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Introduction: Dynamic functional network connectivity (dFNC) analysis of

resting state functional magnetic resonance imaging data has yielded insights

into many neurological and neuropsychiatric disorders. A common dFNC

analysis approach uses hard clustering methods like k-means clustering to

assign samples to states that summarize network dynamics. However, hard

clustering methods obscure network dynamics by assuming (1) that all samples

within a cluster are equally like their assigned centroids and (2) that samples

closer to one another in the data space than to their centroids are well-

represented by their centroids. In addition, it can be hard to compare subjects,

as in some cases an individual may not manifest a state strongly enough to enter

a hard cluster. Approaches that allow a dimensional approach to connectivity

patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present

an explainable fuzzy clustering framework by combining fuzzy c-means

clustering with several explainability metrics and novel summary features.

Methods: We apply our framework for schizophrenia (SZ) default mode network

analysis. Namely, we extract dFNC from individuals with SZ and controls, identify

5 dFNC states, and characterize the dFNC features most crucial to those states

with a new perturbation-based clustering explainability approach. We then

extract several features typically used in hard clustering and further present a

variety of unique features specially designed for use with fuzzy clustering to

quantify state dynamics. We examine differences in those features between

individuals with SZ and controls and further search for relationships between

those features and SZ symptom severity.

Results: Importantly, we find that individuals with SZ spendmore time in states of

moderate anticorrelation between the anterior and posterior cingulate cortices

and strong anticorrelation between the precuneus and anterior cingulate cortex.

We further find that individuals with SZ tend to transition more rapidly than

controls between low-magnitude and high-magnitude dFNC states.
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Conclusion: We present a novel dFNC analysis framework and use it to identify

effects of SZ upon network dynamics. Given the ease of implementing our

framework and its enhanced insight into network dynamics, it has great

potential for use in future dFNC studies.
KEYWORDS
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1 Introduction

Resting state functional magnetic resonance imaging (rs-fMRI)

dynamic functional network connectivity (dFNC) data has

historically been used to give insight into a variety of neurological

(1) and neuropsychiatric disorders (2–6) and cognitive functions

(7, 8). A common dFNC analysis approach involves applying a hard

clustering approach (e.g., k-means clustering) to assign dFNC

samples to a set of dynamical states that are supposedly

representative of the overall time series (2, 9–15). Features can

then be extracted based on the identified time-resolved states that

can give insight into various aspects of the state dynamics. This

method has been widely applied but makes a critical assumption

that could obscure useful disease-related dynamics. Namely, it

assumes that all samples assigned to a state equally belong to a

state. This is problematic given that samples very near to one

another in the data space may be assigned to two distant cluster

centroids. A few studies have presented fuzzy clustering approaches

that indicate the degree to which samples belong to different states,

but this area is still highly understudied (11, 15). Although

explainability methods have been developed specifically to help

characterize identified states, the use of hard clustering methods can

make explainability difficult. In this study, we present a novel

explainable fuzzy clustering framework for fMRI dFNC that

identifies fuzzy states and assigns samples a probability of

belonging to each state. We further present novel dynamical

features that use the output probabilities and demonstrate their

utility by applying them to identify differences in the dynamics of

default mode network (DMN) activity between individuals with

schizophrenia (SZs) and healthy controls (HCs).

Several modalities have been used for insight into the

effects of neurological and neuropsychiatric disorders upon

brain dynamics. These include electroencephalography (EEG),

magnetoencephalography (MEG), and fMRI. All three modalities –

EEG (16–18), MEG (19), and fMRI (13, 20–24) - have been used

extensively for SZ analysis. EEG and MEG capture much higher

resolution temporal information. However, localizing the region of

the brain associated with MEG and EEG signals can be challenging. In

contrast, fMRI has much higher spatial resolution at a lower temporal

resolution relative to EEG and fMRI. A select group of studies have also

combined multimodal EEG, MEG, or fMRI data for insight into
02
disorders (9). However, in general, fMRI is more often used in SZ

analysis than the other modalities. Within fMRI analysis, both task (25,

26) and resting state (10, 12, 13, 27–32) data are frequently used.

However, resting state data offers several advantages. Specifically, the

majority of brain activity is spontaneous (i.e., better captured by resting

state), so resting state analysis provides an avenue to understand how

the brain operates under most circumstances (32). Additionally, task

performance in healthy controls relative to individuals with

schizophrenia often varies greatly, introducing a potential

confounder into any neuroimaging analyses (32).

Many studies have analyzed resting state fMRI data within the

context of SZ and other neuropsychiatric disorders. For example,

studies have used independent components (ICs) (24), spectral

features (9, 33), and functional network connectivity. Functional

network connectivity offers a unique benefit in that it provides

insights into the interaction of different brain regions and networks.

Early in the use of rs-fMRI functional network connectivity, it was

more common to analyze the correlation between brain regions

across a whole recording. This approach is referred to as static

functional network connectivity (sFNC) (34). Although sFNC had

widespread use, a number of studies found that dFNC (i.e.,

functional connectivity captured in windows over time) offered

insights into brain interactions that would otherwise be obscured by

sFNC analysis (32, 34). Both sFNC and dFNC have been used to

gain insight into a variety of neurological and neuropsychiatric

disorders and cognitive functions, including Alzheimer’s disease (1,

35, 36), major depressive disorder (3–6), schizophrenia (2, 37),

cognition (7), and spatial orientation (8). However, dFNC offers

greater opportunities to learn about the brain than sFNC. As

discussed in (32, 34), early studies extracted functional network

connectivity from time-series extracted using one seed per brain

region, multiple seeds from a given region of interest (ROI),

multiple seeds from subregions of multiple ROIs, and seeds from

whole-brain ROIs. However, in recent years, the fully automated,

group independent component analysis (ICA)-based Neuromark

pipeline has been developed as a approach for extracting time-series

used to calculate functional network connectivity (38). It yields

components that are reproducible across datasets and studies and

contains components from a variety of brain networks and

subregions. Furthermore, it has been used in many studies (1, 3,

24, 35–42).
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Multiple approaches have been used to analyze dFNC extracted

using the NeuroMark pipeline or other approaches. Many studies

have used classification approaches (21, 22, 43) or a combination of

clustering and classification (39). However, a described in (32), a

many studies have used clustering approaches (9–15). These

clustering approaches involve assigning dFNC samples to states

that summarize the dFNC time-series. Features can then be

extracted to quantify various aspects of the state time-series. By

far the most common clustering approach used for identifying

states of dFNC activity is k-means clustering (44). K-means

clustering involves randomly initializing cluster centroids,

calculating the average of the samples nearest each centroid,

updating the cluster centroids to be equal to the average of the

nearest samples, and iteratively repeating the process up to the

point that the cluster centroid stops moving at each iteration above

a pre-defined threshold. The main advantage of k-means clustering

for use with dFNC is that it is easy to implement using existing

libraries (45). However, while k-means clustering is widely used, it

does have some disadvantages. First, it can yield low quality clusters.

Previous studies have proposed approaches to try to address this

problem (14). Additionally, it does not assign each sample a

probability of belonging to each cluster centroid or resting-state,

which involves an implicit assumption in subsequent analysis that

the identified states are able to adequately summarize the dFNC

time-series (46). This is a big assumption given that samples very

near one another in the data space can be assigned to completely

different states. In addition, in the hard clustering approach it can

be hard to compare individuals as it is likely that some individuals

may never enter a given state strongly enough to enter the cluster.
Frontiers in Psychiatry 03
As such, a simple fuzzy clustering-based approach could go a long

way towards helping future studies in the field of dFNC clustering to

uncover new aspects of disorder-related brain dynamics by better

summarizing brain activity.

As the field of rs-fMRI FNC clustering has developed, a few

studies have introduced explainability approaches with the goal of

helping characterize the differences between identified states (7, 23,

47). In contrast to earlier efforts involving statistical hypothesis

testing (38), these methods quantify the importance of FNC features

in a manner that acknowledges the multi-dimensional nature of the

underlying clustering. However, these methods have an important

shortcoming that arises from their use with hard clustering

methods. Specifically, they perturb FNC features and examine the

sensitivity of the underlying clusters to perturbation. They quantify

the effect of this perturbation upon the clustering by calculating the

percentage of samples that completely switch clusters. Given that

only a small minority of samples switch clusters following

perturbation, it is safer to say that the methods quantify the

effects of perturbation upon that subset of samples rather than

upon the overall clustering. Similar to how a fuzzy clustering

approach could help future studies better summarize brain

activity and uncover new aspects of disorders, fuzzy clustering

could also contribute to the development of explainability

approaches that are better able to quantify the effects

of perturbation.

In this study, we present fuzzy c-means clustering (48) as an

approach for the identification of fMRI dFNC fuzzy states. Fuzzy c-

means has been used widely across application areas like emotion

recognition from speech data (49), customer segmentation (50), and
FIGURE 1

Overview of Methods. Red dots indicate each step of the methods. (1) We recorded rs-fMRI data from HCs and SZs. (2) We extracted dFNC data. (3)
We performed fuzzy c-means clustering, identifying 5 states. (4) We applied several explainability approaches for insight into the dFNC features
characterizing the states. (5, 6) We extracted dynamical and stability features. (7) We performed t-tests and trained interpretable machine learning
models for insight into the features that differed between HCs and SZs. (8) We performed linear regression analyses controlling for age and gender
to identify relationships between symptom severity and dynamical and stability features.
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brain image segmentation (51). Furthermore, fuzzy c-means is

simple to use given its inclusion in several publicly available

Python packages (52) and MATLAB (53). As such, it has the

potential to be widely used within the domain of FNC clustering.

Our approach outputs a probability that each sample belongs to

each fuzzy state. After performing clustering, we present a pair of

new explainability approaches to characterize the identified states,

comparing them to an existing approach (47). We then present a

variety of novel dynamical and stability features that highlight

different aspects of the fuzzy state time-series while also showing

that our approach is compatible with dynamical features that have

been used in previous hard clustering studies. We further show how

the features can be used to differentiate between healthy controls

and individuals with schizophrenia in the default mode network

(DMN), a network that has previously been associated with SZ (10,

12, 13, 27–32), and identify relationships between the features and

SZ and SZ symptom severity.
2 Methods

In this section, we describe and discuss our approach for the

study. Figure 1 presents an overview of our approach (1). We used a

pre-existing rs-fMRI dataset composed of individuals with

schizophrenia (SZs) and healthy controls (HCs). (2) We

preprocessed the data and extracted dFNC. (3) We applied fuzzy

c-means clustering to identify 5 fuzzy states. (4) We sought to

identify the important dFNC features for each state by applying and

comparing the results for two global clustering explainability

methods. (5) We next extracted a number of pre-existing and

novel dynamical features to summarize different aspects of the

identified states. (6) We applied a novel local cluster explainability

approach for insight into the stability of study participants to the

perturbation of specific dFNC features. (7) To identify SZ-related

differences in the extracted dynamical and stability features, we

conducted statistical analyses and trained a series of logistic

regression classifiers with elastic net regularization (LR-ENR). (8)

Lastly, we performed statistical analyses to determine whether the

dynamical and stability features were related to symptom severity.

For the sake of reproducibility, our code can be found at: https://

github.com/cae67/Fuzzy_Clustering/.
2.1 Description of dataset

In this study, we used the Functional Imaging Biomedical

Informatics Research Network (FBIRN) dataset, consisting of rs-

fMRI recordings from 151 SZs and 160 HCs (54). Participant
Frontiers in Psychiatry 04
demographics are shown in Table 1. The dataset has been used in

many studies, both related to fMRI dFNC clustering and classification

(21, 24, 43, 47). In addition to neuroimaging data, positive and

negative symptom severity scores from the Positive and Negative

Syndrome Scale (PANSS) (55). Positive symptoms of SZ include

hallucinations, delusions, and bizarre behavior. Negative symptoms

include alogia, apathy, affective flattening, and asociality (28). The

dataset was collected at 7 sites: the University of California at Los

Angeles, the University of California at San Francisco, the University

of California at Irvine, the University of Iowa, the University of

Minnesota, the University of New Mexico, and Duke University/the

University of North Carolina at Chapel Hill. Data collection

procedures were approved by the institutional review boards of

each center, and all study participants gave written informed

consent. One site used a 3T GE MR750 scanner, and 6 sites used

3T Siemens TIM Trio Scanners. Data was collected using a T2*-

weighted AC-PC aligned EPI sequence (TE = 30ms, TR = 2s, slice gap

= 1mm, flip angle = 77°, voxel size = 3.4 x 3.4 x 3.4 mm3, acquisition

time = 5 min and 38s, and number of frames = 162).
2.2 Description of data preprocessing

Prior to preprocessing, the first 5 mock scans were removed.

Statistical parametric mapping (SPM12, https://www.fil.ion.ucl.ac.uk/

spm/) was used for preprocessing, and head motion was corrected

using rigid body motion correction. The data was spatially

normalized to an echo-planar imaging template in the standard

Montreal Neurological Institute (MNI) space. Following resampling

to 3x3x3 mm3, a Gaussian kernel with a 6mm full width at half

maximum was used to smooth the data. The fully automated

Neuromark Pipeline of the Group ICA of fMRI Toolbox (GIFT,

http://trendscenter.org/software/gift) involved the use of spatially

constrained ICA to extract corresponding components while

adaptive to individual datasets. In our case, we used the

neuromark_fMRI_1.0 template to extract 53 independent

components (ICs) with peak activations in the gray matter of

various brain networks. Seven of the ICs were associated with the

DMN, which has been associated with SZ in multiple studies (10, 13,

28), and we used those components in this study. The 7 ICs included

3 precuneus (PCN) (56), 2 anterior cingulate cortex (ACC) (57), and

2 posterior cingulate cortex (PCC) (58). After IC extraction, dFNC

was estimated using Pearson’s correlation with a sliding tapered

window. The window consisted of a rectangle with a 40-second step

size convolved with a Gaussian (s=3). The window size parameter

plays an important role in study outcomes. A shorter window size

increases dynamics but can increase noise and susceptibility to

artifacts, while longer window sizes decrease dynamics and are
TABLE 1 Description of Study Participants.

Number Age Gender
(M/F)

PANSS
(positive)

PANSS
(negative)

SZ 151 38.06 ± 11.30 115/36 15.32 ± 04.92 14.32 ± 05.42

HC 160 37.04 ± 10.68 115/45 not applicable not applicable
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more robust to artifacts (59). While a number of window sizes have

been utilized in previous studies, a 40-second size is highly common

(13, 23, 37, 60). Additionally, a Gaussian with s=3 is also highly

common (3, 13, 36, 37). The dFNC extraction resulted in a dataset

composed of 21 dFNC features and 124 time steps per participant.

For the remainder of this paper, correlation between two brain

regions is abbreviated using the pattern of IC1/IC2 (e.g., PCC1/

ACC2), where IC1/IC2 is equivalent to IC2/IC1.
2.3 Description of clustering approach

After extracting dFNC, we concatenated all dFNC time steps

across samples and applied fuzzy c-means clustering (48). Fuzzy c-

means clustering is comparable to k-means clustering, but unlike k-

means clustering, fuzzy c-means assigns each sample a probability of

belonging to a given cluster. We used the Python package scikit-fuzzy

in our implementation (52) and optimized the random seed used for

initialization and the fuzziness parameter, m, based on the fuzzy

partition coefficient (61). It is relatively common to set the number of

clusters to a number identified in previous studies (62). As such, we

used 5 clusters to more easily relate our findings to previous studies

(13, 62) of SZ dFNC data. Further details on our cluster parameter

optimization can be found in the Supplementary Materials.
2.4 Description of
explainability approaches

We used three global explainability approaches for insight into

the relative importance of each dFNC feature to the identified

fuzzy states.

2.4.1 Global permutation percent change
feature importance

We applied Global Permutation Percent Change (G2PC)

feature importance (47), which has been used in several

neuroimaging studies (7, 23). G2PC extends permutation feature

importance (63, 64) to the clustering domain, wherein individual

features are permuted and the features that cause the greatest

percentage of samples that switch clusters are considered most

important. Further details on G2PC can be found in the

Supplementary Materials.
2.4.2 Permutation-based distribution divergence
and G2PC comparison

We used two variations of a novel approach called,

“Permutation-based Distribution Divergence (P2D)”. P2D has

global (GP2D) and local (LP2D) variations (65). P2D is similar to

G2PC. However, rather than computing the percent of samples that

switch clusters after permutation, P2D involves calculating the

Kullback-Leibler divergence (KLD) between the probabilities of a

sample belonging to each cluster before versus after permutation.

For GP2D, the median and total KLD across samples were

calculated, and the rankings of GP2D feature importance were
Frontiers in Psychiatry 05
compared with the G2PC feature importance rankings (66–68). For

our analysis with LP2D, we (1) compared the percentage of samples

with non-zero KLD values with the G2PC results to see if P2D was

more sensitive than G2PC and (2) compared HC and SZ KLD

values to identify differences in cluster stability. Further details on

our P2D and comparison analyses can be found in the

Supplementary Materials.
2.5 Description of dynamical
feature extraction

After clustering all of the samples, we extracted features to

quantify different aspects of the dynamics of the transition to and

from the identified fuzzy states. We used two types of features that

have been frequently used in hard cluster-based studies (1, 5, 36, 37)

and developed a number of new features uniquely suited for use

with fuzzy clustering that give new insight into state dynamics. For

traditional hard cluster-based features, we assigned each sample to

the cluster for which it had the highest probability and extracted the

occupancy rate (OCR, i.e., the percent of time steps spent in a state

by a participant) and number of state transitions (NST). For novel

fuzzy cluster-based features, we extracted the (1) Kullback-Leibler

divergence (KLD) across states and calculated a variety of

descriptive statistics summarizing the KLD (5 features total). (2)

We also calculated Shannon entropy over time for each fuzzy state

(1 feature per state, so 5 features total). (3) We calculated 3

descriptive statistics for probabilities for each state (15 features

total). We calculated (4) the cumulative change between

consecutive time points for each state (5 features total) and (5) a

measure of the uniformity of probabilities within each state (5

features total). We sought to use these features to understand the

effects of SZ upon the DMN dynamics, and statistical analyses using

the features will be described in subsequent sections. Further details

on each feature can be found in the Supplementary Materials.
2.6 Description of class-related
statistical analysis

We wanted to determine whether the fuzzy states that we

identified were related to SZ dynamics. As such, we performed a

series of two-tailed t-tests comparing the dynamical and LP2D

stability features belonging to SZs to those belonging to HCs. After

performing the t-tests, we performed separate FDR corrections on

the OCR features, correlation-based features, cumulative change

features, and LP2D-based features to reduce the likelihood of false

positive test results.
2.7 Description of LR-ENR classification-
based explainability analysis

Our statistical analysis indicated whether there were significant

differences in the extracted dynamical features between HCs and

SZs and gave insight into the effects of SZ upon DMN dynamics.
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However, we also wanted to determine how helpful the extracted

features could be for discriminating between HCs and SZs and gain

insight into the relative importance of each feature for the

classification. As such, we classified SZs and HCs using LR-ENR.

LR-ENR is a frequently used (13) interpretable machine learning

model. Its coefficients can be visualized for insight into the relative

importance of each feature included in the classification. In our

Scikit-Learn implementation (45), we feature-wise z-scored each

feature and then trained separate LR-ENR classifiers for the

traditional, non-uniformity + KLD + entropy, variance, mean,

range, correlation, cumulative difference, and LP2D features. We

used 10-fold nested cross-validation to optimize the ratio of L1 to

L2 normalization and the regularization strength. We lastly

calculated the mean and standard deviation of the area-under-

curve (AUC) of the receiver-operating-curve, sensitivity (SENS, i.e.,

true positive rate), and specificity (SPEC, i.e., true negative rate) for

the 10 folds corresponding to each set of dynamical features. Details

on our parameter optimization approach can be found in the

Supplementary Materials.
2.8 Description of symptom
severity analysis

Lastly, while our earlier analyses gave insight into differences in

DMN dynamics between SZs and HCs, we also wanted to determine

whether the fuzzy states we uncovered could be used for insight into

SZ symptom severity. As such, we performed ordinary least squares

regression using age, gender, one-hot encoded site data and the

negative PANSS score or age, gender, one-hot encoded site data, and

the positive PANSS score as independent variables and the dynamical

features as independent variables. We lastly applied FDR correction

for the OCR features, entropy features, correlation-based features,

cumulative change features, and LP2D-based features separately.
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3 Results

In this section, we describe the 5 fuzzy states that we identified

with our clustering approach. We then show the important dFNC

features identified using our global explainability analyses. After

characterizing the states and the dFNC features that differentiate

them, we examine whether there are differences in the dynamical

features and LP2D-based stability features between HCs and SZs

and whether the features are related to symptom severity.
3.1 Identifying 5 fuzzy states of
dFNC activity

As shown in Figure 2, we identified 5 distinct fuzzy states of

dFNC activity. All states had highly positive intra-ACC dFNC. State

0 had overall highly positive dFNC values. It had moderately highly

levels of positive ACC/PCN and ACC2/PCC dFNC. State 1 was

characterized as having highly negative ACC/PCN and ACC/PCC

dFNC, highly positive intra-network dFNC, and highly positive

PCC/PCN dFNC. Relative to the other states, state 1 had more

higher magnitude patterns of positive and negative dFNC. State 2

was the most poorly connected state, with relatively low values of

positive dFNC. However, PCN1/PCN3, PCN1/PCC1, and intra-

ACC had moderate positive values. Similar to state 1, state 3 had

highly predominantly negative, though lower magnitude, ACC/

PCN dFNC. State 3 also had higher magnitude positive intra-PCN

activity relative to states 2 and 4. It had very low intra-PCC and

PCC/ACC dFNC comparable to state 2. Additionally, PCC/PCN

and particularly PCC1/PCN were lower magnitude than every state

but state 2. Lastly, state 4 had lower magnitude intra-PCN and

ACC/PCN dFNC comparable to state 2. It had levels of intra-ACC

and intra-PCC dFNC comparable to states 0 and 1. It had

moderately positive PCC/ACC dFNC comparable to state 0 and

positive PCC/PCN dFNC comparable to states 0 and 1.
B

A

FIGURE 2

Fuzzy States and Example State Trajectories. (A) shows the centroids for each of the 5 fuzzy states that we identified. Each subpanel shares the same
color bar to the right of the panel for Fuzzy State 4. The ICs associated with each dFNC feature are arranged on the x- and y-axes and are grouped
based upon brain region (i.e., PCN, ACC, PCN). (B) shows example state trajectories for an SZ participant (left) and HC participant (right). The y-axis
indicates the probability of belonging to each state, and the different colors of lines correspond to the state numbers shown in the legends. Note the
variation in probability of belonging to each cluster.
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3.2 Identifying key dFNC features
differentiating each state and comparing
explainability approaches

Although we visually compared the centroids of the clusters that

we identified, the visual comparison did not address the relative

importance of each dFNC feature to the identified states in a

quantitative manner and did not consider the underlying

distribution of the samples in relation to the identified fuzzy

states. Figure 3 shows the results for our global explainability

analyses. G2PC, total GP2D, and median GP2D all identified

PCC2/PCN1 and PCC/PCN3 to be among the most important

dFNC features with the other features being of varying importance.

G2PC affected around 10% of samples. In contrast, mean LP2D

captured the effects of perturbation on 100% of samples.

Additionally, based on Kendall’s rank correlation between the

global feature importance of each method, there was significant

high-level agreement in the relative importance (i.e., importance

rank) of each dFNC feature across global approaches (e.g., the most

important features for one method tended to be among the most

important for the other methods). G2PC and total GP2D (p <

0.001) had a correlation coefficient of 0.65. G2PC and median

GP2D (p < 0.001) had a correlation coefficient of 0.53, and total

GP2D and median GP2D (p < 0.05) had a correlation coefficient of

0.39. Additionally, while G2PC and total GP2D tended to distribute

importance widely, median GP2D provided a much sparser

importance estimate.
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3.3 Identifying disorder-related differences
in dynamical and stability features

Figure 4 shows the results for our t-tests examining differences

in dynamical and LP2D stability features between HCs and SZs, and

Supplementary Figures 1-4 show boxplots of the dynamical features

for each class. Many features, though not the KLD features, had

statistically significant differences between groups. State 3 was of

reoccurring importance, as HCs had significantly higher entropy,

OCR, average probabilities, range in probabilities, and cumulative

difference values in state 3. Interestingly, SZs had greater non-

uniformity in their distribution of probabilities across states and

greater state 0 and state 1 OCRs and average probabilities. SZs also

had greater state 1 range in probabilities and state 0 cumulative

differences. Additionally, many state correlations displayed

significant differences between groups. HCs had higher state 0/1,

0/2, 1/2, and 1/4 correlations, and SZs had higher state 0/3 and 2/3

correlations. Lastly, SZs had higher levels of sensitivity to ACC1/

PCN1, ACC1/PCN3, and ACC2/PCN3 perturbation than HCs and

lower levels of sensitivity to PCC1/PCN2 perturbation than HCs.

Table 2 shows the LR-ENR performance results, and Figure 5

shows the LR-ENR explainability results. As might be expected,

given the t-test results, the Correlation, Average, Variance, NST +

OCR, and Range feature models had the highest AUC values. The

LP2D and Non-Uniformity + KLD + Entropy feature models had

near chance-level performance. The Correlation model had the

highest overall AUC. For SENS, the NST + OCR and Average
BA

FIGURE 4

Group-Level Statistical Comparison. (A, B) show the t-test results for the dynamical and LP2D stability features, respectively. In (A), the groups of
features we extracted are arranged from left to right, and dark black lines separate each group of features. In (B), results are arranged in the form of
a standard connectivity matrix for easier interpretation. Dashed lines separate domain pairs. Both panels are heatmaps showing the t-statistics for
each feature. The color bar for (A) is above the heatmap, and the color bar for (B) is to the right of the heatmap. Black and grey asterisks indicate
features with significant differences with and without FDR correction, respectively It should be noted that the t-tests were performed as HCs minus
SZs. As such, a negative t-statistic indicates that SZs had higher values for a particular feature than HCs.
FIGURE 3

Explainability Results. From left to right, the panels show the G2PC, LP2D, total GP2D, and median GP2D results. The color bar corresponding to
each panel is positioned to its right, and the ICs associated with each dFNC feature are arranged on the x- and y-axes and are grouped based upon
brain region (i.e., PCN, ACC, PCN). Total GP2D and median GP2D are scaled by their maximal value for easier interpretation.
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feature models performed highest, with Variance feature model

performing slightly lower. For SPEC, the Range, and Correlation,

and LP2D models performed highest. The model coefficients also

provided results highly consistent with the t-test results, exhibiting

similar directionality and relative magnitude of differences between

HCs and SZs.
3.4 Identifying relationship between
symptom severity and dynamical and
stability features

Interestingly, no stability features had significant relationships

with or without FDR correction with symptom severity when

accounting for age, gender, and study site, so we did not include

a figure detailing the results for that analysis. However, accounting

for age, gender, and study site, state 2 cumulative difference was

positively correlated with the negative PANSS score (p < 0.05) prior

to FDR correction.
4 Discussion

The goals of this study were (1) to present a framework for

dFNC state analysis that accounts for the inherent variability of data

within states and (2) provide additional insights into the effects of

SZ upon DMN dynamics. We identified 5 fuzzy states of DMN

activity, characterized the states using a novel explainability

approach, identified effects of SZ upon DMN dynamics and state

stability, and identified relationships between DMN dynamics and

symptom severity.

Interestingly, the centroids for the 5 fuzzy states that we

identified diverge greatly from those identified in previous studies

(13). Nevertheless, there were some overall similarities in dFNC

(13). Multiple states in (13) had highly positive intra-PCN dFNC

and highly positive PCN/PCC dFNC. In contrast to the clusters that

we identified, most of the centroids in (13) had negative intra-ACC

and intra-PCC dFNC, while our clusters had positive values.

Additionally, dFNC values seemed to be much more uniform in

our clusters, whereas those in (13) had much more variability of

dFNC values between independent components in each state.
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While not all of our dynamic and stability features were able to

obtain LR-ENR performance, comparable to the features extracted in

(13), mean AUC for the NST + OCR, correlation, average probability,

and variance features were comparable, which supports the utility of

our pipeline for identifying key class-specific differences in brain

dynamics. Importantly, HCs spent much more time in and had

higher average probabilities for a state characterized by moderately

negative ACC/PCN, moderately positive intra-PCN, and low

magnitude intra-PCC and ACC/PCC dFNC (state 3). As might be

expected given that they spent more time within that state, HCs also

had much higher variability within that state (i.e., higher levels of

variance, entropy, range in probabilities, and cumulative difference)

than SZs in the state. In contrast, SZs spent more time in a state with

highly negative ACC/PCN, moderately negative ACC/PCC dFNC,

highly positive intra-network dFNC, and highly positive PCC/PCN

dFNC (state 1). ACC/PCC activity was highly important to SZ

dynamics, as they lacked stability to perturbation of ACC/PCC

activity. Our findings of more negative or less positive ACC/PCC

dFNC in SZ fit with those of multiple studies. Many studies have

identified reduced or disrupted ACC/PCC dFNC in SZs (13, 30, 69,

70), and these differences could be related to reduced ACC and PCC

grey matter volume in SZs (71) or the disrupted anatomical distance

function found in SZ (72). State 1 also had higher intra-PCN activity

than state 3, which corroborates the findings of previous studies that

identified higher intra-PCN activity in SZs than HCs (31, 73).

Previous studies have also suggested that this overactivation of the

PCN could be a compensatory mechanism to reduce language

comprehension deficits found in SZ (73) or that the PCN in SZ

could be related to differentiating fantasy from reality (74) and that

overactivation tends to be related to increased symptom severity. SZs

also tended to be less stable to ACC/PCN perturbation, whereas HCs

tended to be less stable than SZs to PCC/PCN perturbation. These

findings paired with a visual comparison of state centroids indicates

that strongly negative ACC/PCN activity and strongly positive PCC/

PCN activity were important for identifying SZs. Previous studies

have found that the PCN strongly inhibits the ACC, which

corroborates our finding of strongly negative ACC/PCN activity

(75). Although many DMN studies agree with our finding that SZs

spend more time in a state with more positive connectivity (31, 76)

(i.e., PCN/PCN, PCC/PCN, and PCC/PCC in state 1 versus state 3),

many previous studies have found SZ inter-domain connectivity to be
TABLE 2 LR-ENR Performance Results.

Features AUC SENS SPEC

NST + OCR 66.42 ± 06.88 64.52 ± 05.95 55.62 ± 08.93

Non-Uniformity + KLD + Entropy 58.76 ± 04.68 51.94 ± 07.56 59.06 ± 07.96

Average 68.12 ± 06.76 64.52 ± 06.12 59.69 ± 07.58

Variance 66.88 ± 06.53 63.55 ± 07.50 59.69 ± 07.05

Range 65.24 ± 06.39 43.87 ± 07.10 76.56 ± 08.18

Correlation 68.31 ± 04.48 59.03 ± 05.41 65.94 ± 06.32

Cumulative Difference 62.64 ± 08.64 56.45 ± 09.81 35.48 ± 15.34

LP2D 49.47 ± 03.57 35.48 ± 15.34 65.94 ± 15.96
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1165424
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ellis et al. 10.3389/fpsyt.2024.1165424
less than HCs (10). This difference in results is likely attributable to

the use of different regions within the DMN (10, 77), the use of

whole-brain analyses (77) that have been shown to obscure the

activity of the DMN (13, 23), or the use of multiple disorders that

can disguise the effects of SZ (12).

Though there are key differences, the insights that can be

obtained from our state correlation features are somewhat related

to the hiddenMarkov model state transition probabilities from (13).

While the features in (13) indicate the probability of transitioning

between a given state, our correlations features indicate how the

similarity of brain dynamics of study participants to each fuzzy state

vary over time and relate to multiple states simultaneously. SZs

spent more time in states 0 and 1, which had high-magnitude dFNC

with the exception of negative ACC/PCC and ACC/PCN in state 1.

Some findings related to our correlation features provide helpful

insight into SZ, though others are likely explained by aspects of our

results that were previously explained. Importantly, similarity to

state 0 and state 1 activity tended to be more strongly anticorrelated

in SZs, and given that SZs spend a significant amount of time in

each of those states, that would indicate that there was a large

amount of alternation between the states (i.e., changes in ACC/PCC

and ACC/PCN activity). Given that State 2 (low magnitude dFNC)

was the dominant state, stronger anticorrelations between states 0/2

and states 1/2 in SZs could be explained by their stronger similarity

to states 0 and 1 (i.e., being closer to a state of high magnitude dFNC

is being farther from a state of low magnitude dFNC) or by

increased transitions between states of high magnitude dFNC

(i.e., states 0 and 1) and a state of low magnitude dFNC (state 2).

Additionally, states 1 and 4 in SZs had stronger anticorrelation than

in HCs, which could be explained by the greater state 1 occupancy

of SZs, and SZs had more positive correlation between states 2 and

3, which could be explained by their relatively low similarity to each

state 3. Our findings of stronger anticorrelation between states 0

and 3 and states 2 and 3 in HCs could also be explained to indicate

that HCs transitioned more between states of moderate and high

magnitude dFNC or states of low and moderate dFNC. Together,
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these findings could suggest that SZs transition more rapidly from

low-magnitude dFNC states to high-magnitude states, while HCs

transition more gradually from low-magnitude to moderate-

magnitude to high-magnitude states. This could corroborate

findings of previous studies that have identified the effects of SZ

to involve more temporally localized changes in activity (22–24).

It is unfortunate that our KLD analysis did not uncover any

significant differences between SZs and HCs. Previous studies have

uncovered significant effects of SZ upon dynamics. However, our lack

of findings related to KLD features does not indicate that those

features would not provide useful insights within the context of other

applications. While we extracted a number of metrics to quantify

different aspects of the KLD, it is also possible that other metrics

might be applied to obtain other insights into state dynamics.

Several studies have previously identified relationships between

DMN dFNC features and symptom severity (12, 13). We found that

our use of the cumulative difference of fuzzy clustering probabilities

uncovered a key relationship with negative symptom severity.

Accounting for age, gender, and study site, the state 2 cumulative

difference was related to negative symptom severity. This indicates

that the more variation SZs had in their similarity to a state of low-

magnitude dFNC, the worse their symptoms may have been. Given

that previous studies have related DMN deactivation with SZ

symptom severity (78–80), it is necessary to be careful with this

conclusion as the result was only found prior to FDR correction.

While our findings hold great significance for the domain of SZ

analysis, our proposed explainable fuzzy clustering framework has

broader implications. Our use of fuzzy clustering enables insight not

only into inter-state dynamics but also into intra-state dynamics.

Furthermore, our approach accounts for the inherent variation in

how similar samples are to their assigned centroid and to samples

assigned to other centroids. These challenges will be present in any

dFNC clustering analysis. Our dynamical and stability features also

represent key advances, providing new insights into disorder-

related activity. Additionally, as we showed by thresholding the

state probabilities and calculating OCR and NST values, traditional
FIGURE 5

LR-ENR Explainability Results. Each panels shows the LR-ENR coefficient values for the groups of features indicated in their respective titles. Specific
feature names are indicated on the x-axis of each panel. Coefficient values are shown on the y-axis. Higher magnitude coefficients indicate greater
importance to their respective model. Because a label of 0 was used for SZs and a label of 1 was used for HCs, a negative coefficient value indicates
that an increase in that feature corresponded to an increase in likelihood of belonging to the SZ class.
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k-means-based features can still be extracted with fuzzy c-means.

That paired with the ease of implementation of fuzzy c-means using

existing Python packages (52) and MATLAB (53) means that our

approach could easily replace existing dFNC k-means clustering

approaches in future studies. The explainability methods that we

present also represent advances for the field, providing a

quantitative estimate of the importance of each dFNC feature to

the clustering. Relative to G2PC, our approach accounts for the

effects of perturbation upon 100% of samples. Additionally,

different metrics can be applied to the resulting KLD values to

gain different insights into the effects of perturbation or to produce

more or less sparse explanations (e.g., in total versus median KLD).
4.1 Limitations and future opportunities

Our study and approach have several limitations. Namely, we

used a 40-second window when calculating dFNC, and while studies

have shown that to be a reasonable window size (60), the window size

can affect the dynamics and findings. Additionally, it is possible that

our use of a feature extraction approach (clustering followed by

extracting dynamical and stability features) applied to the whole

dataset may have biased our LR-ENR performance results (81).

However, our methods did enable us to directly compare the utility

of our novel extracted features to those developed in (13). In future

studies, we intend to perform a more robust series of analyses on how

to best optimize the number of clusters for our application area.

However, in this study, we used 5 clusters for easier comparison to

(13). Fuzzy c-means has a couple limitations (1). Similar to k-means

clustering, it is affected by outliers. However, there are variations of

fuzzy c-means that are capable of addressing this problem (82).

Additionally, fuzzy c-means can be more computationally intensive

than k-means clustering (83). However, an approach similar to

iSparse k-means could be easily adapted to work with fuzzy c-

means (84). Lastly, future research directions might include

analyzing the reproducibility of our results across datasets similar

to (13) or analyzing multiple disorders in a single analysis like (4).
5 Conclusion

The analysis of rs-fMRI dFNC data using hard clustering

methods to identify states that summarize brain dynamics is a

common analysis approach that has provided insights into many

neurological and neuropsychiatric disorders. However, the use of

hard clustering approaches (e.g., k-means clustering) can obscure

key information related to how similar samples are to their

respective centroids or to samples assigned to other cluster

centroids. As such, the use of hard clustering could obscure

disorder-relevant dynamics. In this study, we present a novel

explainable fuzzy clustering framework. We present 7 new types

of dynamical features and sample stability-based features that

provide unique insights into brain dynamics while also

demonstrating how traditional dynamical features used in hard

clustering analyses can also be included in our analysis. Lastly, we

present two novel explainability approaches that help characterize
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the fuzzy states identified using our clustering approach. We

demonstrate our framework within the context of SZ DMN

analysis, identifying aberrant dynamics in SZs and uncovering

relationships between SZ symptom severity and a state of reduced

DMN correlation. Our framework provides greater insight into

disease dynamics than traditional hard clustering approaches.

Furthermore, it can be implemented with an ease comparable to

the standard k-means clustering approach using existing code

packages. As such, it represents an ideal method for future

widespread use in rs-fMRI dFNC analysis and could lead to an

improved understanding of the effects of many neurological and

neuropsychological disorders upon brain dynamics.
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