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Biological studies of clavine 
alkaloids targeting CNS receptors
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In contrast to well established psychedelics such as lysergic acid diethylamide 
(LSD) and psilocybin, ergot alkaloids of the clavine subclass have not been 
thoroughly investigated, in spite of their broad occurrence in nature and their 
well-established potent physiological effects. This study presents the current 
knowledge on the biological properties of clavine alkaloids, draws comparisons 
to the pharmacology of ergolines and related psychedelics, and demonstrates 
opportunities to develop novel structure–activity relationship (SAR) profiles. 
The latter could usher in a new stage of medicinal chemistry studies that enable 
an expansion of the currently structurally limited portfolio of psychedelic 
therapeutics.
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1 Introduction

Psychedelic compounds have been used by a variety of cultures for centuries due to their 
ability to elicit an altered state of consciousness, evoke transcendence, reopen the social reward 
learning critical period, and to heal a variety of health disorders (1). Traditionally used by 
communities in South America and Africa for religious ceremonies and rituals, these compounds 
share a potential for substance abuse but are now re-emerging as potential therapeutics in North 
America and Europe (2). The demand for psychedelic therapy (3) and psychedelic wellness 
retreats (4, 5) has seen tremendous growth in recent years, in part driven by microdosing 
applications and the combination with traditional psychotherapeutic counseling. Users 
experience an altered state that involves changes in sensory perception and mood and may 
undergo dissociation or a loss of self-identity (6–10). An ability to reset a social reward learning 
mechanism might be a shared feature across psychedelic drugs (11). Interestingly, some users 
claim that a psychedelic experience permanently changed their outlook on life and/or improved 
their quality of life long after the experience (12). Although these claims are subjective, there is 
increasing evidence that suggests psychedelics can be used to treat psychiatric diseases, including 
anxiety and major depressive disorders (13, 14).

Historically, scientific research into psychedelics and their therapeutic benefits has been slow 
and controversial. Classic psychedelics including lysergic acid diethylamide (LSD), psilocybin, 
dimethyltryptamine (DMT), and mescaline were used in the 1950s and 60s to treat alcoholism, 
addiction, anxiety, and trauma (Figure 1) (15, 16). LSD was also used to obtain a model for 
psychosis and schizophrenia due to its ability to elicit symptoms of these disorders at high doses 
(17–19). Unfortunately, there were growing concerns of abuse regarding psychedelics and these 
compounds became associated with counterculture. As a result, the Drug Abuse Control 
Amendments of 1965 and the Controlled Substances Act of 1970 were passed. These policies 
severely limited the availability of psychedelic compounds for researchers and clinical investigations 
into these substances were stalled. Twenty years later, many seminal and novel studies on 
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psychedelic compounds emerged. Among the earliest examples are Rick 
Strassman’s studies on the dose dependent effects of DMT in humans 
(20, 21). These promising psychiatric and clinical investigations of 

psychedelics have brought these compounds out of the dark ages (22). 
Indeed, this new wave of vibrant research into psychedelic compounds 
has ushered in a “psychedelic renaissance.” (23).

FIGURE 1

Structures of common ergot and clavine alkaloids. (A) Prototypical psychedelics, (B) pharmaceutical alkaloids, and (C) other studied clavine alkaloids.
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Considerable efforts have been expended to elucidate how 
psychedelics and structurally related compounds elicit their unique 
biological responses. LSD, an ergot alkaloid and a prototypical 
psychedelic, has strong interactions with aminergic G-protein-
coupled receptors (GPCRs), including serotonin, dopamine, 
histamine, adrenergic and muscarinic receptors (24–30). Recently, 
Lewis et al. screened LSD at 33 human aminergic GPCRs using a G 
protein dissociation BRET-based assay as part of a pharmacological 
profiling of a non-hallucinogenic LSD analog (vide infra) (31). The 
receptors were ranked by calculating a relative activity (log EMAX/
EC50), and the top-ranked GPCRs included all five of the 5-HT1 and 
the three 5-HT2 subtypes, 5-HT6, and the α2C adrenergic receptor. 
Dopamine receptors D2–4 and the human serotonin receptors 5-HT5A 
and 5-HT7A were among the top 15 hits. LSD showed pan-agonism at 
5-HT1 (EC50 = 0.62–2.38 nM) and 5-HT2 receptors (EC50 = 0.30–
0.66 nM). At the remaining serotonin receptors, LSD demonstrated 
potent agonism at 5-HT6 (EC50 = 0.13 nM), antagonism at 5-HT7A, 
and only partial agonism at 5-HT5A (EC50 = 2.33 nM, EMAX = 11% 
relative to 5-HT). LSD was an agonist at the D2, and D4 receptors 
(EC50 = 2.17 and 4.03 nM, respectively) and a partial agonist at D3 
(EC50 = 7.57 nM, EMAX = 75% relative to dopamine). Finally, LSD 
showed partial agonism at α2C (EC50 = 0.56 nM, EMAX = 80% relative to 
norepinephrine). Ergotamine is a natural ergot alkaloid and a 
precursor of LSD with a similar pharmacological profile to LSD but 
is not generally considered as psychoactive. Ergotamine differs from 
LSD by its cyclic peptide moiety appended to the amide sidechain. 
Peng et al. profiled ergotamine’s pharmacology and discovered that 
ergotamine has a good affinity (Ki < 10 μM) for ~70% of all human 
aminergic GPCRs (32). Furthermore, 15 of these receptors show low 
or sub-nanomolar affinity based on a radioligand competition 
binding assay. While ergotamine displayed agonism at 5-HT2A–C and 
most 5-HT1 receptors, it did not display agonist activity at the D3, α1B, 
α1D, or β2 receptors despite high affinities, suggesting it acts as an 
antagonist at these receptors. Finally, ergotamine was an inverse 
agonist at 5-HT7, and further profiling showed that it also has opioid 
receptor agonist activity.

Most targets of LSD and/or ergotamine have been implicated in 
numerous diseases and disorders. Many 5-HT1 receptors show 
promise for the treatment of anxiety, depression, PTSD, and migraines 
(33–38). 5-HT2A activation promotes neuronal growth and dendritic 
arbor complexity, and these outcomes are linked to improvements in 
mood and addiction disorders (39–41). The 5-HT2C receptor 
contributes to mood regulation and is a common target for treating 
obsessive compulsive disorder (OCD) and the mode of action of 
antipsychotics (42–46). This mechanism has also been implicated in 
treating addiction and obesity (47). Targeting 5-HT6 has been shown 
to improve learning and memory and may also treat cognitive 
impairment (48–50). Additionally, 5-HT7 receptors regulate 
inflammation across the body, and agonists are associated with anti-
inflammatory and neuroprotective effects (51–53). Finally, dopamine 
agonists are commonly used for treating involuntary movement 
disorders (54–56). However, activation of 5-HT2A is also believed to 
be  a primary mechanism in which psychedelics produce their 
psychoactive effects (57–63). In contrast, activation of 5-HT2B is 
associated with cardiac valvulopathy, and thus targeting this receptor 
is generally undesirable (64, 65). Therefore, many studies aim to 
discover psychedelic analogs that are selective for other receptors over 
5-HT2A/2B or demonstrate functional selectivity, in which a ligand 

stabilizes distinct receptor conformations that can selectively activate 
or deactivate downstream signaling pathways while keeping others 
unchanged (66, 67).

Biochemical, structural biology, bioengineering, and docking 
studies have all aided in the pursuit of non-hallucinogenic 
psychedelic analogs by pinpointing key structural features of 
compounds that elicit biased agonism. In 2013, Wacker et  al. 
demonstrated that LSD, ergotamine, and other ergolines have 
functional selectivity for β-arrestin signaling at the 5-HT2B while 
also being unbiased for the 5-HT1B receptor (68). A comparison of 
crystal structures of LSD and ergotamine in both receptors 
revealed that the peptide appended to ergotamine was the cause of 
ergotamine’s superior biased signaling compared to LSD. An 
additional analysis of LSD complexed with 5-HT2B by Wacker et al. 
in 2017, in combination with molecular dynamics simulations, 
revealed a structural basis for LSD’s slow binding kinetics at 
5-HT2A and 5-HT2B (69). This work also revealed that the amide 
substituents in LSD play a significant role in the position of the 
ligand within the orthosteric pocket, the molecule’s long residence 
time, and its ability to promote β-arrestin translation. Similarly, 
solved crystal structures of ergotamine and ritanserin bound to 
5-HT2C by Peng et al. revealed distinctive binding modes for each 
compound and key receptor–ligand interactions that promote 
serotonin receptor-subtype selectivity (32). An analysis of 
serotonin, LSD, psilocin, and lisuride complexed with 5-HT2A by 
Cao et  al. displayed a secondary binding pose for psilocin and 
serotonin in which their indole cores interact with the extended 
binding pocket of the receptor (70). Their data suggest that 
serotonin/psilocin may adopt two different positions, either in the 
orthosteric binding pocket or the extended binding pocket, and 
these would produce different biological effects. This group 
campaigned to synthesize a molecule that would favor the extended 
binding pocket, with the hypothesis that this would promote 
β-arrestin recruitment bias at 5-HT2A. They successfully 
synthesized compounds IHCH-7079 and IHCH-7086 which 
displayed antidepressant effects without inducing hallucinogenic 
behavior in mouse models. Docking studies of tetrahydropyridines 
complexed with 5-HT2A performed by Kaplan et  al. led to the 
synthesis and further testing of 17 molecules (71). Among these, 
two displayed antagonist activity at 5-HT2B, one displayed 
antagonist activity at 5-HT2A, and another displayed agonist 
activity at 5-HT2B. Additional structure-based optimization led to 
the discovery of a selective 5-HT2A antagonist and two 5-HT2A 
partial agonists. The two agonists elicited antidepressant behavior 
in mouse models and low levels of head-twitch response when 
compared to LSD. Notably, these agonists were also quite selective 
and showed a 4.6–6.4-fold preference of 5-HT2A over 5-HT2B and 
a 29–51-fold preference over 5-HT2C. Later, Dong et al. described 
a fluorescent biosensor which was capable of predicting a 
compound’s hallucinogenic potential by detecting distinct GPCR 
conformations induced by hallucinogenic ligands in vivo (72). This 
biosensor was then used to identify a nonhallucinogenic DMT 
analog with neuroplasticity-promoting and antidepressant effects. 
Finally, 2-Br-LSD was demonstrated by Lewis et  al. to be  a 
non-hallucinogenic analog of LSD with neuroplasticity-promoting 
effects (31). Pharmacological profiling showed that 2-Br-LSD is a 
significantly more selective ligand than LSD and does not show 
activity at aminergic GPCRs known to affect blood pressure, heart 
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rate, and other autonomic functions (e.g., 5-HT2B). Interestingly, 
while the compound was non-hallucinogenic, it still displayed 
agonism at 5-HT2A. However, the authors had shown that while 
2-Br-LSD has high potency at 5-HT2A (EC50 = 0.81 nM), it only 
partially activates the receptor (EMAX = 60%, relative to serotonin); 
whereas LSD is nearly a full agonist (EMAX = 92%, relative to 
serotonin). They later tested 2-Br-LSD as an antagonist in 5-HT2A 
Gq dissociation and β-arrestin2 recruitment assays, and the analog 
did indeed act as a potent partial antagonist.

Many studies of psychedelics and their analogs focus on 
lysergic acid amides and dimethyltryptamine derivatives and their 
biological effects. Clavine alkaloids differ from lysergic acid 
derivatives by the structure of the quinoline ring system fused onto 
the indole core and the absence of a carboxylic acid functional 
group at C8 (Figure 2). They often have a greater conformational 
flexibility and are therefore more tunable receptor ligands (73, 74). 
However, clavine alkaloids are still comparatively understudied 
despite their potential for high bioactivity and superior receptor 
selectivity. As testimony to their medicinal effectiveness, several 
semisynthetic ergolines and clavines have reached the market for 
treating disorders and diseases such as migraines, cancer, 
Parkinson’s disease, and dementia (75, 76). For example, lisuride is 
structurally similar to LSD, yet it does not typically produce 
hallucinogenic effects and has often been used to treat Parkinson’s 
disease and migraines (77). It also produces antidepressant 
behavior in mice (78). Lisuride displays nanomolar binding affinity 
for most aminergic GPCRs including serotoninergic, adrenergic, 
and especially dopaminergic receptors. Its ability to treat 
Parkinson’s disease is believed to primarily stem from its agonist 
activity at the dopamine receptors (79). While lisuride has potent 
agonist activity at 5-HT1A (80), it is a strong antagonist at 5-HT2B 
and thus devoid of cardiac valvulopathy side effects (81). At 
5-HT2A, lisuride is a G-protein biased agonist and this may be the 
mechanism responsible for how the medicinal properties of 
lisuride and potential hallucinogenic side effects are decoupled 
(78). However, strong activation of 5-HT1A has been shown to 
block the head-twitch response in mice treated with a 5-HT2A/5-
HT2C agonist (82). Dopamine and adrenoreceptors may also play a 
significant role in modulating head twitch response. Bromocriptine, 
a 2-brominated derivative of ergocriptine is a medicinally relevant 
ergot alkaloid that has been used in combination with levodopa in 
the treatment of Parkinson’s disease (83). Bromocriptine has also 
been implicated as a potential therapeutic agent for type 2 diabetes 
(84). Similar to lisuride, it is a potent D2 agonist and has good 
binding affinity for a number of serotonin receptors. However, 
bromocriptine is an antagonist at D1, an inverse agonist at D4, and 
a partial agonist at 5-HT2B (80). It also behaves as an agonist at 
5-HT2A and 5-HT2C receptors and, interestingly, acts as an 
antagonist at the adrenoreceptors α2A, α2B, and α2C. Nicergoline has 
been used for the treatment of dementia as well as cerebrovascular, 
peripheral vascular, and balance disorders (85, 86). The compound 
has high binding affinity for α1 and 5-HT1A receptors and 
demonstrated antagonism at these receptors (87). While 
nicergoline only has appreciable affinity for α2 and 5-HT2 receptors, 
it has low affinity for the dopamine receptors D1 and D2 and the 
muscarinic receptors M1 and M2. As a final example, ergotamine 
(vida supra) has been used for the prevention and treatment of 
migraines (88). It should be  noted that the toxicity of these 

compounds and of all members of the ergot alkaloid class is a 
potential concern (89–92). Ergotism and ischemia can occur if the 
levels of ergot alkaloids in the body exceed a certain threshold. This 
typically occurs if a patient is co-treated with a cytochrome P450 
inhibitor and the ergot alkaloid medication is not properly 
metabolized; therefore, prescribed dosages of ergot alkaloids are 
typically low (93). Potential toxicity should not discourage the 
development of these compounds into marketable drugs, but 
rather demonstrates the need for additional clinical and preclinical 
studies and investigations of natural and synthetic alkaloids before 
their full therapeutic potential can be unlocked.

2 Notable advancements

Most ergot alkaloid drugs are produced semi-synthetically from 
field cultivations or fermentations of ergot fungi (94). The clinically 
useful natural product precursors for derivatization are elymoclavine, 
lysergol, and lysergic acid, which can be isolated directly from the 
fungus or received from global saponification or reduction of the bulk 
mass of ergopeptines and lysergic acid amides. Recent studies to 
reconstitute the biosynthetic pathways of ergot alkaloids provide 
scalable access to single molecules. The biosynthesis of cycloclavine, a 
complex rearranged clavine alkaloid containing a cyclopropyl ring has 
been elucidated, and production of cycloclavine through heterologous 
expression in yeast, delivered titers of >500 mg L−1 (95). Microbial cell 
factories and cell-free systems, two unrelated systems for the 
biosynthesis of biomolecules, were combined to overproduce 
agroclavine in titers of 1,209 mg L−1 (96). The clavine oxidase (CloA) 
is a putative cytochrome P450 that catalyzes formation of lysergic acid 
from agroclavine in the ergot alkaloid biosynthetic pathway. A specific 
region between the F-G helices of CloA was identified as responsible 
for detecting and directing oxidation of agroclavine. An engineered, 
chimeric AT5 9Hypo CloA, which contained a clear substrate access 
channel and an enzyme surface cleft, increased levels of lysergic acid 
by 15-fold compared to the wildtype enzyme. Further discussion on 
scalable biosynthetic processes is beyond the scope of this review but 
remains an active field that holds potential to facilitate clavine and 
ergot alkaloid diversification. The biological implications of clavine 
alkaloids, closely related to LSD, have typically been evaluated through 
derivatizing natural products or investigations of readily 
derived stereoisomers.

2.1 Natural and substituted clavine 
alkaloids

Preliminary investigations into the SAR of the clavine alkaloids by 
Hofmann and Pertz established primary modalities pertinent for 
activity at CNS receptors. Notably, therapeutic investigations of 
clavine alkaloid derivatives were pioneered by Hofmann after his 
historic discovery of LSD (97). (+)-1-Methyl lysergol showed a 13-fold 
increase in serotonin inhibitory effect compared to naturally occurring 
(+)-lysergol, but 1-methyl-ergotamine was less potent than 
ergotamine, indicating this slight modification was mainly relevant to 
clavine alkaloids. Moreover, (+)-lysergol produces a pyretogenic effect, 
but the methylated analog initiates an inverse reaction and lowers the 
body temperature in rabbits. Finally, (+)-1-methyl lysergol 
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(LD50 = 18 mg/kg) was over 50-fold less toxic than (+)-lysergol 
(LD50 = 0.32 mg/kg).

Furthermore, Pertz et al. investigated eight naturally occurring 
clavine alkaloids for antagonism/partial agonism at 5-HT2A receptors 
and antagonism at α1-adrenoreceptors in blood vessels of rat tail 
arteries and aorta (73). While CNS receptor structure differs between 
species, they demonstrated that clavine alkaloids can have different 
modes of action compared to 5-HT. This concept was later supported 
by cryo-EM structures of LSD-bound 5-HT2A; the binding modes of 
the semi-synthetic ergot alkaloid differed from the agonist 25CN-
NBOH (98). Clavines, with the exception of costaclavine containing 
the deactivating cis-CD ring junction, show moderate affinity to 
5-HT2A receptors and α1-adrenoreceptors. They display partial 
agonism activity by themselves, and some are antagonists of 5-HT at 
micromolar concentrations. Moreover, N1-isopropylation can increase 
affinity and specificity for 5-HT2A vs. α1, which could improve the 
noxious effects associated with ergot alkaloids. In fact, a similar 
modification was previously demonstrated by Hofmann (vide supra). 
In a subsequent report, Pertz et al. investigated cycloalkanecarboxylic 
esters derived from lysergol, dihydrolysergol-I, and elymoclavine (74). 
As with the naturally occurring clavines, these derivatives displayed 
partial agonism and antagonism effects of the contractile properties 
of 5-HT. Thereby, SAR investigations into acyl group variation and 
N1-modification demonstrated that the tetracyclic indolo[4,3-fg]
quinoline system was the primary pharmacophore, and hydroxy 
acylation with cycloalkyl groups coupled with N1-alkylation 
synergistically increased 5-HT2A receptor selectivity over the 
α1-adrenoreceptor.

In 2017, Luo et al. disclosed an elegant asymmetric synthesis of 
(+)-lysergol, (+)-isolysergol, (−)-isolysergol, and (+)-13-fluorolysergol 
featuring a Ciamician-Dennstedt-type rearrangement to form the 
piperidine C ring and a Rh-carbenoid formal [3 + 2] cycloaddition to 
construct the ergoline scaffold (99). These analogs were subjected to 
agonism assays at four serotonin receptors, 5-HT1A,2A–C. CHO-K1 cells 
expressing each receptor were loaded with a dye and analyzed by 
FLIPR during addition of compounds or control agonist. All of the 
compounds displayed a reduced maximal activation for each receptor 
compared to 5-HT (see Table  1). For instance, while (+)-lysergol 
activated 5-HT2A with an EC50 value of 1.6 nM, it was limited to 51% 
of the maximum 5-HT stimulation. Similarly, (+)-lysergol activated 
5-HT2C to 43% maximum of 5-HT stimulation. The unnatural 
substituted analog (+)-13-fluorolysergol, while selective for 5-HT1A 
and 5-HT2A, only showed 17% maximal activation of 5-HT2A 

compared to 5-HT. While less effective than the natural ligand, 5-HT, 
partial agonism and receptor selectivity garnered by ring substitution 
could lead to effective therapeutic agents without deleterious 
hallucinogenic effects (vide supra).

2.2 Clavine alkaloid stereoisomers

Wipf et al. reported the shortest synthesis of racemic lysergols to 
date, and after chiral resolution of the enantiomers, investigated the 
effects of all four stereoisomers on several serotonin receptors. Of 
note, binding data of (−)-lysergol were disclosed for the first time. All 
but (−)-isolysergol maintained excellent affinity for 5-HT1A,2A–C (100). 
Agonism effects of (+)-lysergol, (−)-lysergol, and (+)-isolysergol were 
calculated as a percent of control response to a known reference 
(Table 2). The agonism activity of (+)-lysergol corroborated previous 
investigations (100). With 5-fold reduced activity at 5-HT2A, the 
naturally occurring (+)-lysergol should have reduced psychoactive 
effects compared to LSD. Moreover, it displayed a similar profile to 
psilocin with about half of psilocin’s activity at 5-HT2A. Interestingly, 
(−)-lysergol was a selective agonist for 5-HT2C. Many 5-HT2C 
activators that are used to regulate mood are poorly selective between 
5-HT2B and 5-HT2A, so further investigations and SAR would 
be justified to elaborate upon these findings. (+)-Isolysergol displayed 
very similar activation of 5-HT1A compared to (+)-lysergol, but was 
less active towards 5-HT2C, suggesting the configuration of C(8) plays 
a more significant role in agonism activity towards 5-HT2C 
than 5-HT1A.

Interestingly, while (+)-lysergol had a high affinity for 5-HT2B, it 
produced no agonism effects within the tested range (101). Similarly, 
(+)-isolysergol showed high affinities for 5-HT2A and 5-HT2B without 
agonism effects. Since these ligands bind without inducing activation, 
further studies are required to determine if they act as antagonists, as 
findings from Pertz (vide supra) (73) suggest these clavines could also 
produce antagonism effects at other CNS receptors. Of particular note 
is also the stereospecificity of the binding/agonistic effects of the four 
lysergol stereoisomers. While not necessarily unexpected for rigid and 
selective compounds, this nonetheless highlights opportunities for 
future ligand designs at 5-HTRs.

Recently, investigations into the activation effects of rearranged 
clavine alkaloids, including (+)- and (−)-cycloclavine and all 
stereoisomers of rugulovasine have been reported (99, 100, 102, 103). 
Wipf et al. developed an asymmetric synthesis of cycloclavine and 

TABLE 1 Lysergol analog activation of 5-HT receptors reported by Luo et al. (99).

Entry Compound 5-HT1A (nM) 5-HT2A (nM) 5-HT2B (nM) 5-HT2C (nM)

1 5-HT 11 ± 2 0.96 ± 0.14 0.071 ± 0.010 0.14 ± 0.03

2 (+)-lysergol 73 ± 6 1.6 ± 0.5a >10,000 6.6 ± 1.4b

3 (±)-lysergine 342 ± 23 2.7 ± 1.6c 145 ± 54d 103 ± 9e

4 (−)-isolysergol 481 ± 31 >10,000 >10,000 >10,000

5 (+)-13-fluorolysergol 424 ± 27 12 ± 3f >10,000 >10,000

a51% max 5-HT stimulation.
b43% max 5-HT stimulation.
c57% max 5-HT stimulation.
d36% max 5-HT stimulation.
e42% max 5-HT stimulation.
f17% max 5-HT stimulation.
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investigated the specific binding and activation of both natural and 
unnatural enantiomers at several CNS receptors (104). The naturally 
occurring (+)-cycloclavine was an agonist for 5-HT1A (EC50 = 0.14 μM) 
and 5-HT2C (EC50 = 0.016 μM). (−)-Cycloclavine displayed comparably 
much smaller activation effects, and only nominally affected 5-HT2C 
(EC50 = 3.2 μM). (+)-Cycloclavine displayed a remarkably similar 
profile to (+)-lysergol, albeit with ~8-fold lower 5-HT2A activation. 
Since both cycloclavine enantiomers were poor activators of 5-HT2A, 
they may only exhibit weak hallucinogenic effects, but (+)-cycloclavine 
could display promising mood-regulating properties.

Piersanti et  al. disclosed an asymmetric synthesis of all 
stereoisomers of rugulovasines and evaluated their CNS receptor 
activity (103). They were tested for specific binding at serotonin 
(5-HT1A,2A,2C), adrenergic (α2), and dopamine (D1,2L,3) receptors, and 
were found to be specific solely for the first. Of the four isomers, 
(+)-rugulovasine B was the overall best ligand and (−)-rugulovasine 
B displayed poor affinity for all but 5-HT1A. Moreover, among the 
targets that were investigated, the rugulovasines were selective for 
5-HT receptors. Since all four isomers displayed a strong affinity for 
5-HT1A, they were subjected to an activation assay for that target. 
Each isomer was a strong activator of this receptor with nanomolar 
potencies. (+)-Rugulovasine was the most potent agonist (<2 nM) 
and was surprisingly more active than LSD. This significant 
enantiospecificity and potency translated to other 5-HT receptors. 
Among the seven other serotonin receptors tested (5-HT1A,2B–C,5A,6,7), 
(+)-rugulovasine B displayed nanomolar activation for all but 
5-HT5A (13.7 μM), in contrast to LSD which only displayed low 
activation of 5-HT2B (12.0  μM). (+)-Rugulovasine B is a potent 
activator of 5-HT2A and 5-HT2B, suggesting hallucinogenic, 
cardiotoxic, and europhoric effects might occur in consumers. 

Accordingly, further (ant)agonism assays of dopamine and 
adrenergic receptors of the rugulovasines are required to validate 
their therapeutic potential. Hopefully, the expedient synthetic 
approach will enable future investigations of the biologically 
understudied rugulovasine scaffold.

3 Conclusion

The exploration of clavine alkaloids as therapeutic agents is of 
continued and significant interest. Early work focused on improving 
the potency and decreasing the toxicity of natural clavines through 
minor structural modifications, such as N1-alkylation or O-acylation 
(73, 74, 97). More recently, efficient total syntheses of clavine 
alkaloids have enabled systematic investigations of stereoisomers 
(100, 103, 104) and analogs with significant structural modifications 
(99). (+)-Lysergol, (+)-isolysergol, and (+)-cycloclavine thus far bear 
the most potential as non-hallucinogenic “psychedelic” agents. 
While more CNS receptor profiling and in vivo studies are required, 
they maintain promising 5-HT receptor profiles, as they poorly 
activate receptors that cause deleterious effects [5-HT2A 
(hallucinations) and 5-HT2B (cardiotoxicity)], but strongly activate 
the mood-regulators 5-HT1A and 5-HT2C. Moreover, (+)-lysergol 
displays a very similar profile to the clinically studied psychedelic 
psilocin at the 5-HT1A,2A–C receptors, and derivatization with deep-
seated changes achievable through de novo synthesis could provide 
access to more selective ligands, as demonstrated by Luo et al. (99). 
The understudied rearranged clavine scaffolds, including 
cycloclavine and the rugulovasines, also demonstrate unique 
enantiospecific activation of the CNS receptors, similar to the 

TABLE 2 Clavine alkaloid activation of 5-HT receptors.

Compound 5-HT1AR 5-HT2AR 5-HT2BR 5-HT2CR

(+)-lysergola 76.5%b 50.4%c – 61%d

(−)-lysergola – – – 70%e

(+)-isolysergola 52.2%b – – 78.5%b

(+)-cycloclavine (μM) 0.14 ~10 >20 0.016

(−)-cycloclavine (μM) ~5 >50 >20 3.2

(−)-rugulovasine A (nM) 37 n.t.f n.t. n.t.

(+)-rugulovasine A (nM) 47 n.t. n.t. n.t.

(+)-rugulovasine B (nM) <2 46 58 339

(−)-rugulovasine B (nM) 116 n.t. n.t. n.t.

DMTg (μM) 0.075h 0.076 3.4 0.424h

Psilocing (μM) 0.123h 0.721h >20 0.094h

ᴅ-LSDg (μM) 0.003h 0.261h 12i 0.015h

aCellular agonist effect was calculated as a % of control response to a known reference agonist for each target. CNS receptor assays were performed in singlicate at human receptors at Eurofins 
Cerep Panlabs. “–” indicates no agonism effects were detected at the tested concentrations.
b250 nM.
c1.3 μM.
d10 nM.
e2.0 μM.
fn.t. denotes “not tested”.
gData taken from ref. 30.
hInhibition constants Ki.
iEC50 values.
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lysergols. Some clavines such as (+)-rugulovasine B can be potent 
5-HT2A activators; however, they are relatively unselective agonists 
and could produce detrimental side effects. Future SAR campaigns 
on the clavine alkaloid scaffold are well justified by their known 
biological profile and are likely to discover a broad range of novel 
and potentially therapeutic analogs, paving the way to decouple the 
development of new psychedelics from the study of the known 
natural product isolates.
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