biased results. The Wilson method was used to compute 95% Confidence Intervals (CIs). Subgroup analyses were performed to investigate whether brushes, swabs, tampons and lavages were equally accepted and whether the device category influenced the preference of self-sampling vs. outpatient sampling. A further subgroup analysis was performed to estimate the impact of the self-sampling setting (at home or in a clinic) on the acceptability or preference. Cochran's Q test was used to investigate overall differences between subgroups, while pair-wise comparisons (among self-samplers' distribution strategies and device types) were performed by contrasting meta-regression coefficients of models with one predictor only. *I*-squared consistency index was calculated to assess heterogeneity among studies. Peters' test and Funnel Plot inspection were used to assess the publication bias. To ensure the robustness of the results, subgroup analyses were repeated considering only RCTs. Data were analyzed by the statistical software STATA software, version 16.1 (25).

Results

Databases searches yielded a total of 2, 438 articles, 78 of which were duplicates. Inspection of titles and abstracts resulted in the deletion of 2, 034 articles. A total of 326 full-text articles were retrieved for full review, and 154 articles met the inclusion criteria and were included in the analyses.

Overall, 482,271 women were involved, and all five continents were represented. Fifty-one (33.1%) studies were carried out in low-middle-income countries.

All but one of the RCTs showed a low risk of bias (Table 1). On the contrary, 53 (58.9%) out of 90 quasi-experimental or cross-sectional studies exhibited a fair or low overall quality (Table 2).

Cervical cancer screening uptake

Forty-nine (31.8%) of studies included measured CCS uptake (Table 3); 46 (93.9%) were RCTs and 3 (5.1%) were quasiexperimental studies. Regarding characteristics of the studied population, 40 studies (81.6%) were focused on under-screened women, while 9 (18.4%) involved the general population. Cervical brushes were used in 21 (42.9%) studies, swabs in 20 (40.8%) studies and lavages in 7 (14.3%) studies. In 3 (6.1%) studies, the type of device was not reported. In 2 (4.1%) studies, both a brush and a lavage were proposed to the participants. In 12 (24.5%) studies self-samplers were directly distributed to women (door-to-door), and the opt-out and opt-in strategies were used in 30 (61.2%) and 10 (20.4%) studies, respectively. In 7 (14.3%) studies both opt-out and opt-in strategies were examined.

Overall, self-sampling procedures nearly doubled the probability (RR: 1.9; 95% CI: 1.8–2.0) of CCS uptake when compared with clinician-collected samples (Figure 2).

Self-samplers' distribution strategy

With regard to self-sampler distribution strategy, the opt-out (RR: 2.1; 95% CI: 1.9–2.4) and the door-to-door (RR: 1.8; 95% CI: 1.6–2.0) did not statistically significant differ (p = 1.177) in improving the CCS uptake. In contrast, the opt-in (RR: 1.4; 95%

TABLE 1 Risk of bias of included RCTs assessed by Cochrane risk of bias tools.

First authors	Year	Risk of bias arising from the randomization process	Risk of bias due to deviations from the intended interventions (effect of assignment to intervention)	Risk of bias due to deviations from the intended interventions (effect of adhering to intervention)	Risk of bias due to missing outcome data	Risk of bias in measurement of the outcome	Risk of bias in selection of the reported result	Overall risk of bias judgment
Arrossi et al. (26)	2015	Some concerns	Some concerns	Low	Low	Low	Low	Low
Bais et al. (27)	2007	Low	Low	Low	Low	Low	Low	Low
Bosgraaf et al. (28)	2014	Low	Low	Low	Low	Low	Low	Low
Brewer et al. (29)	2021	Some concerns	Some concerns	Low	Low	Low	Low	Low
Broberg et al. (30)	2014	Some concerns	Low	Low	Low	Low	Low	Low
Cadman et al. (31)	2015	Low	Low	Low	Low	Low	Low	Low
Carrasquillo et al. (32)	2018	Low	Low	Low	Low	Low	Low	Low
Castle et al. (33)	2019	Some concerns	Some concerns	Low	Low	Low	Low	Low
Catarino et al. (34)	2015	Low	Low	Low	Low	Low	Low	Low
Darlin et al. (35)	2013	Some concerns	Low	Low	Low	Low	Some concerns	Low
Flores et al. (36)	2021	Low	Low	Low	Low	Low	Low	Low
Giorgi Rossi et al. (37)	2011	Low	Low	Low	Low	Low	Low	Low
Giorgi Rossi et al. (38)	2015	Low	Low	Low	Low	Low	Low	Low
Gizaw et al. (39)	2019	Low	Some concerns	Low	Low	Low	Low	Low
Gok et al. (40)	2010	Low	Low	Low	Low	Low	Low	Low
Gok et al. (41)	2012	Low	Low	Low	Low	Low	Some concerns	Low
Gustavsonn et al. (42)	2018	Low	Low	Low	Low	Low	Low	Low
Haguenor et al. (43)	2014	Low	Low	Low	Low	Low	Low	Low
Harper et al. (44)	2002	Low	Low	Low	Low	Low	Low	Low
Hellsten et al. (45)	2021	Low	Low	Low	Low	Low	Low	Low
Ivanus et al. (46)	2018	Low	Low	Low	Low	Low	Low	Low
Jalili et al. (47)	2019	Low	Low	Low	Low	Low	Low	Low
Karjalainen et al. (48)	2016	Low	Low	Low	Low	Low	Low	Low
Kellen et al. (49)	2018	high	Low	Low	Low	Low	Low	Low
Kitchener et al. (50)	2018	Low	Low	Low	Low	Low	Low	Low
Lazcano-Ponce et al. (51)	2011	Some concerns	Some concerns	Low	Low	Low	Some concerns	Some concerns

(Continued)

TABLE 1 (Continued)	
First authors	Year

Risk of bias

Risk of bias

		arising from the randomization process	due to deviations from the intended interventions (effect of assignment to intervention)	due to deviations from the intended interventions (effect of adhering to intervention)	due to missing outcome data	measurement of the outcome	selection of the reported result	bias judgment
Lilliecreutz et al. (52)	2020	Low	Low	Low	Low	Low	Low	Low
Mac Donald et al. (53)	2021	Some concerns	Some concerns	Low	Low	Low	Low	Low
Modibbo et al. (54)	2017	Some concerns	Some concerns	Low	Low	Low	Some concerns	Low
Molokwu et al. (55)	2018	Low	Low	Low	Low	Low	Low	Low
Moses et al. (56)	2015	Low	Low	Low	Some concerns	Low	Low	Low
Murphy et al. (57)	2016	Low	Low	Low	Low	Low	Low	Low
Peeters et al. (58)	2020	Some concerns	Some concerns	Low	Low	Low	Low	Low
Polman et al. (59)	2019	Low	Low	Low	Low	Low	Low	Low
Racey et al. (16)	2016	Low	Low	Low	Some concerns	Low	Low	Low
Reques et al. (60)	2021	Some concerns	Low	Low	Some concerns	Low	Low	Low
Sancho-Garnier et al.	2013	Some concerns	Some concerns	Low	Low	Low	Low	Low
(61)								
Scarinci et al. (62)	2021	Low	Low	Low	Low	Low	Low	Low
Sewali et al. (63)	2015	Low	Low	Low	Low	Low	Low	Low
Sultana et al. (64)	2016	Low	Low	Low	Low	Low	Some concerns	Low
Szarewski et al. (65)	2011	Some concerns	Some concerns	Low	Low	Low	Low	Low
Tamalet et al. (66)	2013	Low	Low	Low	Low	Low	Low	Low
Tranberg et al. (67)	2018	Low	Low	Low	Low	Low	Low	Low
Van de Wijgert et al. (68)	2006	Low	Low	Low	Low	Low	Low	Low
Virtanen et al. (69)	2011	Some concerns	Low	Low	Low	Low	Low	Low
Virtanen et al. (70)	2015			Low				Low
Viviano et al. (71)	2017	Low	Low	Low	Low	Low	Low	Low
Wikstrom et al. (72)	2011	Some concerns	Some concerns	Low	Low	Low	Low	Low

Risk of bias

Risk of bias

Risk of bias in

Risk of bias in

Overall risk of

(Continued)

First authors	Year	Risk of bias arising from the randomization process	Risk of bias due to deviations from the intended interventions (effect of assignment to intervention)	Risk of bias due to due to deviations from the intended interventions (effect of adhering to intervention)	Risk of bias due to missing outcome data	Risk of bias in measurement of the outcome	Risk of bias in selection of the reported result	Overall risk of bias judgment
Winer et al. (73)	2019	Low	Low	Low	Low	Low	Low	Low
Wong et al. (74)	2018	Low	Low	Low	Low	Low	Low	Low
Wong et al. (75)	2016	Low	Low	Low	Low	Low	Low	Low
Yamasaki et al. (76)	2019	Low	Low	Low	Low	Low	Low	Low
Zehbe et al. (77)	2016	Some concerns	Low	Low	Low	Low	Low	Low

CI: 1.2–1.7) showed a significantly lower efficacy than the optout strategy (p = 0.001); no statistically significant difference was displayed with respect to door-to-door distribution (p =0.093) (Figure 3). The pooled analyses restricted to RCTs showed a statistically significant difference in improving CCS uptake between opt-out (RR: 2.2; 95% CI: 2.0–2.5) and door-to-door strategies (RR: 1.7; 95% CI: 1.5–2.0) (p = 0.048) and between the latter and the opt-in strategy (RR: 1.4; 95% CI: 1.1–1.7) (p =0.048).

Device type

Figure 4 showed the RR of CCS uptake for HPV testing by self-sampler type. The results of those analyses showed a higher relative uptake for vaginal lavages (RR: 1.2; 95% CI: 1.1– 1.5), brushes (RR: 1.6; 95% CI: 1.5–1.7) and swabs (RR: 2.5; 95% CI: 1.9–3.1) over clinician-collected samples. The analyses compared swabs and brushes and brushes and lavages showed a statistically significant difference (p = 0.004 and p < 0.001, respectively). When the analyses were restricted to RCTs, a pooled RR estimate of 2.7 (95% CI: 2.0–3.7) for swabs, 1.6 (95% CI: 1.5–1.7) for brushes and 1.3 (95% CI: 1.1–1.5) for lavages, were shown. Similarly, both the swabs-brushes (p < 0.001) and the brushes-lavages (p = 0.009) comparisons displayed a statistically significant difference.

Screening status

In the meta-analysis of studies reporting screening status, the overall RR was >1.00 indicating a potential effect of selfsampling in improving CCS uptake both among under-screened women (RR: 2.1; 95% CI: 1.9–2.3) and general population (RR: 1.4; 95% CI: 1.2–1.7) compared to clinician collected samples, and the difference was statistically significant (p < 0.001). Similarly, the efficacy of self-sampling was significantly higher (p = 0.015) when only RCTs were kept in the analysis, in both groups [under-screened women (RR: 2.1; 95% CI: 1.9–2.4) and general population (RR: 1.6; 95% CI: 1.3–1.9)].

Heterogeneity and publication bias

The level of heterogeneity was consistently high ($I^2 > 95\%$) in the overall and subgroup analyses. Publication bias was unlikely, as suggested by Peters' test (p = 0.06) (Figure 5).

Secondary outcomes

Characteristics of the included studies assessing acceptability and preference of self-sampling vs. clinician-collected samples were displayed in Table 4. One-hundred and eight (70.1%) studies measured at least one secondary outcome: 12 (11.1%) of them were RCTs, 68 (63.0%) were cross-sectional studies and 28

[ABLE 1 (Continued)

Di Gennaro et al.

First authors	Year	Research question clearly stated	Study population clearly specified and defined	Participation rate of eligible persons at least 50%	Eligibility e criteria applied uniformly to all participants	Sample size justification, power description, o variance and effect estimates provided	Different level of exposure or	Exposure clearly defined	Outcome measures clearly defined, valid reliable and implemented consistently across all stud participants	Key potential confounding variables , measured and statistically adjusted	Overall quality
Agorastos et al. (78)	2005	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Aiko et al. (79)	2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Allende et al. (80)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Anderson et al. (81)	2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Anhang et al. (82)	2006	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Bansil et al. (83)	2014	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Barbee et al. (84)	2010	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Behnke et al. (85)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Berner et al. (86)	2013	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Brewer et al. (87)	2019	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No	Fair
Broquet et al. (88)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Castell et al. (89)	2014	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Catarino et al. (90)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Chatzistamatiou et al. (14)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Chatzistamatiou et al. (91)	2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Chou et al. (92)	2016	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Crofts et al. (93)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Crosby et al. (94)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Dannecker et al. (95)	2004	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
de Melo Kuil et al. (96)	2017	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Delerè et al. (97)	2011	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair

10.3389/fpubh.2022.1003461

(Continued)

frontiersin.org

First authors	Year	Research question clearly stated	Study population clearly specified and defined	Participation rate of eligible persons at least 50%	Eligibility criteria applied uniformly to all participants	Sample size justification, power description, o variance and effect estimates provided	Different level of exposure r	Exposure clearly defined	Outcome measures clearly defined, valid, reliable and implemented consistently across all stud participants	Key potential confounding variables measured and statistically adjusted	Overall quality
Des marais et al. (98)	2019	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Good
Desai et al. (99)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Duke et al. (100)	2015	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Dutton et al. (101)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Dzuba et al. (102)	2002	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Esber et al. (103)	2018	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Galbraith et al. (104)	2014	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Goldstein et al. (105)	2020	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Gottschlich et al. (106)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Gottschlich et al. (15)	2017	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	Fair
Guan et al. (107)	2012	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Haile et al. (108)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Hinten et al. (109)	2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Igidbashian et al. (110)	2011	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Good
Ilangovan et al. (111)	2016	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Islam et al. (112)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Jones et al. (113)	2012	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Jones et al. (114)	2008	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Katanga et al. (115)	2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Ketalaars et al. (116)	2017	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Khanna et al. (117)	2007	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Khoo et al. (12)	2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Kilfoyle et al. (118)	2018	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	Fair
Kohler et al. (13)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair

TABLE 2 (Continued)

(Continued)

First authors	Year	Research question clearly stated	Study population clearly specified and defined	Participation rate of eligible persons at least 50%	Eligibility criteria applied uniformly to all participants	Sample size justification, power description, o variance and effect estimates provided	Different level of exposure r	Exposure clearly defined	Outcome measures clearly defined, valid, reliable and implemented consistently across all stud participants	Key potential confounding variables measured and statistically adjusted	Overall quality
Landy et al. (119)	2022	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Laskow et al. (120)	2017	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Litton et al. (121)	2013	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Lorenzi et al. (122)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Ma'som et al. (123)	2016	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Madhivanan et al. (124)	2021	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Mahande et al. (125)	2021	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Malone et al. (126)	2020	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Mandigo et al. (127)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Mao et al. (128)	2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Maza et al. (129)	2018	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	Fair
McLarty et al. (130)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Mremi et al. (131)	2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Murchland et al. (11)	2019	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Good
Nakalembe et al. (132)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Nelson et al. (133)	2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Nobbenhuis et al. (134)	2002	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Obiri-Yeboah et al. (135)2017	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
Oranratanaphan et al.	2014	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good
(136)											
Pantano et al. (137)	2021	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Penaranda et al. (138)	2015	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Reiter et al. (139)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Rosenbaum et al. (140)	2014	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Fair
Sechi et al. (141)	2022	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Good

TABLE 2 (Continued)

(Continued)

First authors	Year	Research question clearly stated	Study population clearly specified and defined	Participation rate of eligible persons at least 50%	Eligibility criteria applied uniformly to all participants	Sample size justification, power description, or variance and effect estimates provided	Different level of exposure r
Sellors et al. (142)	2000	Yes	Yes	Yes	Yes	No	No
Shin et al. (143)	2019	Yes	Yes	Yes	Yes	No	No
Silva et al. (144)	2017	Yes	Yes	Yes	Yes	No	No
Surriabre et al. (145)	2017	Yes	Yes	Yes	Yes	No	No
Swanson et al. (146)	2018	Yes	Yes	Yes	Yes	Yes	No
Szarewski et al. (147)	2007	Yes	Yes	Yes	Yes	No	No

		question clearly stated	population clearly specified and defined	rate of eligible persons at least 50%	criteria applied uniformly to all participants	justification, power description, o variance and effect estimates provided	level of exposure r	clearly defined	measures clearly defined, valid reliable and implemented consistently across all stud participants	confounding variables , measured and statistically adjusted	1
Sellors et al. (142)	2000	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Shin et al. (143)	2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Silva et al. (144)	2017	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Poor
Surriabre et al. (145)	2017	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Poor
Swanson et al. (146)	2018	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Good
Szarewski et al. (147)	2007	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Taku et al. (148)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Tan et al. (149)	2021	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Tiiti et al. (150)	2021	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Good
Torrado Garcia et al.	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
(151)											
Torres et al. (152)	2018	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Trope et al. (153)	2013	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Van Baars et al. (154)	2012	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Virtanen et al. (155)	2014	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Poor
Waller et al. (17)	2006	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Wang et al. (156)	2020	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Good
Wedisinghe et al. (157)	2022	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Good
Wikstrom et al. (158)	2007	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair
Winer et al. (159)	2016	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Good
Wong et al. (160)	2020	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Good
Zehbe et al. (161)	2011	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Fair

Exposure

Outcome

Key potential Overall quality

TABLE 3 Characteristics of the included studies assessing	a cervical cancer screening	i (CCS) upta	ike comparing	a self-samplin	a with clinician	-collected samp	les for HPV testing
	J				3		

First authors	Year	Country	Sample size	Design	Area	Sample age	Country economic status	Social subgroup	Screening status	Device type	Control	Intervention	Control arm size	Experimental arm size
Arrossi et al. (26)	2015	Argentina	7, 650	Cluster randomized clinical trial	Urban and rural	40-49 [#]	MIC	-	Under-screened	Brush	Door-to-door recommendation to have a clinician-collected sample	Door-to-door distribution of self-samplers by HCPs	4, 018	3, 632
Bais et al. (27)	2007	Netherlands	2, 830	Randomized clinical trial	Urban	30-50 [§]	HIC	-	Under-screened	Brush	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	284	2, 546
Brewer et al. (29)	2021	New Zeland	3, 553	Randomized clinical trial	Urban and rural	44 [#]	HIC	Indigenous Māori, Pacific and Asian women	Under-screened	Swab	Invitation letter proposing a clinician-collected sample	Intervention 1: invitation letter proposing a self-sample at local hospital Intervention 2: self-samplers mailed to home	512	Intervention 1: 1, 574 Intervention 2: 1, 467
Broberg et al. (30)	2014	Sweden	8, 800	Randomized clinical trial	Urban and rural	46.8**	HIC	-	Under-screened	Brush	Control 1: reminder letter proposing a clinician- collected sample Control 2: reminder letter and reminder phone call proposing a clinician- collected sample	Self-samplers mailed to home	Control 1: 4, 000 Control 2: 4, 000	800
Cadman et al. (31)	2015	England	6, 000	Randomized clinical trial	Urban and rural	40.0*	HIC	-	Under-screened	Swab	Reminder letter proposing a clinician-collected	Self-samplers mailed to home	3, 000	3, 000
Carrasquillo et al. (32)	2018	USA	601	Randomized clinical trial	Urban and rural	48.7*	HIC	Ethnic minorities in South-Florida. Haitian, hispanic and black womer	s Under-screened	Swab	Control 1: outreach programme by HCPs proposing a clinician- collected sample Control 2: facilitated navigation by HCPs to have a clinician- collected sample	Health education programme with door-to-door distribution of self-samplers or facilitated navigation to Pap smear offered by HCWs	Control 1: 182 Control 2: 212	207
Castle et al. (33)	2019	Brazil	483	Randomized clinical trial	Urban	42.5**	MIC	-	Under-screened	Brush	Door-to-door proposal to have a clinician-collected sample	Intervention 1: door-to-door choice between self-sampling and Pap-testing by HCWs Intervention 2: door-to-door distribution of self-samplers by HCWs	160	Intervention 1: 162 Intervention 2: 161
Castle et al. (162)	2011	USA	119	Quasi- experimental trial	Rural	42.5**	HIC	Underserved women in the Mississippi Delta	Under-screened	Brush	Voucher for free and facilitated clinician-collected sample	Health education programme and door-to-door distribution of self-samplers by HCWs	42	77

(Continued)

TABLE 3 (Continued)

First authors	Year	Country	Sample size	Design	Area	Sample age	Country economic status	Social subgroup	Screening status	Device type	Control	Intervention	Control arm size	Experimental arm size
Darlin et al. (35)	2013	Sweden	1, 500	Randomized clinical trial	Urban and rural	50.3**	HIC	-	Under-screened	Swab	Invitation and recall letter proposing a clinician-collected sample	Self-samplers mailed to home	500	1,000
Duke et al. (100)	2015	Canada	6, 057	Quasi- experimental trial	Rural	45-49 [†]	HIC	-	General population	Swab	Control 1: Promotion campaign and invitation letter proposing a clinician- collected sample Control 2: invitation letter proposing a clinician- collected sample	HPV screening promotion campaign and self-samplers available at public locations (i.e., hair salons, pharmacies)	Control 1:2, 761 Control 2: 1, 536	1, 760
Elfström et al. (163)	2019	Sweden	8, 000	Randomized clinical trial	Urban and rural	47.0*	HIC	-	Under-screened	Swab	Invitation letter proposing a clinician-collected sample	Intervention 1: invitation to order a self-sampler through an online application Intervention 2: self-samplers mailed to home	2,000	Intervention 1: 2, 000 Intervention 2: 2, 000 Intervention 3: 2, 000
Enerly et al. (164)	2016	Norway	3, 393	Randomized clinical trial	Urban	35-49 [†]	HIC	-	Under-screened	Brush/Lavage	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	2, 593	800
Giorgi Rossi et al. (37)	2011	Italy	2, 473	Randomized clinical trial	Urban and rural	25-64 [§]	HIC	-	Under-screened	Lavage	Control 1: reminder letter proposing a clinician-collected sample (HPV test) Control 2: reminder letter proposing a clinician-collected sample (PAP test)	Intervention 1: invitation to order a self-sampler by phone-call Intervention 2: self-samplers mailed to home	Control 1: 616 Control 2: 619	Intervention 1: 622 Intervention 2: 616
Giorgi Rossi et al. (38)	2015	Italy	14, 041	Randomized clinical trial	Urban and rural	30-64 [§]	HIC	-	Under-screened	Lavage	Recall letter proposin a clinician-collected sample	g Intervention 1: self-samplers mailed to home Intervention 2: self-samplers available at local pharmacies	5,012	Intervention 1: 4, 516 Intervention 2: 4, 513
Gizaw et al. (39)	2019	Ethiopia	2, 356	Cluster randomized clinical trial	Urban and rural	30-34 [†]	LIC	-	Under-screened	Brush	Community education programme proposing a clinician-collected sample	n Community health g education programme and invitation to self-sample at local hospital	1, 143	1, 213
Gok et al. (41)	2012	Netherlands	26, 409	Randomized clinical trial	Urban and rural	39-43 [†]	HIC	-	Under-screened	Brush	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	264	26, 145
Gok et al. (40)	2010	Netherlands	28, 073	Randomized clinical trial	Urban and rural	30-60 [§]	HIC	-	Under-screened	Lavage	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home with previous notification	281	27, 792
Gustavsonn et al. (42)	2018	Sweden	36, 390	Randomized clinical trial	Urban and rural	39.5**	HIC	-	Under-screened	Brush	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	18, 393	17, 997

(Continued)

TABLE	3	(Continued)
-------	---	-------------

First authors	Year	Country	Sample size	Design	Area	Sample age	Country economic status	Social subgroup	Screening status	Device type	Control	Intervention	Control arm size	Experimental arm size
Haguenor et al. (43)	2014	France	5, 998	Randomized clinical trial	Urban and rural	51.1*	HIC	-	Under-screened	Swab	Control 1: invitation letter proposing a clinician- collected sample Control 2: reminder letter and phone call proposing a clinician- collected sample	Self-samplers mailed to home	Control 1:1, 999 Control 2: 2, 000	1, 999
Hellsten et al. (45)	2021	Sweden	29, 604	Randomized clinical trial	Urban and rural	37.8**	HIC	-	General population	Swab	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	14, 839	14, 765
Ivanus et al. (46)	2018	Slovenia	26, 556	Randomized clinical trial	Urban and rural	49.8*	HIC	-	Under-screened	Not Reported	Reminder letter proposing a clinician-collected sample	Intervention 1: self-samplers mailed to home Intervention 2: self-samplers available at local pharmacies	2, 600	Intervention 1: 9, 556 Intervention 2: 14, 400
Jalili et al. (47)	2019	Canada	1, 052	Randomized clinical trial	Urban and rural	42.6**	HIC	-	Under-screened	Brush	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	523	529
Kellen et al. (49)	2018	Belgium	35, 895	Randomized clinical trial	Urban and rural	50-54 [†]	HIC	-	Under-screened	Brush	Control 1: reminder letter proposing a clinician- collected sample Control 2: reminder letter and phone call proposing a clinician- collected sample	Intervention 1: invitation to order a self-sampler by phone-call or email Intervention 2: self-samplers mailed to home	Control 1: 8, 849 Control 2: 8, 830	Intervention 1: 9, 098 Intervention 2: 9, 118
Kitchener et al. (50)	2018	UK	8, 849	Cluster randomized clinical trial	Urban and rural	Not available	HIC	-	Under-screened	Brush and lavage	Control 1: invitation letter proposing a clinician- collected sample Control 2: nurse navigators proposing i clinician- collected sample Control 3: timed-appointment to have a clinician- collected sample	Intervention 1: self-samplers mailed to home Intervention 2: self-samplers available a on request	Control 1: 3, 782 9Control 2: 1, 007 Control 3: 1, 629	Intervention 1: 1, 141 Intervention 2: 1, 290
Landy et al. (119)	2022	UK	784	Randomized clinical trial	Urban	55-59 [†]	HIC	-	General population	Swab	Invitation letter proposing a clinician-collected sample	Invitation letter proposing a clinician-collected sample or a self-sampler mailed to home	391	393
Lazcano-Ponce et al. (51)	2011	Mexico	22, 102	Randomized clinical trial	Urban and rural	35–39 [†]	MIC	-	General population	Brush	Door-to-door education programme proposing a clinician-collected sample	Health education programme and door-to-door distribution of self-samplers by HCWs	12, 731	9, 371

Di Gennaro et al.

(Continued)

TABLE 3 (Continued)

First authors	Year	Country	Sample size	Design	Area	Sample age	Country economic status	Social subgroup	Screening status	Device type	Control	Intervention	Control arm size	Experimental arm size
Lilliecreutz et al. (52)	2020	Sweden	9,752	Randomized clinical trial	Urban and rural	30-64 [§]	HIC	-	Under-screened	Swab	Control 1: phone call proposing a clinician- collected sample Control 2: invitation letter proposing a clinician- collected sample	Self-samplers mailed to home	Control 1: 3, 146 Control 2: 3, 538	3, 068
Mac Donald et al. (53)	2021	New Zealand	1, 539	Cluster randomized clinical trial	Urban and rural	40–49 [†]	HIC	-	Under-screened	Swab	Texting, email, letter or phone call proposing a clinician-collected sample	Self-samplers offered during a clinical visit	806	733
Modibbo et al. (54)	2017	Nigeria	400	Randomized clinical trial	Urban and rural	40.8*	MIC	-	General population	Swab	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	200	200
Moses et al. (56)	2015	Uganda	500	Randomized clinical trial	Urban	39.1*	LIC	-	General population	Swab	Door-to-door appointment with HCWs proposing a clinician-collected sample	Door-to-door distribution of self-samplers by HCWs	250	250
Murphy et al. (57)	2016	USA	94	Randomized clinical trial	Urban	48.7*	HIC	HIV-positive women	Under-screened	Brush	clinician-collected sample proposed during a clinical visit	Self-samplers offered during a clinical visit	31	63
Peeters et al. (58)	2020	Belgium	88	Randomized clinical trial	Urban and rural	45–54 [†]	HIC	-	Under-screened	Brush	Face-to-face general practitioner advice for a clinician-collected sample	Self-samplers offered face-to-face by genera practitioner	43 I	45
Polman et al. (59)	2019	Netherlands	16, 361	Randomized clinical trial	Urban and rural	45.6**	HIC	-	General population	Brush	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	8, 168	8, 193
Racey et al. (16)	2016	Canada	818	Randomized clinical trial	Rural	51.2**	HIC	-	Under-screened	Swab	Control 1: no intervention (opportunistic screening of women previously invited to have a clinician- collected sample) Control 2: invitation letter proposing a clinician- collected sample	Self-samplers mailed to home	Control 1: 152 Control 2: 331	335
Reques et al. (60)	2021	France	687	Randomized clinical trial	Urban	41.0*	HIC	Underprivileged women (sex workers, slum dwellers)	Under-screened	Not Reported	clinician-collected sample proposed during a clinical visit in a community setting	Self-samplers offered during a medical consultation in a community setting	304	383
Sancho-Garnier et al. (61)	2013	France	18, 730	Randomized clinical trial	Urban	40-44 [†]	HIC	Women belonging to lower socio-economic groups	Under-screened	Swab	Reminder letter proposing clinician-collected sample proposed during a clinical visit	Self-samplers mailed to home	9, 901	8, 829
Scarinci et al. (62)	2021	USA	335	Cluster randomized clinical trial	Rural	43.0*	HIC	-	Under-screened	Brush	Door-to door invitation to have a clinician-collected sample	Door-to-door choice between self-sampling and Pap-screening	170	165

(Continued)

TABLE 3 (Continued)

First authors	Year	Country	Sample size	Design	Area	Sample age	Country economic status	Social subgroup	Screening status	Device type	Control	Intervention	Control arm size	Experimental arm size
Sewali et al. (63)	2015	USA	63	Randomized clinical trial	Urban	55.1*	HIC	Somali immigrant women in Minnesota	Under-screened	Brush	Door-to door invitation to have a clinician-collected sample	Door-to-door distribution of self-samplers	31	32
Sultana et al. (64)	2016	Australia	8, 160	Randomized clinical trial	Urban and rural	40-49 [†]	HIC	-	Under-screened	Swab	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	1, 020	7, 140
Szarewski et al. (65)	2011	England	3, 000	Randomized clinical trial	Urban	48.0*	HIC	-	Under-screened	Swab	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	1, 500	1, 500
Tamalet et al. (66)	2013	France	8, 081	Randomized clinical trial	Urban	45-54 [†]	HIC	-	General population	Swab	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	4, 314	3, 767
Tranberg et al. (67)	2018	Denmark	9, 791	Randomized clinical trial	Urban and rural	40-49 [†]	HIC	-	Under-screened	Brush	Reminder letter proposing a clinician-collected sample	Intervention 1: self-samplers mailed t home Intervention 2: invitation (email, phone, text message) to order a self-sample:	3, 262 0	Intervention 1: 3, 265 Intervention 2: 3, 264
Virtanen et al. (69)	2011	Finland	1,0014	Randomized clinical trial	Urban	42.2**	ніс	-	Under-screened	Lavage	Reminder letter proposing a clinician-collected sample	Intervention 1: self-samplers mailed t home after further invitation to Pap screening Intervention 2: self-samplers mailed t home with no further invitation latter	б, 302 о	Intervention 1: 1, 315 Intervention 2: 2, 397
Virtanen et al. (70)	2015	Finland	7, 552	Quasi- experimental trial	Urban	45-49 [†]	HIC	-	Under-screened	Lavage	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	7, 397	155
Viviano et al. (71)	2017	Switzerland	667	Randomized clinical trial	Urban	42.2**	HIC	-	Under-screened	Swab	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	331	336
Wikstrom et al. (72)	2011	Sweden	4, 060	Randomized clinical trial	Urban	39-60 [§]	HIC	-	Under-screened	Brush	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home (2, 000)	2,060	2, 000
Winer et al. (73)	2019	USA	19, 851	Randomized clinical trial	Urban	50-54 [†]	HIC	-	Under-screened	Not Reported	Invitation letter proposing a clinician-collected sample	Self-samplers mailed to home	9, 891	9, 960
Yamasaki et al. (76)	2019	Japan	249	Randomized clinical trial	Rural	40-49 [†]	HIC	Women living or the remote Goto island	n Under-screened	Brush	Reminder letter proposing a clinician-collected sample	Self-samplers mailed to home	124	125
Zehbe et al. (77)	2016	Canada	1, 002	Cluster randomized clinical trial	Rural	25-69 [§]	HIC	-	General population	Swab	Community educational programme proposing a clinician-collected sample	Self-samplers mailed to home g	598	404

Sample age reported as *mean, **weighted mean, [#]median, ^{##}weighted median, [†]median age group or [§]range. Country economic status reported as: HIC, high income country; MIC, middle income Country; LIC, low income country.

frontiersin.org

Non-Randomized					
Castle	2011	USA		1.99 [1.36, 2.92]	1.47
Duke	2015	Canada		1.05 [1.01, 1.09]	2.55
Jalili	2019	Canada		4.33 [2.40, 7.82]	0.92
Virtanen	2015	Finland		1.07 [0.84, 1.36]	1.96
			•	1.60 [1.06, 2.43]	
Randomized					
Arrossi	2015	Agentina		1.14 [1.11, 1.16]	2.56
Bais	2007	Netherlands		1.71 [1.31, 2.23]	1.89
Brewer	2021	New Zeland		3.67 [2.16, 6.22]	1.06
Broberg	2014	Sweden	-	1.72 [1.51, 1.96]	2.35
Cadman	2015	England	-	2.25 [1.90, 2.65]	2.25
Carrasquillo	2018	USA	-	2.07 [1.79, 2.40]	2.31
Castle	2020	Brazil	-	1.63 [1.44, 1.85]	2.37
Darlin	2013	Sweden		3.50 [2.24, 5.46]	1.28
Elfström	2019	Sweden	-	- 8.63 [6.13, 12.15]	1.61
Enerly	2016	Norway		1.44 [1.28, 1.62]	2.39
Giorgi Rossi	2011	Italy	-	0.98 [0.81, 1.19]	2.15
Giorgi Rossi	2015	Italy		1.41 [1.29, 1.53]	2.47
Gizaw	2019	Ethiopia		1.67 [1.57. 1.78]	2.52
Gok	2012	Netherlands		467[295 741]	1.23
Gok	2010	Netherlands	-	1.63 [1.25 2.12]	1.89
Gustavsonn	2018	Sweden		1.28 [1.25 1.32]	2.56
Haquenor	2014	France	-	2.09[1.85 2.36]	2.39
Hagdenor	2014	Sweden		0.80[0.78 0.82]	2.56
vanus	2021	Slovenia	-	196[181 213]	2.30
Kellen	2018	Bolgium		1.58 [1.01, 2.13]	2.40
Gitchonor	2018	LIK		1.00[1.40, 1.00]	2.52
andy	2010	UK		4 19 [2 59 6 77]	1 19
aroy Donco	2022	Movico		4.19[2.00, 0.77]	2.56
illiocroutz	2011	Swodon		2 17 [2 01 2 33]	2.50
	2020	Now Zoland		2.17 [2.01, 2.03]	2.30
Madibbo	2021	Nigoria		164[144 196]	2.30
	2017	ligende		2 05 [1 90 2 22]	2.37
Augusta States	2015	Uganua	_	2.05 [1.80, 2.33]	2.37
Viurpriy	2016	DSA –		1.50[0.52, 1.57]	1.64
Pelman	2020	Netherlanda		1.52 [1.09, 2.12]	0.50
Bacov	2019	Canada		2/1[1.20, 1.23]	1.94
Roques	2016	Erance		2.41[2.03, 3.18]	0.04
Sanaha Gamiar	2021	France		2.41 [2.10, 2.78]	2.33
Sancho-Gamler Soaringi	2013	France		3.14[7.90, 10.56]	2.32
Sowali	2021	USA		4.00[2.45, 6.72]	1.11
Sewall	2015	Australia		3.39 [1.58, 7.26]	1.05
Suitana	2016	Australia		3.40 [2.65, 4.36]	1.95
ozarewski Tomolot	2011	England		2.25[1./1, 2.9/]	1.84
ramalet Tasakaan	2013	France		3.44 [3.05, 3.88]	2.39
l ranberg	2018	Denmark		1.37 [1.28, 1.46]	2.51
vinanen	2011	riniand	1	1.06[0.99, 1.13]	2.51
viviano	2017	Switzerland	-	1.02[0.98, 1.06]	2.54
WIKSTOM	2011	Sweden	- *	4.27 [3.68, 4.94]	2.31
Winer	2019	USA		1.51 [1.43, 1.60]	2.53
Yamasaki	2019	Japan		6.28 [3.87, 10.20]	1.16
Zehbe	2016	Canada		2.28 [1.52, 3.43] 1.92 [1.79, 2.07]	1.39
			V		
Overall Fa	vors clin	ician-collected sa	nple Favors self-sampling	1.89 [1.76, 2.02]	

FIGURE 2

FIGURE 2 Forest plot comparing cervical cancer screening (CCS) uptake for HPV testing by self-sampling vs. clinician-collected samples, subgrouped by study design (randomized vs. non-randomized). Homogeneity: $I^2 = 98.9\%$; Cochrane's Q test for between-group differences: Q = 4,241.88; df = 1; p = 0.399.

Forest plot comparing cervical cancer screening (CCS) uptake for HPV testing by strategy of self-samplers' distribution vs. clinician-collected samples. Homogeneity (*I*-squared): 98.8%; Cochrane's Q test for between-group differences: Q = 4,426.36; df = 2; p = 0.02. (25.9%) had a quasi-experimental design. Seventy-two (66.7%) considered under-screened women, the rest involved the general population. Twenty-eight (25.9%) studies assessed acceptability and in 52 (48.2%) studies women were asked for preference. Both, acceptability and preference, were assessed in 28 (25.9%) studies. In 64 (59.3%) studies self-sampling occurred in a clinical setting, in 39 (36.1%) it occurred at home, and in 4 studies (3.7%) it occurred in both settings. The setting was not reported in one study.

Acceptability

Meta-analyses examining the proportion of women who found self-sampling acceptable, showed a very high pooled estimate (95%; 95% CI: 94–97%) (Figure 6). No differences (p = 0.420) were found among acceptability of brushes (93%; 95% CI: 90–96%), swabs (96%; 95% CI: 93–98%), lavages (98%; 95% CI: 95–100%) and tampons (97%; 95% CI: 92–100%). Moreover, the percentage of women who self-reported acceptance of self-sampling at home (96%; 95% CI: 93–98%) overlapped with acceptance of self-sampling in a clinical setting (96%; 95% CI: 94–98%). In all meta-analyses high heterogeneity ($I^{2>}$ 95%) was observed.

Preference

Sixty-six percent (95% CI: 62–70%) of women preferred selfsampling procedures vs. clinician-collected samples (Figure 7). No significant difference (p = 0.850) was shown when brushes (67%; 95% CI: 58–74%), swabs (65%; 95% CI: 59–70%), lavages (68%; 95% CI: 60–76%) and tampons (77%; 95% CI: 31–100%) were compared. Finally, the preference of women for self-sampling was almost equal (p = 0.841) when it was performed at home (66%; 95% CI: 57–74%), or in a clinical setting (67%; 95%). CI: 62–71%). The level of heterogeneity was high ($I^{2>}$ 95%).

Discussion

The findings of the present meta-analysis provide a summary of the implementation options of self-sampling for HPV testing. Since the COVID-19 pandemic has had an enormous impact on CCS attendance, self-sampling could offer a unique opportunity for catch-up screening and will play an important role in improving the global coverage of CCS. Indeed, the World Health Organization strongly recommends the use of self-sampling for HPV screening to contribute to reaching a coverage of 70% by 2030 and eliminate HPV correlated diseases in the next decades (172). Considering that for an intervention to be effective it must be broadly accepted, evidence about

Otota	Veee	Oruntar	Risk ratio	Weight
Study	Year	Country	with 95% CI	(%)
Brush	0045	Agenting		0.70
Arrossi	2015	Nothorlands	1.14[1.11, 1.16]	1.09
Brohere	2007	Sweden	172[151 100]	2 49
Castle	2014	Brazil	1.72[1.51, 1.96]	2.49
Castle	2011		1.00 [1.36 2.92]	1.53
Enerly	2016	Nonway	1.00 [1.00, 2.02]	2.36
Gizaw	2010	Ethiopia	1.67 [1.57 1.78]	2.50
Gok	2012	Netherlands	4.67 [2.95, 7.41]	1.28
Gustavsonn	2018	Sweden	1.28 [1.25. 1.32]	2.72
Jalili	2019	Canada —	4.33 [2.40, 7.82]	0.95
Kellen	2018	Belgium	1.58 [1.49. 1.68]	2.68
Kitchener	2018	UK	1.05 [0.96, 1.15]	2.61
Lazcano-Ponce	2011	Mexico	1.13 [1.12, 1.14]	2.73
Murphy	2016	USA —	0.90 [0.52, 1.57]	1.02
Peeters	2020	Belgium -	1.52 [1.09, 2.12]	1.72
Polman	2019	Netherlands	1.21 [1.20, 1.23]	2.73
Scarinci	2021	USA —	4.06 [2.45, 6.72]	1.15
Sewali	2015	USA —	3.39 [1.58, 7.26]	0.66
Tranberg	2018	Denmark	1.37 [1.28, 1.46]	2.66
Wikstrom	2011	Sweden -	4.27 [3.68, 4.94]	2.44
Yamasaki	2019	Japan —	6.28 [3.87, 10.20]	1.21
		•	1.59 [1.49, 1.70]	
		,		
Lavage				
Enerly	2016	Norway	1.45 [1.22, 1.72]	2.36
Giorgi Rossi	2015	Italy	1.41 [1.29, 1.53]	2.62
Giorgi Rossi	2011	Italy -	0.98 [0.81, 1.19]	2.27
Gok	2010	Netherlands	1.63 [1.25, 2.12]	1.98
Virtanen	2011	Finland	1.06 [0.99, 1.13]	2.66
Virtanen	2015	Finland	1.07 [0.84, 1.36]	2.06
			1.24 [1.05, 1.45]	
Swab				
Brewer	2021	New Zeland	3.67 [2.16. 6.22]	1.09
Cadman	2015	England -	2.25 [1.90, 2.65]	2.37
Carrasquillo	2018	USA	2.07 [1.79, 2.40]	2.44
Darlin	2013	Sweden	3.50 [2.24, 5.46]	1.32
Duke	2015	Canada	1.05 [1.01, 1.09]	2.71
Elfström	2019	Sweden -	- 8.63 [6.13, 12.15]	1.68
Haguenor	2014	France	2.09 [1.85, 2.36]	2.53
Hellsten	2021	Sweden	0.80 [0.78, 0.82]	2.72
Landy	2022	υк —	4.19 [2.59, 6.77]	1.22
Lilliecreutz	2020	Sweden	2.17 [2.01, 2.33]	2.65
Mac Donald	2021	New Zeland	2.30 [1.98, 2.67]	2.43
Modibbo	2017	Nigeria 📕	1.64 [1.44, 1.86]	2.51
Moses	2015	Uganda 📕	2.05 [1.80, 2.33]	2.51
Racey	2016	Canada –	2.41 [1.83, 3.18]	1.93
Sancho-Garnier	2013	France 🚽	9.14 [7.90, 10.56]	2.45
Sultana	2016	Australia -	3.40 [2.65, 4.36]	2.05
Szarewski	2011	England -	2.25 [1.71, 2.97]	1.93
Tamalet	2013	France	3.44 [3.05, 3.88]	2.53
Viviano	2017	Switzerland	1.02 [0.98, 1.06]	2.71
Zehbe	2016	Canada	2.28 [1.52, 3.43]	1.45
		•	2.45 [1.91, 3.13]	
.		A	1001171 0111	
Overall	vors din		1.86 [1.74, 2.00]	
Fai	vors clin	Havors self-sampling	-	
	0.	1 2 4 8		
B / "		an-l aird model		
Random-effects De Sorted by: Author	erSimoi			
Random-effects De Sorted by: Author	erSimoi			

F

Но d): 98.8%; Cochrane's Q test for between-group differences: Q = 3,904.90; df = 2; p = 0.02. ity - SC

women's acceptability for CCS comparing self-sampled with clinician-collected specimens is also provided.

The findings of the present meta-analysis showed that self-sampling for HPV testing is an effective tool to reach women in the context of organized CCS programs. Indeed, women were nearly twice as likely to use CCS services through self-sampling as compared with clinician-based sampling. Considering that the option of cervical precancer detection from self-collected samples showed similar clinical accuracy for hrHPV testing as clinician-collected samples (9, 173, 174), this result increases evidence in support of incorporating selfsampling into organized screening programs to better respond to the disruption of CCS programs after the COVID-19 pandemic. Moreover, the meta-analyses split into sub-groups according to dissemination strategies, suggested that a doorto-door approach, in which an HCP visits women at home to inform on CCS and offer a self-sampling HPV test kit, has almost doubled the CCS uptake by seven-fold. However, it has to be pointed out that the door-to-door approach has been mainly investigated in low-resource settings or for reaching under-screened women in high-resource settings. The findings showed an even higher likelihood of attending CCS for the optout approach (i.e., mailing of self-collection devices to women's homes without them taking the initiative), compared with controls (i.e., invitation letters sent home, reminding phone calls or suggestions from the HCP to be screened in the local hospital or from a gynecologist). In high-resource settings, research has focused on an alternative invitation scenario (opt-in strategy) in which women request a self-collection kit that is mailed to home or pick it up at pharmacy or clinic. The analyses showed that the opt-in approach reached a high CCS uptake when compared to mailing a reminder letter proposing a cliniciancollected samples, although lower than response rates to the opt-out and door-to-door approaches. It should be noted that the opt-in approach has the advantage to be less expensive, especially on a national level. Bring together, these results confirm recent literature. In particular, the meta-analysis by Yeh et al., found that opt-out strategy increased CCS participation (RR: 2.27; 95% CI: 1.89–2.71) (19), and Arbyn et al. found similar results when comparing opt-out self-samplers distribution with a reminder letter/advice from HCP to have a clinician to collect the sample (9).

In the relevant studies, several types of devices to collect exfoliated cells of the cervicovaginal duct for HPV-DNA detection were employed. It should be noted that the distribution of brush- and swab-based devices were associated with significantly higher uptake when compared with invitation to be sampled by a clinician. The latter result deserves attention since, as previously demonstrated, the type of HPV self-sampling device may play an important role in women's acceptability and preference of a CCS strategy (87, 110). The findings of the present meta-analysis highlighted high pooled acceptability and overall preference of self-sampling compared to clinician-based sampling, downsizing potential concerns about self-sampling (e.g., worry of not being able to correctly carry out the sampling), as previously described (17, 175, 176). The finding that especially non-attender women preferred selfsampling to clinician-based sampling for future CCS programs deserves attention, for its potential to increase participation in primary CCS. High acceptability and preference of self-sampling have the potential to improve CCS uptake and its effects on incidence and mortality from cervical cancer. Acceptability of self-sampling demonstrated advantages from both public health and individual patient perspective (177). Proper communication of the self-sampling process to women needs to be realized to address eventual women's concerns and emphasizes that most women are able to successfully obtain an adequate sample or deliver self-sampling by HCPs who can explain the process faceto-face.

In contrast to the findings of Nishimura et al., who documented that swabs were preferred by women when compared with other devices (10) no differences in acceptability regarding the type of self-sampling devices were found.

Contextual factors are essential in real life decision-making: when referring to a small community, offering a door-to-door device could be the most preferable strategy. Differently, when a high number of women have to be reached, mailing the device could represent a cost-effective alternative. Regarding the type of self-sampler device, a pilot investigation could be useful before introducing a large-scale use of self-samplers, as suggested by Arbyn et al. (9). Moreover, elements to consider in order to improve CCS uptake are cultural, religious and socio-economic characteristics of the target community (55, 178, 179). A study carried out on Nigerian women showing that individuals with greater spirituality were less likely to carry out self-sampling (180). Similarly, a systematic review focusing

TABLE 4 Characteristics of the included studies assessing acceptability and preference of self-sampling vs. clinician-collected samples.
--

First authors	Year	Country	Design	Screening status	Age	Country economi status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders) (preference)
Abdullah et al. (165)	2018	Malesia	Cross- sectional	General population	40.6*	MIC	Urban and rural	-	Brush	Clinic	164	164
Agorastos et al. (78)	2005	Greece	Quasi- experimental trial	Under- screened	44*	HIC	Urban and rural	-	Brush	Clinic	-	379
Aiko et al. (79)	2017	Japan	Quasi- experimental trial	Under- screened	40-49 [†]	HIC	Urban	-	Brush	Home	-	127
Allende et al. (80)	2019	Bolivia	Cross- sectional	Under- screened	20-49 [§]	MIC	Urban and rural	-	Brush	Clinic	-	221
Anderson et al. (81)	2017	USA	Cross- sectional	General population	44#	HIC	Urban and rural	Low-income women from North Carolina	Brush	Home	227	-
Anhang et al. (82)	2006	USA	Cross- sectional	Under- screened	35-44 [†]	HIC	Urban	-	Swab	Clinic	-	172
Avian et al. (166)	2022	Italy	Quasi- experimental trial	General population	40-49 [†]	HIC	Urban and rural	-	Swab	Clinic	-	1,032
Bansil et al. (83)	2014	India, Nicaragua, Uganda	Cross- sectional	Under- screened	44*	MIC	Urban and rural	_	Brush	Clinic	-	3, 464
Barbee et al. (84)	2010	USA	Cross- sectional	Under- screened	18-70 [§]	HIC	Urban and rural	Haitian immigrant women residing in Little Haiti	Swab	Home	245	245
Behnke et al. (85)	2020	Ghana	Cross- sectional	Under- screened	41*	MIC	Rural	-	Brush	Clinic	-	52

(Continued)

TABLE 4	(Continued)

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders (preference)
Berner et al. (86)	2013	Cameroon	Quasi- experimental trial	Under- screened	39#	MIC	Urban and rural	-	Swab	Clinic	_	217
Bosgraaf et al. (28)	2014	Netherlands	Randomized clinical trial	General population	44.5*	HIC	Urban	-	Brush and Lavage	Clinic	-	9, 360
Brewer et al. (87)	2019	New Zealand	Quasi- experimental trial	General population	30-69 [§]	HIC	Urban and rural	-	Lavage and Swab	Clinic	-	44
Broquet et al. (88)	2015	Madagascar	Cross- sectional	General population	42, 5##	LIC	Urban and rural	-	Swab	Clinic	300	300
Castell et al. (89)	2014	Germany	Cross- sectional	Under- screened	53#	HIC	Urban and rural	-	Lavage	Home	108	-
Catarino et al. (34)	2015	Switzerland	Randomized clinical trial	General population	42#	HIC	Urban	-	Brush and Swab	Clinic	-	126
Catarino et al. (90)	2015	Switzerland	Cross- sectional	General population	43.6*	HIC	Rural	-	Swab	Home	130	-
Chatzistamatiou et al. (14)	2020	Greece	Cross- sectional	Under- screened	45#	HIC	Rural	-	Swab	Clinic	_	12, 376
Chatzistamatiou et al. (91)	2017	Greece	Cross- sectional	General population	44#	HIC	Rural	-	Brush	Clinic	339	334
Chaw et al. (167)	2022	Brunei	Cross- sectional	Under- screened	45#	HIC	Urban	-	Swab	Clinic	97	97
Chou et al. (92)	2016	Taiwan	Cross- sectional	General population	48#	HIC	Urban	-	Brush	Home	282	-
Crofts et al. (93)	2015	Cameroon	Cross- sectional	Under- screened	43#	MIC	Rural	-	Swab	Clinic	_	86
Crosby et al. (94)	2015	USA	Cross- sectional	Under- screened	40.2*	HIC	Rural	Rural appalachian women	Swab	Home	-	400

Frontiers in Public Health

(Continued)

Frontie	TABLE 4
ers in Publ	First au
ic Health	Dannecke
	de Melo K

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders) (preference)
Dannecker et al. (95)	2004	Germany	Cross-	Under-	42*	HIC	Urban	-	Brush	Clinic	333	318
de Melo Kuil et al. (96)	2017	Brasil	Quasi-	screened Under-	25–45 [†]	MIC	Urban and	_	Lavage	Clinic	_	160
			experimental trial	screened			rural		0			
Delerè et al. (97)	2011	Germany	Cross- sectional	Under- screened	25.7##	HIC	Urban	-	Lavage	Home	-	156
Des marais et al. (98)	2019	USA	Quasi- experimental trial	Under- screened	45#	HIC	Urban	-	Brush	Clinic and Home	188	-
Desai et al. (99)	2020	Nigeria	Cross- sectional	Under- screened	35–39 [†]	MIC	Urban and rural	-	Brush	Clinic	-	9,065
Duke et al. (100)	2015	Canada	Quasi- experimental trial	Under- screened	45–49 [†]	HIC	Rural	-	Swab	Home	168	-
Dutton et al. (101)	2020	Australia	Cross- sectional	General population	35–39 [†]	HIC	Rural	Aboriginal community	Swab	Home	200	-
Dzuba et al. (102)	2002	Mexico	Quasi- experimental trial	Under- screened	43*	MIC	Urban and rural	-	Swab	Clinic	-	1,067
Esber et al. (168)	2018	Malawi	Cross- sectional	General population	33**	LIC	Rural	-	Swab	Clinic	199	199
Flores et al. (36)	2021	Mexico	Randomized clinical trial	General population	43.8*	MIC	Urban	-	Brush	Clinic	500	-
Galbraith et al. (104)	2014	USA	Cross- sectional	Under- screened	40-49 [†]	HIC	Urban and rural	Women living in a situation of economic hardship	Brush	Home	211	211
Giorgi Rossi et al. (37)	2011	Italy	Randomized clinical trial	General population	25-64 [§]	HIC	Urban and rural	-	Lavage	Home	-	139

(Continued)

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders)(preference)
Goldstein et al. (105)	2020	China	Quasi- experimental trial	General population	35–65 [§]	HIC	Rural	-	Swab	Clinic	600	600
Gottschlich et al. (106)	2019	Thailand	Cross- sectional	Under- screened	50.44*	MIC	Urban and rural	-	Swab	Clinic	267	219
Gottschlich et al. (15)	2017	Guatemala	Cross- sectional	Under- screened	34.5*	MIC	Urban and rural	Indigenous community	Swab	Home	178	-
Guan et al. (107)	2012	China	Cross- sectional	Under- screened	41#	HIC	Rural	-	Brush	Clinic	-	174
Guerra Rodriguez et al. (169)	2022	Mexico	Cross- sectional	General population	26*	MIC	Urban	-	Brush	Clinic	60	60
Haile et al. (108)	2019	Ethiopia	Quasi- experimental trial	Under- screened	32*	LIC	Urban	-	Brush	Clinic	83	83
Harper et al. (44)	2002	USA	Randomized clinical trial	Under- screened	37.7*	HIC	Urban	-	Swab and Tampon		67	-
Hinten et al. (109)	2017	Holland	Cross- sectional	Under- screened	56*	HIC	Urban	Renal transplant recipients women	Brush	Clinic	-	157
Igidbashian et al. (110)	2011	Italy	Quasi- experimental trial	Under- screened	38#	HIC	Urban	-	Brush and Lavage	Clinic	_	Lavage: 76 Brush: 96
Ilangovan et al. (111)	2016	USA	Cross- sectional	Under- screened	52*	HIC	Urban	Latina and Haitian patients	Swab	Clinic	120	120
Islam et al. (112)	2020	Kenia	Quasi- experimental trial	Under- screened	39*	MIC	Urban	Sex Workers	Brush	Clinic	-	399
Jones et al. (113)	2012	United States	Quasi- experimental trial	General population	45#	HIC	Urban	_	Lavage	Clinic	-	197

TABLE 4 (Continued)

(Continued)

TABLE 4	(Continued)
	(

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders (preference)
Jones et al. (114)	2008	Netherlands	Cross- sectional	Under- screened	35#	HIC	Urban	_	Lavage	Home	-	91
Karjalainen et al. (48)	2016	Finland	Randomized clinical trial	Under- screened	40–49 [†]	HIC	Urban and rural	-	Brush and Lavage	Clinic	-	Lavage: 161 Brush: 159
Katanga et al. (115)	2021	Tanzania	Quasi- experimental trial	Under- screened	41*	LIC	Urban	-	Brush	Home	-	416
Ketelaars et al. (116)	2017	Netherlands	Quasi- experimental trial	Under- screened	43.4*	HIC	Urban	-	Brush	Clinic	-	2, 131
Khanna et al. (117)	2007	USA	Quasi- experimental trial	Under- screened	32*	HIC	Urban	-	Brush	Clinic	-	499
Khoo et al. (12)	2021	Malaysia	Cross- sectional	Under- screened	35-45 [§]	MIC	Urban	-	Swab	Clinic	725	725
Kilfoyle et al. (118)	2018	USA	Cross- sectional	General population	44#	HIC	Urban and rural	Low-income women from North Carolina	Brush	Home	-	221
Kohler et al. (13)	2019	Botswana	Cross- sectional	Under- screened	45*	MIC	Urban and rural	-	Swab	Clinic	104	105
Landy et al. (119)	2022	UK	Cross- sectional	General population	55–59 [†]	HIC	Urban	-	Brush	Clinic	-	170
Laskow et al. (120)	2017	El Salvador	Cross- sectional	General population	40.7*	MIC	Rural	-	Brush	Home	41	-
Litton et al. (121)	2013	USA	Cross- sectional	Under- screened	35.4**	HIC	Rural	African American women living in the Mississippi Delta	Swab	Home	-	516
Lorenzi et al. (122)	2019	Brasile	Cross- sectional	Under- screened	36.2*	MIC	Urban	-	Brush	Clinic	-	116

Frontiers in Public Health

(Continued)

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders) (preference)
Madhivanan et al. (124)	2021	India	Cross-	Under-	39#	MIC	Rural	_	Brush	Clinic	118	118
			sectional	screened								
Mahande et al. (125)	2021	Tanzania	Cross- sectional	General population	35.6*	LIC	Urban and rural	-	Swab	Home	350	-
Malone et al. (126)	2020	USA	Cross- sectional	General population	$40-49^{\dagger}$	HIC	Urban	-	Swab	Home	-	117
Mandigo et al. (127)	2015	Haiti	Cross- sectional	General	18-50 [§]	LIC	Rural	-	Not Reported	Home	485	-
Mao et al. (128)	2017	USA	Cross- sectional	Under- screened	35.7*	HIC	Urban	-	Swab	Home	-	1, 759
Ma'som et al. (123)	2016	Malaysia	Cross- sectional	Under- screened	38#	MIC	Urban	-	Brush	Clinic	-	803
Maza et al. (129)	2018	El Salvador	Cross- sectional	General population	42.86*	MIC	Rural	-	Not Reported	Home	1, 867	-
McLarty et al. (130)	2019	USA	Cross- sectional	Under- screened	49 [#]	HIC	Urban	-	Tampon	Home	-	55
Molokwu et al. (55)	2018	USA	Randomized clinical trial	Under- screened	46.4*	HIC	Urban and rural	Border dwelling hispanic women	Swab	Home	-	107
Mremi et al. (131)	2021	Tanzania	Cross- sectional	General population	35–44 [†]	LIC	Urban and rural	-	Swab	Home	1, 108	-
Murchland et al. (11)	2019	Guatemala	Cross- sectional	Under- screened	33.9**	MIC	Rural	-	Swab	Home	760	-
Nakalembe et al. (132)	2020	Uganda	Cross- sectional	Under- screened	34#	LIC	Rural	-	Brush	Clinic	1, 316	-
Nelson et al. (133)	2015	USA	Quasi- experimental trial	Under- screened	24.1**	HIC	Rural	-	Swab	Home	-	62
Ngu et al. (170)	2022	Hong Kong	Quasi- experimental trial	Under- screened	43#	HIC	Urban	_	Swab	Home	295	-

TABLE 4 (Continued)

nued)

First authors	Year	Country	Design	Screening status	Age	Country economic status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders) (preference)
Nobbenhuis et al. (134)	2002	Holland	Quasi- experimental trial	General population	35*	HIC	Urban	_	Lavage	Clinic	-	56
Obiri-Yeboah et al. (135)	2017	Ghana	Quasi- experimental trial	Under- screened	44.1*	MIC	Urban	-	Brush	Home	-	194
Oranratanaphan et al. (136)	2014	Thailand	Quasi- experimental trial	Under- screened	40.6*	MIC	Urban	-	Brush	Clinic	-	100
Pantano et al. (137)	2021	Brazil	Cross- sectional	Under- screened	49.4*	MIC	Urban and rural	-	Brush	Home	405	313
Penaranda et al. (138)	2015	USA	Cross- sectional	Under- screened	48.2*	MIC	Urban and rural	Border dwelling women	Swab	Clinic	118	106
Polman et al. (59)	2019	Holland	Randomized clinical trial	Under- screened	43.7*	HIC	Urban and rural	-	Brush	Clinic	-	1,662
Racey et al. (16)	2016	Canada	Randomized clinical trial	General population	51.2**	HIC	Rural	-	Swab	Home	68	-
Reiter et al. (139)	2020	USA	Cross- sectional	General population	46, 7*	HIC	Urban	-	Tampon	Home	79	79
Rosenbaum et al. (140)	2014	El Salvador	Cross- sectional	Under- screened	41–59 [†]	MIC	Rural	-	Brush	Clinic	-	518
Sellors et al. (142)	2000	USA	Quasi- experimental trial	Under- screened	31.5*	HIC	Urban	-	Brush	Home	127	-
Shin et al. (143)	2019	Korea	Cross- sectional	Under- screened	20-49 [†]	HIC	Urban	-	Swab	Clinic	728	-
Sechi et al. (141)	2022	Italy	Quasi- experimental trial	Under- screened	39, 5*	HIC	Urban	-	Swab	Clinic	40	-
Silva et al. (144)	2017	Portugal	Cross- sectional	Under- screened	26*	HIC	Urban	-	Not Reported	Not Reported	303	276

TABLE 4 (Continued)

(Continued)

28

TABLE 4 (Continued)

First authors	Year	Country	Design	Screening status	Age	Country economi status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders 7) (preference)
Sormani et al. (171)	2022	Cameroon	Cross- sectional	General population	40.6#	MIC	Urban	-	Swab	Clinic	2, 196	2, 201
Surriabre et al. (145)	2017	Bolivia	Cross- sectional	Under- screened	25-59 [§]	MIC	Urban and rural	-	Not Reported	Clinic	-	201
Swanson et al. (146)	2018	Kenya	Cross- sectional	General population	36*	MIC	Rural	-	Tampon	Home	255	-
Szarewski et al. (147)	2007	UK	Quasi- experimental trial	Under- screened	32***	HIC	Urban	-	Swab	Clinic	-	702
Taku et al. (148)	2020	South Africa	Cross- sectional	Under- screened	$44^{\#\#}$	MIC	Rural	-	Brush	Clinic	737	720
Tan et al. (149)	2021	Malesia	Quasi- experimental trial	General population	40.5*	MIC	Urban and rural	-	Brush	Clinic	10	10
Tiiti et al. (150)	2021	Sud Africa	Cross- sectional	General population	36.8*	MIC	Urban and rural	-	Brush and Swab	Clinic	526	526
Torrado Garcia et al. (151)	2020	Colombia	Cross- sectional	Under- screened	46.5#	MIC	Urban	Women belonging to the low socioeconomi	Brush	Clinic	420	420
Torres et al. (152)	2018	Brasile	Cross- sectional	Under- screened	26-36 [†]	MIC	Rural	stratum –	Brush	Home	-	412
Trope et al. (153)	2013	Thailand	Cross- sectional	Under- screened	25-60 [§]	MIC	Rural	-	Swab	Clinic	388	388
Van Baars et al. (154)	2012	Netherlands	Cross- sectional	Under- screened	40*	HIC	Urban	-	Brush	Clinic	127	-

(Continued)

TABLE 4 (Continued)

First authors	Year	Country	Design	Screening status	Age	Country economie status	Area c	Social subgroup	Device type	Sampling setting	Total responders (acceptability	Total responders) (preference)
Van de Wijgert et al. (68)	2006	South Africa	Randomized clinical trial	Under- screened	29.9*	MIC	Urban	-	Swab and Tampons	Clinic	-	Swab: 222 Tampon: 228
Virtanen et al. (155)	2014	Finland	Cross- sectional	General population	40-49 [†]	HIC	Urban and rural	-	Lavage	Home	809	889
Waller et al. (17)	2006	UK	Quasi- experimental trial	Under- screened	34.2*	HIC	Urban	-	Swab	Clinic	-	902
Wang et al. (156)	2020	USA	Cross- sectional	Under- screened	50*	HIC	Urban	HIV positive women	Brush	Clinic and Home	61	-
Wedisinghe et al. (157)	2022	Scotland	Quasi- experimental trial	General population	51.9**	HIC	Rural	-	Brush	Clinic and Home	272	-
Wikstrom et al. (158)	2007	Sweden	Cross- sectional	General population	35-44 [†]	HIC	Urban and rural	-	Swab	Home	-	91
Winer et al. (159)	2016	USA	Cross- sectional	Under- screened	43*	HIC	Rural	-	Swab	Clinic and Home	318	306
Wong et al. (74)	2018	Hong Kong	Randomized clinical trial	Under- screened	38.2*	HIC	Urban	Sex workers	Swab	Clinic	-	68
Wong et al. (160)	2020	Hong Kong	Cross- sectional	General population	39*	HIC	Urban	-	Brush	Home	-	124
Wong et al. (75)	2016	Hong Kong	Randomized clinical trial	Under- screened	50.9*	HIC	Urban	-	Swab	Clinic	351	392
Zehbe et al. (161)	2011	Canada	Cross- sectional	Under- screened	25-39 [†]	HIC	Rural	Women belonging to the First Nation community	Swab	Clinic	47	48

Di Gennaro et al.

Sample age reported as *mean, **weighted mean, [#]median, ^{##}weighted median, [†]median age group or [§]range. Country economic status reported as: HIC, high income country; MIC, middle income country; LIC, low income country.

Author	Year	Country	ES (95% Cl)
Non-Bandomized			
Abdullah	2018	Malesia	
Anderson	2017	LICA	
Anderson	2017	USA	
Barbee	2010	USA	0.98 (0.96, 0.99)
Broquet	2015	Madagascar	0.98 (0.96, 0.99)
Castell	2014	Germany	 0.98 (0.93, 0.99)
Catarino	2015	Switzerland	0.90 (0.84, 0.94)
Chatzistamatiou	2017	Greece	
Chaw	2022	Brunei	
Chou	2016	Taiwan	0.91 (0.87, 0.94)
Dannocker	2004	Gormany	
Dannecker Das marsis	2004		
Des marais	2019	Canada	
Duke	2015	Canada	
Dutton	2020	Australia	0.99 (0.96, 0.99)
Esber	2018	Malawi	0.97 (0.94, 0.99)
Galbraith	2014	USA	 0.98 (0.95, 0.99)
Goldstein	2020	China	0.97 (0.95, 0.98)
Gottschlich	2017	Guatemala	1.00 (0.98, 1.00)
Gottschlich	2019	Thailand	0.99 (0.97, 1.00)
Guerra Rodriguez	2021	Mexico	
Hallo	2021	Ethiopia	
llangeur	2019		0.88 (0.79, 0.93)
llangovan	2016	USA	0.98 (0.93, 0.99)
KIIOO	2021	Malaysia	■ 1.00 (0.99, 1.00)
Kohler	2019	Botswana	
Laskow	2017	El Salvador	
Madhivanan	2021	India	- 1.00 (0.97, 1.00)
Mahande	2021	Tanzania	■ 0.99 (0.98, 1.00)
Mandigo	2015	Haiti	■ 1 00 (0.99, 1.00)
Maza	2018	El Salvador	
Mrami	2010	Tonzonio	
Menti	2021	Tanzania	0.94 (0.93, 0.96)
Murchland	2019	Guatemala	
Nakalembe	2020	Uganda	0.98 (0.97, 0.99)
Ngu	2022	Hong Kong	0.89 (0.85, 0.92)
Pantano	2021	Brazil	• 0.94 (0.91, 0.96)
Penaranda	2015	USA	
Reiter	2020	Ohio	0.92 (0.84, 0.96)
Sechi	2022	Italy	1 .00 (0.91, 1.00)
Sellors	2000	LISA	
Shin	2010	Koroa	
Silve	2013	Derturel	
Silva	2017	Politigal	
Sormani	2022	Switzerland	
Swanson	2018	Western Kenya	• 0.99 (0.97, 1.00)
Taku	2019	South Africa	■ 0.80 (0.77, 0.83)
Tan	2021	Malesia	← ■ 0.30 (0.11, 0.60)
Tiiti	2021	Sud Africa	■ 0.90 (0.88, 0.93)
Torrado Garcia	2020	Colombia	0.99 (0.98, 1.00)
Trope	2013	Thailand	- 0.93 (0.90, 0.95)
Van Baars	2012	Netherlands	- 0.98 (0.93, 0.99)
Virtanon	2014	Finland	
Wong	2014		
Wadising	2020	Contland	
Wedisinghe	2022	Scolland	
winer	2017	USA	0.97 (0.94, 0.98)
Zehbe	2011	Canada	0.87 (0.75, 0.94)
			0.95 (0.94, 0.97)
Randomized			
Flores	2021	Mexico	0.97 (0.95, 0.98)
Racev	2016	Canada	
Wong FY	2020	China	
	2020	ormid	
			v 0.96 (0.93, 0.98)
			0.95 (0.94, 0.97)

on Islamic women shows that cervical cancer prevention still represents a considerable taboo among them and this can lead to under-screening (181). Further, additional aspects that can interfere with the effectiveness of a self-sampling campaign are the perceived costs and time required for being screened (178, 179, 182). The costs and the need to inform women about the importance of being screened are pivotal among migrants and minorities (183). In the authors' opinion, the use of prepaid and pre-addressed envelopes, the absence of costs for women, the presence of clear and detailed instructions in the self-sampling kits and continuous education about the importance of CCS, could be decisive factors to maximize the uptake.

Strengths and limitations

To the best of our knowledge no recent meta-analysis measuring the effect of self-sampling, across different distribution strategies, type of devices and screening status has been conducted, and the present results could be pivotal to provide practical suggestions for the organization of CCS program. Further strengths consist of the considerable number of subjects included, and the analysis of the recently published results of RCTs.

As above-mentioned, a possible limitation of this metaanalysis is the high heterogeneity, likely attributable to the wide socio-cultural diversity of the samples of women enrolled. Consequently, the results must be interpreted with caution highlighting the need to consider potential factors underlying the success of a self-sampling CCS campaign. Other limitations are the lack of search in the gray literature and the exclusion of all findings reported in languages different than English.

Conclusions

Self-sampling has the potential to increase participation of under-screened women in the CCS, in addition to the standard invitation to have a clinician to collect the sample. For small communities door-to-door distribution could be preferred to distribute the self-sampler; while for large communities optout strategies should be preferred over opt-in. Finally, since no significant difference in acceptability and preference of device

References

1. Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, et al. Epidemiology and burden of human papillomavirus and related diseases, molecular pathogenesis, and vaccine evaluation. *Front Public Health.* (2021) 8:552028. doi: 10.3389/fpubh.2020.552028

2. Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, et al. Understanding the HPV

type was demonstrated among women, and swabs exhibited a potential stronger effect in improving CCS, these devices could be adopted primarily over tampons and lavages.

Data availability statement

The original contributions presented in the study are included in the article material, further inquiries can be directed to the corresponding author.

Author contributions

FL participated in the conception and design of the study, contributed to the data collection, and wrote the first draft of the article. GD participated in the conception and design of the study, collected the data, performed the data analysis, contributed to analysis interpretation, and wrote the first draft of the article. AT contributed to the data collection and to the data analysis. AB designed the study, was responsible for the data collection and interpretation, wrote the article, and was guarantor for the study. All authors take responsibility for the integrity of the data and the accuracy of the data analysis. All authors have read and approved the manuscript for publication.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

integration and its progression to cervical cancer. Infect Genet Evol. (2018) 61:134-44. doi: 10.1016/j.meegid.2018.03.003

3. De Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. *Int Agency Res Cancer (IARC/WHO).* (2017) 141:664–70. doi: 10.1002/ijc. 30716 4. Bosch FX, Broker TR, Forman D, Moscicki A-B, Gillison ML, Doorbar J, et al. Comprehensive control of human papillomavirus infections and related diseases. *Vaccine*. (2013) 31:11–31. doi: 10.1016/j.vaccine.2013.10.003

5. Fisher JW, Brundage SI. The challenge of eliminating cervical cancer in the United States: a story of politics, prudishness, and prevention. *Women Heal.* (2009) 49:246–61. doi: 10.1080/03630240902915101

6. Obermair HM, Dodd RH, Bonner C, Jansen J. McCaffery K. It has saved thousands of lives, so why change it? Content analysis of objections to cervical screening programme changes in Australia. *BMJ Open.* (2018) 8:e019171. doi: 10.1136/bmjopen-2017-019171

 Gago J, Paolino M, Arrossi S. Factors associated with low adherence to cervical cancer follow-up retest among HPV+/ cytology negative women: a study in programmatic context in a low-income population in Argentina. *BMC Cancer*. (2019) 19:367. doi: 10.1186/s12885-019-5583-7

8. Limmer K, LoBiondo-Wood G, Dains J. Predictors of cervical cancer screening adherence in the United States: a systematic review. *J Adv Pract Oncol.* (2014) 5:31–41. doi: 10.6004/jadpro.2014.5.1.2

9. Arbyn M, Smith SB, Temin S, Sultana F, Castle P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses. *BMJ.* (2018) 363:k4823. doi: 10.1136/bmj.k4823

10. Nishimura H, Yeh PT, Oguntade H, Kennedy CE, Narasimhan M, HPV. self-sampling for cervical cancer screening: a systematic review of values and preferences. *BMJ Glob Heal.* (2021) 6:e003743. doi: 10.1136/bmjgh-2020-003743

11. Murchland AR, Gottschlich A, Bevilacqua K, Pineda A, Sandoval-Ramírez BA, Alvarez CS, et al. HPV self-sampling acceptability in rural and indigenous communities in Guatemala: a cross-sectional study. *BMJ Open.* (2019) 9:e029158. doi: 10.1136/bmjopen-2019-029158

12. Khoo SP, Lim WT, Rajasuriar R, Nasir NH, Gravitt P, Woo YL. The acceptability and preference of vaginal self-sampling for human papillomavirus (HPV) testing among a multi-ethnic asian female population. *Cancer Prev Res.* (2020) 14:105–12. doi: 10.1158/1940-6207.CAPR-20-0280

13. Kohler RE, Elliott T, Monare B, Moshashane N, Ramontshonyana K, Chatterjee P, et al. HPV self-sampling acceptability and preferences among women living with HIV in Botswana. *Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet.* (2019) 147:332–8. doi: 10.1002/ijgo.12963

14. Chatzistamatiou K, Vrekoussis T, Tsertanidou A, Moysiadis T, Mouchtaropoulou E, Pasentsis K, et al. Acceptability of self-sampling for human papillomavirus-based cervical cancer screening. *J Womens Health.* (2020) 29:1447–56. doi: 10.1089/jwh.2019.8258

15. Gottschlich A, Rivera-Andrade A, Grajeda E, Alvarez C, Mendoza Montano C, Meza R. Acceptability of human papillomavirus self-sampling for cervical cancer screening in an indigenous community in guatemala. *J Glob Oncol.* (2017) 3:444–54. doi: 10.1200/JGO.2016.005629

16. Racey CS, Gesink DC, Burchell AN, Trivers S, Wong T, Rebbapragada A. Randomized Intervention of self-collected sampling for human papillomavirus testing in under-screened rural women: uptake of screening and acceptability. *J Womens Health.* (2016) 25:489–97. doi: 10.1089/jwh.2015.5348

17. Waller J, McCaffery K, Forrest S, Szarewski A, Cadman L, Austin J, et al. Acceptability of unsupervised HPV self-sampling using written instructions. *J Med Screen.* (2006) 13:208–13. doi: 10.1177/096914130601300409

18. Fargnoli V, Petignat P, Burton-Jeangros C. To what extent will women accept HPV self-sampling for cervical cancer screening? A qualitative study conducted in Switzerland. *Int J Womens Health.* (2015) 7:883–8. doi: 10.2147/IJWH.S90772

19. Yeh PT, Kennedy CE, De Vuyst H, Narasimhan M. Self-sampling for human papillomavirus (HPV) testing: a systematic review and metaanalysis. *BMJ Global Health.* (2019) 4:e001351. doi: 10.1136/bmjgh-2018-001351

20. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *The BMJ*. (2021) 372:n71. doi: 10.1136/bmj.n71

21. Nelson EJ, Maynard BR, Loux T, Fatla J, Gordon R, Arnold LD. The acceptability of self-sampled screening for HPV DNA: a systematic review and meta-analysis. *Sex Transm Infect.* (2017) 93:56–61. doi: 10.1136/sextrans-2016-052609

22. Higgins J, Savović J, Page MJ, Sterne JAC. RoB 2: A revised Cochrane risk-ofbias tool for randomized trials. *Br Med J.* (2019). doi: 10.1002/9781119536604.ch8

23. National Institute of Health, Bethesda (Maryland U). *Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies*. Available online at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed November 11, 2022).

24. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. (2015) 45:139–45. doi: 10.1016/j.cct.2015.09.002

25. StataCorp. Stata Statistical Software: Release 17. College Station,TX: StataCorp LLC. (2021)

26. Arrossi S, Ramos S, Straw C, Thouyaret L, Orellana L, HPV. testing: a mixed-method approach to understand why women prefer self-collection in a middle-income country. *BMC Public Health.* (2016) 16:832. doi: 10.1186/s12889-016-3474-2

27. Bais AG, Van Kemenade FJ, Berkhof J, Verheijen RHM, Snijders PJF, Voorhorst F, et al. Human papillomavirus testing on self-sampled cervicovaginal brushes: An effective alternative to protect nonresponders in cervical screening programs. *Int J Cancer.* (2007) 120:1505–10. doi: 10.1002/ijc.22484

28. Bosgraaf RP, Verhoef VMJ, Massuger LFAG, Siebers AG, Bulten J, De Kuyper-De Ridder GM, et al. Comparative performance of novel self-sampling methods in detecting high-risk human papillomavirus in 30,130 women not attending cervical screening. *Int J Cancer.* (2015) 136:646–55. doi: 10.1002/ijc.29026

29. Brewer N, Bartholomew K, Grant J, Maxwell A, McPherson G, Wihongi H, et al. Acceptability of human papillomavirus (HPV) self-sampling among neverand under-screened Indigenous and other minority women: a randomised threearm community trial in Aotearoa New Zealand. *Lancet Reg Heal West Pacific*. (2021) 16:100265. doi: 10.1016/j.lanwpc.2021.100265

30. Broberg G, Gyrd-Hansen D, Miao Jonasson J, Ryd ML, Holtenman M, Milsom I, et al. Increasing participation in cervical cancer screening: offering a HPV self-test to long-term non-attendees as part of RACOMIP, a Swedish randomized controlled trial. *Int J Cancer.* (2014) 134:2223–30. doi: 10.1002/ijc.28545

31. Cadman L, Wilkes S, Mansour D, Austin J, Ashdown-Barr L, Edwards R, et al. A randomized controlled trial in non-responders from Newcastle upon Tyne invited to return a self-sample for human papillomavirus testing vs. repeat invitation for cervical screening. *J Med Screen.* (2015) 22:28–37. doi: 10.1177/0969141314558785

32. Carrasquillo O, Seay J, Amofah A, Pierre L, Alonzo Y, McCann S, et al. HPV Self-sampling for cervical cancer screening among ethnic minority Women in South Florida: a randomized trial. *J Gen Int Med.* (2018) 33:1077–83. doi: 10.1007/s11606-018-4404-z

33. Castle PE, Silva VRS, Consolaro MEL, Kienen N, Bittencourt L, Pelloso SM, et al. Participation in cervical screening by selfcollection, pap, or a choice of either in Brazil. *Cancer Prev Res.* (2019) 12:159–70. doi: 10.1158/1940-6207.CAPR-18-0419

34. Catarino R, Vassilakos P, Bilancioni A, Eynde M. Vanden, Meyer-Hamme U, Menoud PA, et al. Randomized comparison of two vaginal self-sampling methods for human papillomavirus detection: dry swab vs. FTA cartridge. *PLoS ONE.* (2015) 10:e0143644. doi: 10.1371/journal.pone.0143644

35. Darlin L, Borgfeldt C, Forslund O, Hénic E, Hortlund M, Dillner J, et al. Comparison of use of vaginal HPV self-sampling and offering flexible appointments as strategies to reach long-term non-attending women in organized cervical screening. *J Clin Virol.* (2013) 58:155–60. doi: 10.1016/j.jcv.2013.06.029

36. Aranda Flores CE, Gomez Gutierrez G, Ortiz Leon JM, Cruz Rodriguez D, Sørbye SW. Self-collected vs. clinician-collected cervical samples for the detection of HPV infections by 14-type DNA and 7-type mRNA tests. *BMC Infect Dis.* (2021) 21:504. doi: 10.1186/s12879-021-06189-2

37. Giorgi Rossi P, Marsili LM, Camilloni L, Iossa A, Lattanzi A, Sani C, et al. The effect of self-sampled HPV testing on participation to cervical cancer screening in Italy: a randomised controlled trial (ISRCTN96071600). *Br J Cancer.* (2011) 104:248–54. doi: 10.1038/sj.bjc.6606040

38. Giorgi Rossi P, Fortunato C, Barbarino P, Boveri S, Caroli S, Del Mistro A, et al. Self-sampling to increase participation in cervical cancer screening: an RCT comparing home mailing, distribution in pharmacies, and recall letter. *Br J Cancer*. (2015) 112:667–75. doi: 10.1038/bjc.2015.11

39. Gizaw M, Teka B, Ruddies F, Abebe T, Kaufmann AM, Worku A, et al. Uptake of cervical cancer screening in Ethiopia by self-sampling HPV DNA compared to visual inspection with acetic acid: a cluster randomized trial. *Cancer Prev Res.* (2019) 12:609–16. doi: 10.1158/1940-6207.CAPR-19-0156

40. Gök M, Heideman DAM, Van Kemenade FJ, Berkhof J, Rozendaal L, Spruyt JWM, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: Cohort study. *BMJ*. (2010) 340:c1040. doi: 10.1136/bmj.c1040

41. Gök M, Van Kemenade FJ, Heideman DAM, Berkhof J, Rozendaal L, Spruyt JWM, et al. Experience with high-risk human papillomavirus testing on vaginal brush-based self-samples of non-attendees of the cervical screening program. *Int J Cancer*. (2012) 130:1128–35. doi: 10.1002/ijc.26128

42. Gustavsson I, Aarnio R, Berggrund M, Hedlund-Lindberg J, Strand AS, Sanner K, et al. Randomised study shows that repeated selfsampling and HPV test has more than twofold higher detection rate of women with CIN2+ histology than Pap smear cytology. *Br J Cancer.* (2018) 118:896–904. doi: 10.1038/bjc.2017.485

43. Haguenoer K, Sengchanh S, Gaudy-Graffin C, Boyard J, Fontenay R, Marret H, et al. vaginal self-sampling is a cost-effective way to increase participation in a cervical cancer screening programme: a randomised trial. *Br J Cancer*. (2014) 111:2187–96. doi: 10.1038/bic.2014.510

44. Harper DM, Noll WW, Belloni DR, Cole BF. Randomized clinical trial of PCR-determined human papillomavirus detection methods: Self-sampling vs. clinician-directed-biologic concordance and women's preferences. *Am J Obstet Gynecol.* (2002) 186:365–73. doi: 10.1067/mob.2002.121076

45. Hellsten C, Ernstson A, Bodelsson G, Forslund O, Borgfeldt C. Equal prevalence of severe cervical dysplasia by HPV self-sampling and by midwifecollected samples for primary HPV screening: a randomised controlled trial. *Eur J Cancer Prev.* (2021) 30:334–40. doi: 10.1097/CEJ.000000000000693

46. Ivanus U, Jerman T, Fokter AR, Takac I, Prevodnik VK, Marcec M, et al. Randomised trial of HPV self-sampling among non-attenders in the Slovenian cervical screening programme ZORA: comparing three different screening approaches. *Radiol Oncol.* (2018) 52:399–412. doi: 10.2478/raon-2018-0036

47. Jalili F, O'Conaill C, Templeton K, Lotocki R, Fischer G, Manning L, et al. Assessing the impact of mailing self-sampling kits for human papillomavirus testing to unscreened non-responder women in Manitoba. *Curr Oncol.* (2019) 26:167–72. doi: 10.3747/co.26.4575

48. Karjalainen L, Anttila A, Nieminen P, Luostarinen T, Virtanen A. Self-sampling in cervical cancer screening: comparison of a brush-based and a lavage-based cervicovaginal self-sampling device. *BMC Cancer.* (2016) 16:221. doi: 10.1186/s12885-016-2246-9

49. Kellen E, Benoy I, Vanden Broeck D, Martens P, Bogers JP, Haelens A, et al. A randomized, controlled trial of two strategies of offering the home-based HPV self-sampling test to non- participants in the Flemish cervical cancer screening program. *Int J Cancer.* (2018) 143:861–68. doi: 10.1002/ijc.31391

50. Kitchener H, Gittins M, Cruickshank M, Moseley C, Fletcher S, Albrow R, et al. A cluster randomized trial of strategies to increase uptake amongst young women invited for their first cervical screen: the strategic trial. *J Med Screen.* (2018) 25:88–98. doi: 10.1177/0969141317696518

51. Lazcano-Ponce E, Lorincz AT, Cruz-Valdez A, Salmerón J, Uribe P, Velasco-Mondragón E, et al. Self-collection of vaginal specimens for human papillomavirus testing in cervical cancer prevention (MARCH): a community-based randomised controlled trial. *Lancet.* (2011) 378:1868–73. doi: 10.1016/S0140-6736(11) 61522-5

52. Lilliecreutz C, Karlsson H, Holm ACS. Participation in interventions and recommended follow-up for non-attendees in cervical cancer screening -taking the women's own preferred test method into account—a Swedish randomised controlled trial. *PLoS ONE.* (2020) 15:e0235202. doi: 10.1371/journal.pone.0235202

53. MacDonald EJ, Geller S, Sibanda N, Stevenson K, Denmead L, Adcock A, et al. Reaching under-screened/never-screened indigenous peoples with human papilloma virus self-testing: a community-based cluster randomised controlled trial. *Aust New Zeal J Obstet Gynaecol.* (2021) 61:135–41. doi: 10.1111/ajo.13285

54. Modibbo F, Iregbu KC, Okuma J, Leeman A, Kasius A, De Koning M, et al. Randomized trial evaluating self-sampling for HPV DNA based tests for cervical cancer screening in Nigeria. *Infect Agent Cancer*. (2017) 12:11. doi: 10.1186/s13027-017-0123-z

55. Molokwu JC, Penaranda E, Dwivedi A, Mallawaarachchi I, Shokar N. Effect of educational intervention on self-sampling acceptability and follow-up paps in border dwelling hispanic females. *J Low Genit Tract Dis.* (2018) 22:295–301. doi: 10.1097/LGT.00000000000424

56. Moses E, Pedersen HN, Mitchell SM, Sekikubo M, Mwesigwa D, Singer J, et al. Uptake of community-based, self-collected HPV testing vs. visual inspection with acetic acid for cervical cancer screening in Kampala, Uganda: preliminary results of a randomised controlled trial *.Trop Med Int Heal.* (2015) 20:1355–67. doi: 10.1111/tmi.12549

57. Murphy J, Mark H, Anderson J, Farley J, Allen J. A randomized trial of human papillomavirus self-sampling as an intervention to promote cervical cancer screening among women with HIV. *J Low Genit Tract Dis.* (2016) 20:139–44. doi: 10.1097/LGT.00000000000195

58. Peeters E, Cornet K, Devroey D, Arbyn M. Efficacy of strategies to increase participation in cervical cancer screening: GPs offering self-sampling kits for HPV testing vs. recommendations to have a pap smear taken—a randomised controlled trial. *Papillomavirus Res.* (2020) 9:100201. doi: 10.1016/j.pvr.202 0.100194

59. Polman NJ, de Haan Y, Veldhuijzen NJ, Heideman DAM, de Vet HCW, Meijer CJLM, et al. Experience with HPV self-sampling and clinician-based sampling in women attending routine cervical screening in the Netherlands. *Prev Med.* (2019) 125:5–11. doi: 10.1016/j.ypmed.2019.04.025

60. Reques L, Rolland C, Lallemand A, Lahmidi N, Aranda-Fernández E, Lazzarino A, et al. Comparison of cervical cancer screening by self-sampling papillomavirus test vs. pap-smear in underprivileged women in France. *BMC Womens Health.* (2021) 21:221. doi: 10.1186/s12905-021-01356-8

61. Sancho-Garnier H, Tamalet C, Halfon P, Leandri FX, Retraite L Le, Djoufelkit K, et al. HPV self-sampling or the Pap-smear: a randomized study among cervical screening nonattenders from lower socioeconomic groups in France. *Int J Cancer*. (2013) 133:2681–7. doi: 10.1002/ijc.28283

62. Scarinci IC Li Y, Tucker L, Campos NG, Kim JJ, Peral S, et al. Given a choice between self-sampling at home for HPV testing and standard of care screening at the clinic, what do African American women choose? Findings from a group randomized controlled trial. *Prev Med.* (2021) 142:106358. doi: 10.1016/j.ypmed.2020.106358

63. Sewali B, Okuyemi KS, Askhir A, Belinson J, Vogel RI, Joseph A, et al. Cervical cancer screening with clinic-based Pap test vs. home HPV test among Somali immigrant women in Minnesota: a pilot randomized controlled trial. *Cancer Med.* (2015) 4:620–31. doi: 10.1002/cam4.429

64. Sultana F, English DR, Simpson JA, Drennan KT, Mullins R, Brotherton JML, et al. Home-based HPV self-sampling improves participation by neverscreened and under-screened women: results from a large randomized trial (iPap) in Australia. *Int J Cancer.* (2016) 139:281–90. doi: 10.1002/ijc.30031

65. Szarewski A, Cadman L, Mesher D, Austin J, Ashdown-Barr L, Edwards R, et al. HPV self-sampling as an alternative strategy in non-attenders for cervical screening- a randomised controlled trial. *Br J Cancer.* (2011) 104:915–20. doi: 10.1038/bjc.2011.48

66. Tamalet C, Le Retraite L, Leandri FX, Heid P, Sancho Garnier H, Piana L. Vaginal self-sampling is an adequate means of screening HR-HPV types in women not participating in regular cervical cancer screening. *Clin Microbiol Infect.* (2013) 19:E44–50. doi: 10.1111/1469-0691.12063

67. Tranberg M, Bech BH, Blaakær J, Jensen JS, Svanholm H, Andersen B. Preventing cervical cancer using HPV self-sampling: Direct mailing of test-kits increases screening participation more than timely optin procedures - a randomized controlled trial. *BMC Cancer*. (2018) 18:273. doi: 10.1186/s12885-018-4165-4

68. Van De Wijgert J, Altini L, Jones H, De Kock A, Young T, Williamson AL, et al. Two methods of self-sampling compared to clinician sampling to detect reproductive tract infections in Gugulethu, South Africa. *Sex Transm Dis.* (2006) 33:516–23. doi: 10.1097/01.olq.0000204671.62529.1f

69. Virtanen A, Nieminen P, Luostarinen T, Anttila A. Self-sample HPV tests as an intervention for nonattendees of cervical cancer screening in finland: a randomized trial. *Cancer Epidemiol Biomark Prev.* (2011) 20:1960–9. doi: 10.1158/1055-9965.EPI-11-0307

70. Virtanen A, Anttila A, Luostarinen T, Malila N, Nieminen P. Improving cervical cancer screening attendance in Finland. *Int J Cancer.* (2015) 136:e677–84. doi: 10.1002/ijc.29176

71. Viviano M, Catarino R, Jeannot E, Boulvain M, Malinverno MU, Vassilakos P, et al. Self-sampling to improve cervical cancer screening coverage in Switzerland: a randomised controlled trial. *Br J Cancer.* (2017) 116:1382–8. doi: 10.1038/bjc.2017.111

72. Wikström I, Lindell M, Sanner K, Wilander E. Self-sampling and HPV testing or ordinary Pap-smear in women not regularly attending screening: a randomised study. *Br J Cancer*. (2011) 105:337–9. doi: 10.1038/bjc.2011.236

73. Winer RL, Lin J, Tiro JA, Miglioretti DL, Beatty T, Gao H, et al. Effect of mailed human papillomavirus test kits vs usual care reminders on cervical cancer screening uptake, precancer detection, and treatment: a randomized clinical trial. *J Am Med Assoc Netw Open.* (2019) 2:e14729. doi: 10.1001/jamanetworkopen.2019.14729

74. Wong ELY, Cheung AWL, Huang F, Chor JSY. Can human papillomavirus DNA self-sampling be an acceptable and reliable option for cervical cancer screening in female sex workers? *Cancer Nurs.* (2018) 41:45–52. doi: 10.1097/NCC.00000000000462

75. Wong ELY, Chan PKS, Chor JSY, Cheung AWL, Huang F, Wong SYS. Evaluation of the impact of human papillomavirus DNA self-sampling on the uptake of cervical cancer screening. *Cancer Nurs.* (2016) 39:E1-11. doi:10.1097/NCC.0000000000020241

76. Yamasaki M, Abe S, Miura K, Masuzaki H. The effect of self-sampled HPV testing on participation in cervical cancer screening on a remote island. *Acta Med Nagasaki*. (2019) 62:55–61.

77. Zehbe I, Jackson R, Wood B, Weaver B, Escott N, Severini A, et al. Community-randomised controlled trial embedded in the Anishinaabek cervical cancer screening Study: Human papillomavirus self-sampling vs. Papanicolaou cytology. *BMJ Open.* (2016) 6:e011754. doi: 10.1136/bmjopen-2016-011754

78. Agorastos T, Dinas K, Lloveras B, Font R, Kornegay JR, Bontis J, et al. Self-sampling vs. physician-sampling for human papillomavirus testing. *Int J STD AIDS*. (2005) 16:727–9. doi: 10.1258/095646205774763225

79. Aiko KY, Yoko M, Saito OM, Ryoko A, Yasuyo M, Mikiko AS, et al. Accuracy of self-collected human papillomavirus samples from Japanese women with abnormal cervical cytology. *J Obstet Gynaecol Res.* (2017) 43:710–7. doi: 10.1111/jog.13258

80. Allende G, Surriabre P, Cáceres L, Bellot D, Ovando N, Torrico A, et al. Evaluation of the self-sampling for cervical cancer screening in Bolivia. *BMC Public Health*. (2019) 19:80. doi: 10.1186/s12889-019-6401-5

81. Anderson C, Breithaupt L, Des Marais A, Rastas C, Richman A, Barclay L, et al. Acceptability and ease of use of mailed HPV self-collection among infrequently screened women in North Carolina. *Sex Transm Infect.* (2018) 94:131–7. doi: 10.1136/sextrans-2017-053235

82. Anhang R, Nelson JA, Telerant R, Chiasson MA, Wright TCJ. Acceptability of self-collection of specimens for HPV DNA testing in an urban population. J Womens Health. (2005) 14:721–8. doi: 10.1089/jwh.2005.14.721

83. Bansil P, Wittet S, Lim JL, Winkler JL, Paul P, Jeronimo J. Acceptability of self-collection sampling for HPV-DNA testing in low-resource settings: a mixed methods approach. *BMC Public Health.* (2014) 14:596. doi: 10.1186/1471-2458-14-596

84. Barbee L, Kobetz E, Menard J, Cook N, Blanco J, Barton B, et al. Assessing the acceptability of self-sampling for HPV among Haitian immigrant women: CBPR in action. *Cancer Causes Control.* (2010) 21:421–31. doi: 10.1007/s10552-009-9474-0

85. Behnke A-L, Krings A, Wormenor CM, Dunyo P, Kaufmann AM, Amuah JE. Female health-care providers' advocacy of selfsampling after participating in a workplace program for cervical cancer screening in Ghana: a mixed-methods study. *Glob Health Action.* (2020) 13:1838240. doi: 10.1080/16549716.2020.1838240

86. Berner A, Hassel S. Ben, Tebeu PM, Untiet S, Kengne-Fosso G, Navarria I, et al. Human papillomavirus self-sampling in Cameroon: women's uncertainties over the reliability of the method are barriers to acceptance. *J Low Genit Tract Dis.* (2013) 17:235–41. doi: 10.1097/LGT.0b013e31826b7b51

87. Brewer N, Foliaki S, Bromhead C, Viliamu-Amusia I, Pelefoti-Gibson L, Jones T, et al. Acceptability of human papillomavirus self-sampling for cervical-cancer screening in under-screened Māori and Pasifika women: a pilot study. *N Z Med J.* (2019) 132:21–31.

88. Broquet C, Triboullier D, Untiet S, Schafer S, Petignat P, Vassilakos P. Acceptability of self-collected vaginal samples for HPV testing in an urban and rural population of Madagascar. *Afr Health Sci.* (2015) 15:755–61. doi: 10.4314/ahs.v15i3.8

89. Castell S, Krause G, Schmitt M, Pawlita M, Deleré Y, Obi N, et al. Feasibility and acceptance of cervicovaginal self-sampling within the German National Cohort (Pretest 2). *Bundesgesundheitsblatt Gesundheitsforsch Gesundheitsschutz.* (2014) 57:1270–6. doi: 10.1007/s00103-014-2054-9

90. Catarino R, Vassilakos P, Stadali-Ullrich H, Royannez-Drevard I, Guillot C, Petignat P. Feasibility of at-home self-sampling for HPV testing as an appropriate screening strategy for nonparticipants in Switzerland: preliminary results of the depist study. *J Low Genit Tract Dis.* (2015) 19:27–34. doi: 10.1097/LGT.0000000000051

91. Chatzistamatiou K. Chatzaki E, Constantinidis T, Nena E, Tsertanidou A, Agorastos T. Self-collected cervicovaginal sampling for site-of-care primary HPV-based cervical cancer screening: a pilot study in a rural underserved Greek population. *J Obstet Gynaecol J Inst Obstet Gynaecol.* (2017) 37:1059–64. doi: 10.1080/01443615.2017.1323197

92. Chou HH, Huang HJ, Cheng HH, Chang CJ, Yang LY, Huang CC, et al. Selfsampling HPV test in women not undergoing Pap smear for more than 5 years and factors associated with under-screening in Taiwan. *J Formos Med Assoc.* (2016) 115:1089–96. doi: 10.1016/j.jfma.2015.10.014

93. Crofts V, Flahault E, Tebeu P-M, Untiet S, Fosso GK, Boulvain M, et al. Education efforts may contribute to wider acceptance of human papillomavirus self-sampling. *Int J Womens Health.* (2015) 7:149–54. doi: 10.2147/IJWH.S56307

94. Crosby RA, Hagensee ME, Vanderpool R, Nelson N, Parrish A, Collins T, et al. Community-based screening for cervical cancer: a feasibility study of rural Appalachian women. *Sex Transm Dis.* (2015) 42:607–11. doi: 10.1097/OLQ.00000000000365

95. Dannecker C, Siebert U, Thaler CJ, Kiermeir D, Hepp H, Hillemanns P. Primary cervical cancer screening by self-sampling of human papillomavirus DNA

in internal medicine outpatient clinics. Ann Oncol Off J Eur Soc Med Oncol. (2004) 15:863–9. doi: 10.1093/annonc/mdh240

96. de Melo Kuil L, Lorenzi AT, Stein MD, Resende JCP, Antoniazzi M, Longatto-Filho A, et al. The role of self-collection by vaginal lavage for the detection of HPV and high-grade *Intraepithelial Neoplasia*. *Acta Cytol.* (2017) 61:425– 33. doi: 10.1159/000477331

97. Deleré Y, Schuster M, Vartazarowa E, Hänsel T, Hagemann I, Borchardt S, et al. Cervicovaginal self-sampling is a reliable method for determination of prevalence of human papillomavirus genotypes in women aged 20–30 years. *J Clin Microbiol.* (2011) 49:3519–22. doi: 10.1128/JCM.01026-11

98. Des Marais AC, Zhao Y, Hobbs MM, Sivaraman V, Barclay L, Brewer NT, et al. Home self-collection by mail to test for human papillomavirus and sexually transmitted infections. *Obstet Gynecol.* (2018) 132:1412–20. doi: 10.1097/AOG.00000000002964

99. Desai KT, Ajenifuja KO, Banjo A, Adepiti CA, Novetsky A, Sebag C, et al. Design and feasibility of a novel program of cervical screening in Nigeria: self-sampled HPV testing paired with visual triage. *Infect Agent Cancer.* (2020) 15:60. doi: 10.1186/s13027-020-00324-5

100. Duke P, Godwin M, Ratnam S, Dawson L, Fontaine D, Lear A, et al. Effect of vaginal self-sampling on cervical cancer screening rates: a community-based study in Newfoundland. *BMC Womens Health.* (2015) 15:47. doi: 10.1186/s12905-015-0206-1

101. Dutton T, Marjoram J, Burgess S, Montgomery L, Vail A, Callan N, et al. Uptake and acceptability of human papillomavirus self-sampling in rural and remote aboriginal communities: evaluation of a nurse-led community engagement model. *BMC Health Serv Res.* (2020) 20:398. doi: 10.1186/s12913-020-05214-5

102. Dzuba IG, Díaz EY, Allen B, Leonard YF, Ponce ECL, Shah K V, et al. The acceptibility of self-collected samples for HPV testing vs. The pap test as alternatives in cervical cancer screening. *J Women's Heal Gender-Based Med.* (2002) 11:265–75. doi: 10.1089/152460902753668466

103. Esber A, Norris A, Jumbe E, Kandodo J, Nampandeni P, Reese PC, et al. Feasibility, validity and acceptability of self-collected samples for human papillomavirus (HPV) testing in rural Malawi. *Malawi Med J.* (2018) 30:61–6. doi: 10.4314/mmj.v30i2.2

104. Galbraith K V, Gilkey MB, Smith JS, Richman AR, Barclay L, Brewer NT. perceptions of mailed HPV self-testing among women at higher risk for cervical cancer. *J Community Health.* (2014) 39:849–56. doi: 10.1007/s10900-014-9931-x

105. Goldstein A, Plafker B, Stamper S, Goldstein L, Lipson R, Bedell S, et al. Patient satisfaction with human papillomavirus self-sampling in a cohort of ethnically diverse and rural Women in Yunnan Province, China. *J Low Genit Tract Dis.* (2020) 24:349–52. doi: 10.1097/LGT.0000000000000560

106. Gottschlich A, Nuntadusit T, Zarins KR, Hada M, Chooson N, Bilheem S, et al. Barriers to cervical cancer screening and acceptability of HPV self-testing: a cross-sectional comparison between ethnic groups in Southern Thailand. *BMJ Open.* (2019) 9:e031957. doi: 10.1136/bmjopen-2019-031957

107. Guan YY, Castle PE, Wang S, Li B, Feng C, Ci P, et al. A cross-sectional study on the acceptability of self-collection for HPV testing among women in rural China. *Sex Transm Infect.* (2012) 88:490–4. doi: 10.1136/sextrans-2012-050477

108. Haile EL, Cindy S, Ina B, Belay G, Jean-Pierre VG, Sharon R, et al. HPV testing on vaginal/cervical nurse-assisted self-samples vs. clinician-taken specimens and the HPV prevalence, in Adama Town, Ethiopia. *Medicine*. (2019) 98:e16970. doi: 10.1097/MD.000000000016970

109. Hinten F, Hilbrands LB, Meeuwis KA, van Bergen-Verkuyten MC, Slangen BF, van Rossum MM, et al. Improvement of gynecological screening of female renal transplant recipients by self-sampling for human papillomavirus detection. *J Low Genit Tract Dis.* (2017) 21:33–6. doi: 10.1097/LGT.00000000000270

110. Igidbashian S, Boveri S, Spolti N, Radice D, Sandri MT, Sideri M. Self-collected human papillomavirus testing acceptability: comparison of two self-sampling modalities. *J Womens Health.* (2011) 20:397–402. doi: 10.1089/jwh.2010.2189

111. Ilangovan K, Kobetz E, Koru-Sengul T, Marcus EN, Rodriguez B, Alonzo Y, et al. Acceptability and feasibility of human papilloma virus self-sampling for cervical cancer screening. *J Womens Health.* (2016) 25:944–51. doi: 10.1089/jwh.2015.5469

112. Islam JY, Mutua MM, Kabare E, Manguro G, Hudgens MG, Poole C, et al. High-risk human papillomavirus messenger RNA Testing in wet and dry self-collected specimens for high-grade cervical lesion detection in Mombasa, Kenya. *Sex Transm Dis.* (2020) 47:464–72. doi: 10.1097/OLQ.000000000001167

113. Jones HE, Brudney K, Sawo DJ, Lantigua R, Westhoff CL. The acceptability of a self-lavaging device compared to pelvic examination for cervical cancer screening among low-income women. *J Women's Health.* (2012) 21:1275–81. doi: 10.1089/jwh.2012.3512

114. Jones HE, Wiegerinck MAHM, Nieboer TE, Mol BW, Westhoff CL. Women in the netherlands prefer self-sampling with a novel lavaging device to clinician collection of specimens for cervical cancer screening. *Sex Transm Dis.* (2008) 35:916–7. doi: 10.1097/OLQ.0b013e3181812cf0

115. Katanga JJ, Rasch V, Manongi R, Pembe AB, Mwaiselage JD, Kjaer SK. Concordance in HPV detection between self-collected and health provider-collected cervicovaginal samples using careHPV in Tanzanian Women. *JCO Glob Oncol.* (2021). doi: 10.1200/GO.20.00598

116. Ketelaars PJW, Bosgraaf RP, Siebers AG, Massuger LFAG, van der Linden JC, Wauters CAP, et al. High-risk human papillomavirus detection in selfsampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study. *Prev Med.* (2017) 101:96– 101. doi: 10.1016/j.ypmed.2017.05.021

117. Khanna N, Mishra SI, Tian G, Tan MT, Arnold S, Lee C, et al. Human papillomavirus detection in self-collected vaginal specimens and matched clinician-collected cervical specimens. *Int J Gynecol Cancer Off J Int Gynecol Cancer Soc.* (2007) 17:615–22. doi: 10.1111/j.1525-1438.2006.00835.x

118. Kilfoyle KA, Des Marais AC, Ngo MA, Romocki L, Richman AR, Barclay L, et al. Preference for human papillomavirus self-collection and papanicolaou: survey of underscreened women in North Carolina. *J Low Genit Tract Dis.* (2018) 22:302–10. doi: 10.1097/LGT.00000000000430

119. Landy R, Hollingworth T, Waller J, Marlow LAV, Rigney J, Round T, et al. Non-speculum sampling approaches for cervical screening in older women: randomised controlled trial. *Br J Gen Pract.* (2022) 72:e26–33. doi:10.3399/BJGP.2021.0708

120. Laskow B, Figueroa R, Alfaro KM, Scarinci IC, Conlisk E, Maza M, et al. A pilot study of community-based self-sampling for HPV testing among nonattenders of cervical cancer screening programs in El Salvador. *Int J Gynecol Obstet.* (2017) 138:194–200. doi: 10.1002/ijgo.12204

121. Litton AG, Castle PE, Partridge EE, Scarinci IC. Cervical cancer screening preferences among African American women in the Mississippi Delta. J Health Care Poor Underserved. (2013) 24:46–55. doi: 10.1353/hpu.2013.0017

122. Lorenzi NPC, Termini L, Longatto Filho A, Tacla M, de Aguiar LM, Beldi MC, et al. Age-related acceptability of vaginal self-sampling in cervical cancer screening at two university hospitals: a pilot cross-sectional study. *BMC Public Health*. (2019) 19:963. doi: 10.1186/s12889-019-7292-1

123. Ma'som M, Bhoo-Pathy N, Nasir NH, Bellinson J, Subramaniam S, Ma Y, et al. Attitudes and factors affecting acceptability of self-administered cervicovaginal sampling for human papillomavirus (HPV) genotyping as an alternative to Pap testing among multiethnic Malaysian women. *BMJ Open.* (2016) 6:e011022. doi: 10.1136/bmjopen-2015-

124. Madhivanan P, Nishimura H, Ravi K, Pope B, Coudray M, Arun A, et al. Acceptability and concordance of self- vs. clinician- sampling for HPV testing among Rural. *South Indian Women Asian Pac J Cancer Prev.* (2021) 22:971–6. doi: 10.31557/APJCP.2021.22.3.971

125. Mahande MJ, Oneko O, Amour C, Pollie M, Smith C, Mboya IB, et al. Feasibility and acceptability of human papillomavirus self-sampling in a semi-urban area in northern Tanzania. *Int J Gynecol Obstet.* (2021) 154:113–8. doi: 10.1002/ijgo.13579

126. Malone C, Tiro JA, Buist DS, Beatty T, Lin J, Kimbel K, et al. Reactions of women underscreened for cervical cancer who received unsolicited human papillomavirus self-sampling kits. *J Med Screen.* (2020) 27:146–56. doi: 10.1177/0969141319885994

127. Mandigo M, Frett B, Laurent JR, Bishop I, Raymondville M, Kobetz-Kerman E. Community health workers paired with human papillomavirus selfsamplers: a promising method to reduce cervical cancer. *Obs Gynecol.* (2014) 123:206–10. doi: 10.1097/01.AOG.0000447210.22335.ef

128. Mao C, Kulasingam SL, Whitham HK, Hawes SE, Lin J, Kiviat NB. Clinician and patient acceptability of self-collected human papillomavirus testing for cervical cancer screening. J Womens Health. (2017) 26:609–15. doi: 10.1089/jwh.2016.5965

129. Maza M, Melendez M, Masch R, Alfaro K, Chacon A, Gonzalez E, et al. Acceptability of self-sampling and human papillomavirus testing among non-attenders of cervical cancer screening programs in El Salvador. *Prev Med.* (2018) 114:149–55. doi: 10.1016/j.ypmed.2018. 06.017

130. McLarty JW WDLLS, Hagensee ME, McLarty JW, Williams DL, Loyd S, Hagensee ME. Cervical human papillomavirus testing with two home self-collection methods compared with a standard clinically collected sampling method. *Sex Transm Dis.* (2019) 46:670–5. doi: 10.1097/OLQ.00000000001045

131. Mremi A, Linde DS, Mchome B, Mlay J, Schledermann D, Blaakær J, et al. Acceptability and feasibility of self-sampling and follow-up attendance after text message delivery of human papillomavirus results: a cross-sectional study

nested in a cohort in rural Tanzania. Acta Obstet Gynecol Scand. (2021) 100:802-10. doi: 10.1111/aogs.14117

132. Nakalembe M, Makanga P, Kambugu A, Laker-Oketta M, Huchko MJ, Martin J, et al. public health approach to cervical cancer screening in Africa through community-based self-administered HPV testing and mobile treatment provision. *Cancer Med.* (2020) 9:8701–12. doi: 10.1101/2019.12.19.19015446

133. Nelson EJ, Hughes J, Oakes JM, Thyagarajan B, Pankow JS, Kulasingam SL. Human papillomavirus infection in women who submit self-collected vaginal swabs after internet recruitment. *J Commun Health.* (2015) 40:379–86. doi: 10.1007/s10900-014-9948-1

134. Nobbenhuis MAE, Helmerhorst TJM, van den Brule AJC, Rozendaal L, Jaspars LH, Voorhorst FJ, et al. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol.* (2002) 55:435–9. doi: 10.1136/jcp.55.6.435

135. Obiri-Yeboah D, Adu-Sarkodie Y, Djigma F, Hayfron-Benjamin A, Abdul L, Simpore J, et al. Self-collected vaginal sampling for the detection of genital human papillomavirus (HPV) using careHPV among Ghanaian women. *BMC Womens Health.* (2017) 17:86. doi: 10.1186/s12905-017-0448-1

136. Oranratanaphan S, Termrungruanglert W, Khemapech N. Acceptability of self-sampling HPV testing among thai women for cervical cancer screening. *Asian Pacific J Cancer Prev.* (2014) 15:7437–41. doi: 10.7314/APJCP.2014.15.17.7437

137. Pantano N de P, Fregnani JH, Resende JCP, Zeferino LC, Fonseca B de O, Antoniazzi M, et al. Evaluation of human papillomavirus self-collection offered by community health workers at home visits among under-screened women in Brazil. *J Med Screen.* (2020) 28:163–8. doi: 10.1177/0969141320941056

138. Penaranda E, Molokwu J, Flores S, Byrd T, Brown L, Shokar N. Women's Attitudes toward cervicovaginal self-sampling for high-risk HPV infection on the US-Mexico Border. *J Low Genit Tract Dis.* (2015) 19:323–8. doi:10.1097/LGT.00000000000134

139. Reiter PL, Shoben AB, McDonough D, Ruffin MT, Steinau M, Unger ER, et al. Results of a pilot study of a mail-based human papillomavirus self-testing program for underscreened women from Appalachian Ohio. *Sex Transm Dis.* (2019) 46:185–90. doi: 10.1097/OLQ.000000000000944

140. Rosenbaum AJ, Gage JC, Alfaro KM, Ditzian LR, Maza M, Scarinci IC, et al. Acceptability of self-collected vs. provider-collected sampling for HPV DNA testing among women in rural El Salvador. *Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet.* (2014) 126:156–60. doi: 10.1016/j.ijgo.2014.02.026

141. Sechi I, Elvezia CC, Martinelli M, Muresu N, Castriciano S, Sotgiu G, et al. Comparison of different self-sampling devices for molecular detection of human papillomavirus (HPV) and other sexually transmitted infections (STIs): a pilot study. *Healthc.* (2022) 10:459. doi: 10.3390/healthcare1 0030459

142. Sellors JW, Lorincz AT, Mahony JB, Mielzynska I, Lytwyn A, Roth P, et al. Comparison of self-collected vaginal, vulvar and urine samples with physiciancollected cervical samples for human papillomavirus testing to detect high-grade squamous intraepithelial lesions. *C Can Med Assoc J.* (2000) 163:513–8.

143. Shin HY, Lee B, Hwang SH, Lee DO, Sung NY, Park JY, et al. Evaluation of satisfaction with three different cervical cancer screening modalities: cliniciancollected pap test vs. HPV test by self-sampling vs HPV test by urine sampling. *J Gynecol Oncol.* (2019) 30:e76. doi: 10.3802/jgo.2019.30.e76

144. Silva J, Cerqueira F, Medeiros R. Acceptability of self-sampling in Portuguese women: The good, the bad or the ugly? *Sex Health.* (2017) 14:298–300. doi: 10.1071/SH16077

145. Surriabre P, Allende G, Prado M, Cáceres L, Bellot D, Torrico A, et al. Self-sampling for human papillomavirus DNA detection: a preliminary study of compliance and feasibility in BOLIVIA. *BMC Womens Health.* (2017) 17:135. doi: 10.1186/s12905-017-0490-z

146. Swanson M, Ibrahim S, Blat C, Oketch S, Olwanda E, Maloba M, et al. Evaluating a community-based cervical cancer screening strategy in Western Kenya: a descriptive study. *BMC Womens Health.* (2018) 18:116. doi: 10.1186/s12905-018-0586-0

147. Szarewski A, Cadman L, Mallett S, Austin J, Londesborough P, Waller J, et al. Human papillomavirus testing by self-sampling: assessment of accuracy in an unsupervised clinical setting. *J Med Screen.* (2007) 14:34–42. doi: 10.1258/096914107780154486

148. Taku O, Meiring TL, Gustavsson I, Phohlo K, Garcia-Jardon M, Mbulawa ZZA, et al. Acceptability of self- collection for human papillomavirus detection in the Eastern Cape, South Africa. *PLoS ONE.* (2020) 15:e0241781. doi: 10.1371/journal.pone.0241781

149. Tan CS, Hamzah ND, Ismail ZHF, Jerip AR, Kipli M. Self-sampling in human papillomavirus screening during and post-Covid-19 pandemic. *Med J Malaysia.* (2021) 76:298–303.

150. Tiiti TA, Mashishi TL, Nkwinika VV, Molefi KA, Benoy I, Bogers J, et al. Evaluation of ilex selfcerv for detection of high-risk human papillomavirus infection in gynecology clinic attendees at a tertiary hospital in south africa. *J Clin Med.* (2021) 10:4817. doi: 10.3390/jcm10214817

151. Torrado-García LM, Martínez-Vega RA, Rincon-Orozco B. A. Novel strategy for cervical cancer prevention using cervical-vaginal self-collected samples shows high acceptability in women living in low-income conditions from Bucaramanga, Colombia. *Int J Womens Health.* (2020) 12:1197–204. doi: 10.2147/IJWH.S265130

152. Torres KL, Mariño JM, Pires Rocha DA, de Mello MB, de Melo Farah HH, Reis RDS, et al. Self-sampling coupled to the detection of HPV 16 and 18 E6 protein: a promising option for detection of cervical malignancies in remote areas. *PLoS ONE*. (2018) 13:e0201262. doi: 10.1371/journal.pone.0201262

153. Trope LA, Chumworathayi B, Blumenthal PD. Feasibility of communitybased careHPV for cervical cancer prevention in rural Thailand. *J Low Genit Tract Dis.* (2013) 17:315–9. doi: 10.1097/LGT.0b013e31826b7b70

154. Van Baars R, Bosgraaf RP, Ter Harmsel BWA, Melchers WJG, Quint WGV, Bekkers RLM. Dry storage and transport of a cervicovaginal selfsample by use of the Evalyn Brush, providing reliable human papillomavirus detection combined with comfort for women. *J Clin Microbiol.* (2012) 50:3937– 43. doi: 10.1128/JCM.01506-12

155. Virtanen A, Nieminen P, Niironen M, Luostarinen T, Anttila A. Selfsampling experiences among non-attendees to cervical screening. *Gynecol Oncol.* (2014) 135:487–94. doi: 10.1016/j.ygyno.2014.09.019

156. Wang R, Lee K, Gaydos CA, Anderson J, Keller J, Coleman J. Performance and acceptability of self-collected human papillomavirus testing among women living with HIV. *Int J Infect Dis.* (2020) 99:452–7. doi: 10.1016/j.ijid.2020.07.047

157. Wedisinghe L, Sasieni P, Currie H, Baxter G. The impact of offering multiple cervical screening options to women whose screening was overdue in Dumfries and Galloway, Scotland. *Prev Med reports.* (2022) 29:101947. doi: 10.1016/j.pmedr.2022.101947

158. Wikström I, Stenvall H, Wilander E. Attitudes to self-sampling of vaginal smear for human papilloma virus analysis among women not attending organized cytological screening. *Acta Obstet Gynecol Scand.* (2007) 86:720–5. doi: 10.1080/00016340701303747

159. Rachel L. Winer, Angela A Gonzales, Carolyn J Noonan, Stephen L Cherne, Dedra S Buchwald C to INCO (CINCO). Assessing acceptability of self-sampling kits, prevalence, and risk factors for human papillomavirus infection in American Indian Women. *J Commun Health.* (2016) 4:1049–61. doi: 10.1007/s10900-016-0189-3

160. Wong EL-Y, Cheung AW-L, Wong AY-K, Chan PK-S. Acceptability and feasibility of HPV self-sampling as an alternative primary cervical cancer screening in under-screened population groups: a cross-sectional study. *Int J Environ Res Public Health.* (2020) 17:6245. doi: 10.3390/ijerph17176245

161. Zehbe I, Moeller H, Severini A, Weaver B, Escott N, Bell C, et al. Feasibility of self-sampling and human papillomavirus testing for cervical cancer screening in First nation women from Northwest Ontario, Canada: a pilot study. *BMJ Open.* (2011) 1:e000030. doi: 10.1136/bmjopen-2010-000030

162. Castle PE, Rausa A, Walls T, Gravitt PE, Partridge EE, Olivo V, et al. Comparative community outreach to increase cervical cancer screening in the Mississippi Delta. *Prev Med.* (2011) 52:452–5. doi: 10.1016/j.ypmed.2011.03.018

163. Elfström KM, Sundström K, Andersson S, Bzhalava Z, Carlsten Thor A, Gzoul Z, et al. increasing participation in cervical screening by targeting long-term nonattenders: randomized health services study. *Int J Cancer.* (2019) 145:3033–39. doi: 10.1002/ijc.32374

164. Enerly E, Bonde J, Schee K, Pedersen H, Lönnberg S, Nygård M. Self-sampling for human papillomavirus testing among non-attenders increases attendance to the norwegian cervical cancer screening programme. *PLoS ONE.* (2016) 11:e0151978. doi: 10.1371/journal.pone.0151978

165. Abdullah NN, Daud S, Wang SM, Mahmud Z, Mohd Kornain NK, Al-Kubaisy W. Human papilloma virus (HPV) self-sampling: do women accept it? *J Obstet Gynaecol.* (2018) 38:402–7. doi: 10.1080/01443615.2017.1379061

166. Avian A, Clemente N, Mauro E, Isidoro E, Di Napoli M, Dudine S, et al. Clinical validation of full HR-HPV genotyping HPV Selfy assay according

to the international guidelines for HPV test requirements for cervical cancer screening on clinician-collected and self-collected samples. J Transl Med. (2022) 20:231. doi: 10.1186/s12967-022-03383-x

167. Chaw L, Lee SHF. Ja'afar NIH, Lim E, Sharbawi R. Reasons for non-attendance to cervical cancer screening and acceptability of HPV selfsampling among Bruneian women: a crosssectional study. *PLoS ONE.* (2022) 17:e026221. doi: 10.1371/journal.pone.0262213

168. Esber A, McRee A-L, Norris Turner A, Phuka J, Norris A. Factors influencing Malawian women's willingness to self-collect samples for human papillomavirus testing. *J Fam Plan Reprod Heal Care.* (2017) 43:135–41. doi: 10.1136/jfprhc-2015-101305

169. Rodríguez GMG, Ornelas OAO, Vázquez HMG, Esquivel DSS, Champion JD. Attitude and acceptability of the self-sampling in HPV carrier women. *Hisp Heal Care Int.* (2022) 20:40–3. doi: 10.1177/15404153211001577

170. Ngu SF, Lau LSK Li J, Wong GYC, Cheung ANY, Ngan HYS, et al. Human papillomavirus self-sampling for primary cervical cancer screening in underscreened women in Hong Kong during the COVID-19 pandemic. *Int J Environ Res Public Health*. (2022) 19:2650. doi: 10.3390/ijerph19052610

171. Sormani J, Kenfack B, Wisniak A, Datchoua AM, Makajio SL, Schmidt NC, et al. Exploring factors associated with patients who prefer clinician-sampling to HPV self-sampling: a study conducted in a low-resource setting. *Int J Environ Res Public Health.* (2022) 19:54. doi: 10.20944/preprints202111.0249.v1

172. World Health Organization. WHO Guideline on Self-Care Interventions for Health and Well Being, Vol 156. Geneva: World Health Organization (2021).

173. Verdoodt F, Jentschke M, Hillemanns P, Racey CS, Snijders PJF, Arbyn M. Reaching women who do not participate in the regular cervical cancer screening programme by offering self-sampling kits: a systematic review and meta-analysis of randomised trials. *Eur J Cancer.* (2015) 51:2375–85. doi: 10.1016/j.ejca.2015.07.006

174. Arbyn M, Verdoodt F, Snijders PJF, Verhoef VMJ, Suonio E, Dillner L, et al. Accuracy of human papillomavirus testing on self-collected vs. clinician-collected samples: a meta-analysis. *Lancet Oncol.* (2014) 15:172–83. doi: 10.1016/S1470-2045(13)70570-9

175. Montealegre JR, Landgren RM, Anderson ML, Hoxhaj S, Williams S, Robinson DJ, et al. Acceptability of self-sample human papillomavirus testing among medically underserved women visiting the emergency department. *Gynecol Oncol.* (2015) 138:317–22. doi: 10.1016/j.ygyno.2015.05.028

176. Reiter PL, McRee A-L. Cervical cancer screening (Pap testing) behaviours and acceptability of human papillomavirus self-testing among lesbian and bisexual women aged 21-26 years in the USA. *J Fam Plan Reprod Heal care*. (2015) 41:259–64. doi: 10.1136/jfprhc-2014-101004

177. Lozar T, Nagvekar R, Racheal CR, Mandishora SD, Megan UI, Fitzpatrick B. Cervical cancer screening postpandemic: self-sampling opportunities to accelerate the elimination of cervical cancer. *Int J Women's Health.* (2021) 13:841–59. doi: 10.2147/IJWH.S288376

178. Elit L, Krzyzanowska M, Saskin R, Barbera L, Razzaq A, Lofters A, et al. Sociodemographic factors associated with cervical cancer screening and follow-up of abnormal results. *Can Fam Phys.* (2012) 58:e22–31.

179. Eaker S, Adami HO, Sparén P. Reasons women do not attend screening for cervical cancer: a population-based study in Sweden. *Prev Med.* (2001) 32:361–76. doi: 10.1006/pmed.2001.0844

180. Dareng EO, Jedy-Agba E, Bamisaye P, Isa Modibbo F, Oyeneyin LO, Adewole AS, et al. Influence of spirituality and modesty on acceptance of self-sampling for cervical cancer screening. *PLoS One.* (2015) 10:e0141679. doi: 10.1371/journal.pone.0141679

181. Amir SM, Idris IB, Yusoff HM. The acceptance of human papillomavirus self-sampling test among Muslim women:a systematic review. Asian Pacific J Cancer Prev. (2022) 23:767–74. doi: 10.31557/APJCP.2022.23.3.767

182. Zehbe I, Wakewich P, King AD, Morrisseau K, Tuck C. Self-administered vs. provider-directed sampling in the Anishinaabek cervical cancer screening study (ACCSS): a qualitative investigation with Canadian first nations wome. *BMJ Open*. (2017) 7:e017384. doi: 10.1136/bmjopen-2017-017384

183. Marshall S, Vahabi M, Lofters A. Acceptability, feasibility and uptake of HPV self-sampling among immigrant minority women: a focused literature review. *J Immigr Min Health.* (2019) 21:1380–93. doi: 10.1007/s10903-018-0846-y