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Lipids in major depressive 
disorder: new kids on the block or 
old friends revisited?
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Major depressive disorder (MDD) is a psychiatric mood disorder that results in 
substantial functional impairment and is characterized by symptoms such as 
depressed mood, diminished interest, impaired cognitive function, and vegetative 
symptoms such as disturbed sleep. Although the exact etiology of MDD is 
unclear, several underlying mechanisms (disturbances in immune response and/
or stress response) have been associated with its development, with no single 
mechanism able to account for all aspects of the disorder. Currently, about 1 in 3 
patients are resistant to current antidepressant therapies. Providing an alternative 
perspective on MDD could therefore pave the way for new, unexplored diagnostic 
and therapeutic solutions. The central nervous system harbors an enormous 
pool of lipids and lipid intermediates that have been linked to a plethora of its 
physiological functions. The aim of this review is therefore to provide an overview 
of the implications of lipids in MDD and highlight certain MDD-related underlying 
mechanisms that involve lipids and/or their intermediates. Furthermore, we will 
also focus on the bidirectional relationship between MDD and the lipid-related 
disorders obesity and type 2 diabetes.
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1. Introduction

Major depressive disorder (MDD) is a psychiatric mood disorder characterized by a range 
of psychopathological symptoms that lead to a syndrome causing significant functional 
impairment. The current Diagnostic and Statistical Manual of Mental Disorders (DSM V) 
categorizes MDD into 256 symptom presentations, which are organized into “specifiers” to 
highlight the disorder’s heterogeneity and clinical challenges (1–3). However, the core symptoms 
specifically associated with MDD are a depressed mood and a general loss of interest, known as 
anhedonia (1, 2). The lifetime risk of developing MDD is estimated to be 18% (4), but this has 
increased significantly following the outbreak of the COVID-19 pandemic (5). MDD is also 
associated with a heightened risk of suicide (6) and other non-communicable diseases (7, 8), 
leading to increased urgency and awareness of this condition in recent years. According to the 
Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, depressive disorders 
(including MDD) are the most disabling mental conditions and rank among the top 15 primary 
causes of disease burden globally (9). Future projections suggest that MDD will become the most 
significant cause of disease burden by 2030 (2).

The heterogeneous nature of MDD (at times even in the same patient) implies the 
involvement of a plethora of pathophysiological mechanisms. As of today, aberrations in a range 

OPEN ACCESS

EDITED BY

Franco De Crescenzo,  
University of Oxford, United Kingdom

REVIEWED BY

Hector J. Caruncho,  
University of Victoria, Canada  
Silvia Alboni,  
University of Modena and Reggio Emilia, Italy

*CORRESPONDENCE

Tom Houben  
 tom.houben@maastrichtuniversity.nl

RECEIVED 27 April 2023
ACCEPTED 04 August 2023
PUBLISHED 17 August 2023

CITATION

van der Heijden AR and Houben T (2023) Lipids 
in major depressive disorder: new kids on the 
block or old friends revisited?
Front. Psychiatry 14:1213011.
doi: 10.3389/fpsyt.2023.1213011

COPYRIGHT

© 2023 van der Heijden and Houben. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Review
PUBLISHED 17 August 2023
DOI 10.3389/fpsyt.2023.1213011

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2023.1213011&domain=pdf&date_stamp=2023-08-17
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1213011/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1213011/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1213011/full
mailto:tom.houben@maastrichtuniversity.nl
https://doi.org/10.3389/fpsyt.2023.1213011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2023.1213011


van der Heijden and Houben 10.3389/fpsyt.2023.1213011

Frontiers in Psychiatry 02 frontiersin.org

of physiological mechanisms have been proposed to contribute to the 
development of MDD. The most thoroughly researched mechanism 
revolves around the monoamine hypothesis, stating that a deficiency 
in the monoamine neurotransmitters norepinephrine and/or 
serotonin in the brain form the underlying biological basis for the 
development of MDD (10). The generation of this hypothesis has 
resulted in the development of many safe and effective antidepressant 
agents and has, without a doubt, led to unprecedented progress in the 
field of MDD (10, 11). However, the monoamine hypothesis does not 
explain observations related to the delay of symptom improvement 
when monoamine levels in the brain have been restored by 
antidepressants (12, 13), why antidepressants can reverse anxiety 
disorders (14) and why drugs that reduce (and not increase) the level 
of serotonin in the synaptic cleft have an antidepressant effect (15). 
Another dysregulated physiological mechanism that more recently 
gained awareness as biological cause for MDD is inflammation 
[reviewed in detail by others (16–18)]. Apart from the observed 
increased peripheral cytokine levels in MDD patients (19), other 
evidences that support an incontrovertible role for the immune system 
in depression concern the observation that patients suffering from 
immune disorders (from autoimmune or infectious nature) are 
increasingly prone to develop depressive symptoms (20) and that 
therapeutic administration of cytokines induces depression (21). A 
third biological mechanism that has been associated with MDD 
development is the dysregulation of stress responses via the 
hypothalamic-pituitary-adrenal (HPA) axis which often manifest itself 
as a combination of excessive stress-related cortisol release and 
impaired glucocorticoid receptor-mediated feedback inhibition (22, 
23). Despite consistent insights concerning the involvement of the axis 
in MDD, attempts to translate these findings into clinical therapeutic 
applications have so far been unsuccessful (24). Next, although the 
precise biological mechanisms underlying its contribution to behavior 
are yet to be fully elucidated, neurogenesis has been implicated in the 
context of MDD (25–27). Neurogenesis refers to the ongoing 
generation of neurons within the central nervous system (CNS) 
throughout an organism’s lifespan. Specifically, the subgranular zone 
(SGZ) of the dentate gyrus in the hippocampus has been identified as 
the principal region involved in this process (28). Other underlying 
mechanisms inducing MDD that have gained increasing attention that 
will not be discussed in further detail here involve glutamate receptor 
signaling (29) and genetic and/or epigenetic variations (30). Thus, a 
variety of mechanisms play a role in the development of MDD.

However, considering the central role of the brain in the 
development of MDD, it is rather surprising that relatively few 
attention (in comparison to the previously mentioned mechanisms) 
has been attributed in this field to one of the largest components of the 
brain: lipids and their intermediates. As an organ, the brain has the 
second highest lipid content [around 50% dry weight (31)] and carries 
a plethora of lipid subtypes that have been associated with 
physiological (32, 33) and neurodegenerative processes (34, 35). In 
line, in the last two decades, an increasing number of observations 
have described changes in lipid levels and their metabolism in MDD 
patients’ circulation and central nervous system. While there is no 
evidence that lipid changes contribute more to MDD than other 
known mechanisms, it is becoming clear that lipids influence MDD 
via known (i.e., by influencing the mechanisms mentioned above) 
and/or unknown mechanisms. Moreover, depressive symptoms in 
lipid-related disorders have been associated with more adverse clinical 

profiles, adding fuel to the argument of a reciprocal relationship 
between depression and these lipid-related disorders (36, 37). 
Considering these evidences, this review attempts to provide a short 
overview of the association between various types of lipids and MDD, 
as well as to elaborate on specific (potential) underlying mechanisms. 
Finally, the role of depression in lipid-related disorders will also 
be reviewed as it adds fuel to the hypothesis of lipids in MDD.

2. Systemic and neurological lipid 
changes in major depressive disorder

2.1. Sphingolipids

Sphingolipids are a major class of bioactive lipids whose 
subcellular location determines their specific function. In short, the 
basic structure of sphingolipids is composed of a sphingoid base 
and an amino-linked fatty acid, also referred to as a ceramide. 
Enzymatic reactions can concomitantly introduce variations to 
this basic structure, creating a universe of sphingolipids (i.e., 
the sphingolipidome) including sphingomyelin, ceramide, 
glycosphingolipids and sphingosine (among many others) (38). 
Mechanistically, sphingolipids have been linked to key physiological 
functions such as growth regulation, adhesion, apoptosis and 
inflammatory responses (38). Moreover, bioactive sphingolipids 
appear to be implicated in key process in neurodevelopment (39), 
neuroinflammation (40), systemic inflammation (41) and metabolism 
(42, 43). For a complete overview of sphingolipid metabolism and 
functions, we  direct the reader to recent reviews that provide an 
excellent overview of this topic (38, 41).

Considering their ubiquitous expression and large impact on 
physiological functions, it is axiomatic that sphingolipids have also 
been linked to MDD. One of the clearest evidences that confirmed this 
link was the pre-clinical identification of six pharmacological 
antidepressants (doxepine, fluoxetine, maprotiline, nortriptyline, 
paroxetine and sertraline) to inhibit the enzyme acid sphingomyelinase 
(ASM) (44, 45). Indeed, already since 1991, it is known that tricyclic 
antidepressants functionally inhibit ASM in human post-mortem 
brains (46). As ASM is responsible for the conversion of sphingomyelin 
to phosphorylcholine and ceramide, these findings imply an 
association of sphingomyelin and/or ceramide with MDD 
pathogenesis. In line with this hypothesis, sphingomyelins were 
detected as one of six metabolic pathways to prospectively identify 
female and male MDD patients at risk of future recurrence (47). 
Furthermore, serum ceramide levels appear to be consistently elevated 
in human MDD, especially in male patients (48, 49). At the other 
hand, ceramides were not elevated in the prospective study for 
recurrent MDD (47), suggesting that circulating ceramide levels might 
rather be an indicator of MDD severity. Also, increased ceramide 
levels in the circulation and hippocampal region of rodents have been 
linked to depression development and severity and its reduction could 
reverse depressive symptoms (50–52). Indeed, reversal of stress-
induced MDD was achieved in mice by blocking ceramide function 
with intravenous anti-ceramide antibodies or neutral ceramidase. This 
causal relation was further substantiated by delineating a new 
underlying pathway by which ceramide inhibits phospholipase D in 
endothelial cells of the hippocampus, thereby reducing hippocampal 
phosphatidic acid (52). This finding is in line with previous studies 
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that demonstrated that hippocampal endothelial cells play an essential 
role in the regulation of neurogenesis during MDD both in preclinical 
and clinical studies (53, 54). The identification of this novel pathway 
implies that blood ceramide, along with phospholipase D and 
phosphatidic acid in the hippocampus, hold promise as potential 
therapeutic targets for the treatment of MDD. These findings have 
been substantiated by follow-up studies, providing further evidence 
for their potential in addressing MDD through therapeutic 
interventions (55, 56).

Another underlying mechanism that links sphingolipids to MDD 
pathogenesis is autophagy, which is a self-degradative process essential 
to maintain energy [the basic process of autophagy is also reviewed 
here (57, 58)]. Specifically, in preclinical models, the antidepressants 
amitriptyline and fluoxetine were demonstrated to induce autophagy 
in hippocampal neurons via a slow accumulation of sphingomyelin in 
lysosomes and Golgi membranes and of ceramide in endoplasmic 
reticulum (59). Moreover, a similar effect on autophagy and MDD 
reversal was also achieved by rapid accumulation of ceramide in the 
endoplasmic reticulum of the hippocampus via direct inhibition of 
sphingomyelin synthases, raising sphingomyelin synthase inhibitors 
as potential new antidepressant agents (59) (also see Figure 1).

Together, a growing number of observations have linked 
sphingolipid metabolism to MDD development and pathophysiology, 
opening up several new avenues for pharmaceutical intervention. Yet, 
the highly regulated nature of the sphingolipidome restricts the use of 
therapeutic regimens since every minor change in this system might 
have unexpected consequences. Still, the study of bioactive 
sphingolipids as possible future antidepressants is valid, although 
more extensive clinical research is required before clinical 
implementation can be supported.

2.2. Cholesterol

As an essential lipid that is biosynthesized by every mammalian 
cell, cholesterol is, arguably, one of the most intriguing lipids (60). 
At a cellular level, cholesterol predominantly localizes in the plasma 
membrane where it often aggregates with sphingolipids and 
glycosylphosphatidylinositol-anchored proteins, forming so-called 
lipid rafts which transduce signaling cascades and regulate 
membrane trafficking (61). Moreover, cholesterol plays a crucial role 
in maintaining the structure of the lipid raft as well as its fluidity 
(62). At a systemic level, lipoproteins [mainly in form of low-density 
lipoproteins (LDL), very-low-density lipoproteins (VLDL) and high-
density lipoproteins (HDL)] enable the hydrophobic cholesterol to 
be transported to other tissues, ensuring that an increased supply of 
cholesterol is guaranteed to those locations that would require such 
demand. However, the central nervous system (CNS) has no access 
to this cholesterol distribution system, being completely self-reliant 
in its cholesterol need (32). As cholesterol is indispensable for 
neurons (63), astrocytes (64) and microglia (65), these CNS cells 
synthesize cholesterol in situ via the Bloch or Kandutsch-Russel 
pathway [also see (32)]. Finally, cholesterol can be transformed into 
oxysterols via enzymatic and non-enzymatic reactions, which have 
key regulatory functions both in the CNS (66, 67) and systemic 
metabolism (68, 69). For additional information on systemic and 
CNS cholesterol metabolism, we would like to refer the reader to 
other reviews (32, 60).

One of the initial associations between MDD and cholesterol 
refers to the observation that MDD patients demonstrate lower levels 
of total plasma cholesterol (70–72). However, this claim has been 
contested by multiple other studies that were unable to replicate these 
findings (73–75), sometimes even showing opposite correlations (76–
79). These inconsistent findings prompted researchers to investigate 
cholesterol in subgroups of MDD patients.

As mentioned earlier, specifiers are employed to refine and 
support clinical practice in defining depressive episodes, providing 
information on the pattern, clinical features, severity, time of onset, 
and remission status associated with the depressive episode. These 
specifiers play a crucial role in characterizing the different subtypes of 
MDD. For instance, the specifier indicating melancholic features, 
characterized by diminished reactivity of affect and mood, a pervasive 
and distinct quality of depressed mood that worsens in the morning, 
along with anhedonia, guilt and psychomotor disturbance signifies a 
melancholic subtype (2). In contrast, in cases of psychotic MDD, 
patients experience the co-occurrence of a depressed mood and 
psychosis. The psychosis often presents in the form of nihilistic 
delusions, characterized by the belief that negative events or outcomes 
are imminent (80). It is also worth noting that psychotic MDD 
patients are more likely to suffer from treatment-resistant depression 
(81). Finally, another common specifier concerns atypical MDD, 
which describes patients that show mood reactivity and two or more 
of the following four features: hypersomnia, leaden paralysis, increase 
in appetite (or significant weight gain), a long-standing pattern of 
interpersonal rejection sensitivity that results in significant social or 
occupational impairment (82).

By focusing on these specific subgroups of MDD, researchers have 
been able to shed an alternative light on the complex relationship 
between MDD and cholesterol: (1) atypical depression in patients 
positively associates with obesity-related parameters such as increased 
BMI, waist circumference, fat mass (83, 84) and higher total and LDL 
cholesterol (76); (2) melancholic MDD patients rather associate with 
weight loss (85) and with lower levels of HDL cholesterol (76) and (3) 
psychotic MDD patients demonstrate increased serum total 
cholesterol and LDL cholesterol levels, but lower HDL cholesterol 
levels (86). Additionally, initial associations of the cholesterol 
precursors desmosterol and 7-dehydrocholesterol with MDD 
diagnosis in patients appeared to be  confounded by the use of 
trazodone, a psychotropic medication (87). Accounting for medication 
use and stratification of MDD patients into subtypes [f.e. based on the 
specifiers described by the DSM V (3)] therefore increases the 
likelihood of providing more consistent cholesterol-related 
associations to MDD that were previously unknown, inciting 
researchers to further investigate the exact function of cholesterol in 
the respective MDD subtypes.

However, elaborative mechanistic research investigating the causal 
role of cholesterol in MDD is relatively scarce as compared to its well-
researched clinical associations. Still, there are direct and indirect 
evidences to claim that cholesterol plays a role in MDD. Low-density 
lipoprotein receptor knockout (Ldlr−/−) mice, which are characterized 
by hypercholesterolemia, display depressive-like behavior (88). In the 
context of antidepressant sensitivity, cholesterol-lowering medication 
are currently in clinical trials as augmentation therapy for treatment-
resistant depression (TRD) (89), though recent observations indicated 
no added effect of simvastatin on TRD (90). At a cellular level, the role 
of cholesterol in antidepressant response has been linked to lipid rafts 
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in preclinical models (91). Specifically, by accumulating in lipid rafts, 
antidepressants mediate the extrusion of the heterotrimeric G protein 
Gsalpha (Gsα), which relates to antidepressant effects (92) and 
response (93). These findings raise the question whether modulation 
of membrane cholesterol could influence antidepressant effects? In 
line with this proposition, 27 patents have reported benefits of 
complexing antidepressant drugs with cyclodextrins (known to 
influence membrane cholesterol content), though underlying 
mechanisms were not described (94). Therefore, whether the 
described improvements of cyclodextrins on antidepressant efficacy 
are related to changes in membrane cholesterol content has to 
be  further investigated in the future. Regardless, considering that 
antidepressant treatment was shown to induce plasma cholesterol 
changes (95), which also significantly influenced treatment response 
(96, 97), these myriad of observations, to the least, suggest an 
involvement of cholesterol in antidepressant response.

Finally, due to their regulatory role in brain cholesterol turnover 
(98, 99), certain oxysterols have been linked to MDD-related 
processes. The oxysterol 24S-hydroxycholesterol (24S-HC) is 
generated via enzymatic oxidation of cholesterol by the enzyme 
cytochrome P450 family 46 subfamily A member 1 (CYP46A1) which 
occurs in human neurons (98). Further, 24S-HC is a positive allosteric 
modulator of N-methyl-D-aspartate receptors (NMDARs), which 
mediate neurotransmission signals throughout the CNS related to 
learning, memory and mood (100). Strikingly, preclinical models 
showed that 24S-HC acts mainly on the GluN2B subunit of NMDARs 
(101, 102), which is also the main target for the antidepressant 
ketamine (103). At the other hand, another oxysterol, 
25-hydroxycholesterol (25-HC), displayed antagonistic effects on 
24S-HCs ability to modulate NMDARs preclinically, supporting a 
regulatory role for oxysterols in NMDAR modulation (104). As the 
antidepressant effect of ketamine is mediated via NMDAR, it is 

FIGURE 1

Lipids in major depressive disorder. In this review, we discussed three main classes of lipids (sphingolipids, cholesterol and fatty acids), which are central 
in processes related to MDD. (Top left) Sphingolipid-related mechanisms: (1) the sphingolipid ceramide inhibits phospholipase D in endothelial cells of 
the hippocampus, leading to a reduction of phosphatidic acid (=a phospholipid) in the hippocampus and deterioration of depressive symptoms. 
(2) Reversal of depressive symptoms can be achieved via the induction of autophagy in hippocampal neurons, facilitated by the accumulation of 
sphingomyelin in lysosomes and Golgi membranes, as well as ceramide in the endoplasmic reticulum. (Top right) Cholesterol-related mechanisms: 
(1) the effectivity and responsiveness of antidepressants is related to their ability to accumulate in lipid rafts, a structure that is regulated by cholesterol. 
Changes in the membrane cholesterol content therefore influence depressive behaviors. (2) Different types of oxysterols (24S-hydroxycholesterol and 
25-hydroxycholesterol) were shown to directly influence depressive-related processes. (Below) Fatty acid-related mechanisms: (from left to right) 
(1) elevation of lipoxygenase and cytochrome P450 enzymes by polyunsaturated fatty acids leads to a reduction in inflammation and a decrease in the 
severity of depressive symptoms. (2) While direct influence of fatty acids on neurogenesis is still under debate, the impact of the endocannabinoid 
(eCB) system on neurogenesis is well-established (also see point 4). (3) Polyunsaturated fatty acids influence the hypothalamic-pituitary-adrenal (HPA) 
axis, which is a key pathophysiological mechanism of MDD. (4) Endocannabinoids ligands are fatty acids that are linked to MDD. (5) Polyunsaturated 
fatty acids influence the dopamine system in the nucleus accumbens (indicated in blue) during gestation, influencing motivational behavior during 
adulthood and (6) palmitic acid, a saturated fatty acid, accumulates in the hypothalamus (indicated in red) after a high-fat diet and associates with the 
onset of depression. Created with BioRender.com, endocannabinoid receptor 1, CB1; endocannabinoid receptor 2, CB2; N-arachidonoylethanolamine, 
AEA; 2-arachidonoylglycerol, 2-AG.
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acceptable to assume that changes and/or aberrations in oxysterol 
metabolism influence mood-related processes. In line, while plasma 
levels of 24S-HC did not differ between depressed and healthy patients 
(105), its prefrontal cortex levels were increased in patients who 
committed suicide (106) (also see Figure 1).

Overall, while many studies have investigated plasma cholesterol 
in MDD cohorts, our impression is that the main evidence for the role 
of cholesterol in MDD manifests itself predominantly in the form of 
pharmacological antidepressant-related research. As these 
pharmacological studies imply an involvement of cholesterol in 
mood-related processes, correcting for medication use and 
stratification of MDD patients into subgroups could enhance our 
understanding of cholesterol (and its precursors) in MDD 
cohort studies.

2.3. Fatty acids

Finally, considering their abundance in the human body, the last 
lipid type that we will cover in this review concerns fatty acids. Fatty 
acids are generally divided into saturated and unsaturated fatty acids, 
the latter referring to the presence of double bonds in the carbon chain 
(107). Both types of fatty acids are abundantly present in the brain, 
where they are primarily esterified to the phospholipid cell membrane, 
coordinating the function and structure of neurons and glial cells 
(108). Besides structural support, fatty acids are involved in numerous 
neurological signaling pathways including cell survival, neurogenesis, 
synaptic function and brain inflammation. Further, while saturated 
fatty acids can be synthesized de novo by the brain, polyunsaturated 
fatty acids (PUFAs) are supplied via the diet (108). More information 
on (poly)unsaturated and saturated fatty acids is described in other 
excellent manuscripts as this is beyond the scope of the current review 
(108–110). Finally, a major fatty acid-related system that deserves 
specific attention is the endocannabinoid (eCB) system. The two best 
studied eCB ligands, N-arachidonoylethanolamine (AEA) and 
2-arachidonoylglycerol (2-AG), are arachidonic acid derivatives which 
is a n-6 polyunsaturated fatty acid (111). Other essential components 
that are involved in the eCB signaling system include (1) a minimum 
of two G-protein-coupled receptors (GPCRs) known as cannabinoid 
type-1 and type-2 receptors (CB1R and CB2R) and (2) synthetic and 
degradative enzymes as well as transporters that regulate the levels and 
actions of eCBs at the receptors (112) for more in depth reviews on 
the eCB system, we refer the reader to (113, 114).

Compared to cholesterol and sphingolipids, fatty acids, and in 
particular PUFAs, have been extensively investigated in the context of 
MDD as clinical and preclinical studies have suggested a role for 
PUFAs in regulating mood. Specifically, levels of the n-3 PUFAs 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were 
reduced in the blood of depressive patients compared to healthy 
subjects, while no differences in n-6 PUFAs were observed (115). 
More evidence for this link comes from brain studies showing reduced 
DHA and EPA levels in the brain of MDD patients (116–118). At the 
other hand, PUFAs did not associate with the prospective risk of MDD 
recurrence (119), implying that the link between PUFAs and mood 
appears to be  solely restricted to initial MDD diagnosis. 
Incontrovertible evidence for the impact of PUFAs on MDD comes 
from cross-national epidemiological surveys observing an inverse 
correlation between per capita fish or seafood (which is high in 

PUFAs) consumption and lifetime prevalence rate of MDD (120, 121). 
Moreover, shifting away from a fish-based diet towards a Western-type 
diet increased rates of depression, seasonal affective disorder, anxiety 
and suicide (122) and an observational study even suggested that a 
diet rich in n-3 PUFAs decreases the risk in elderly individuals (116). 
These dietary findings could also be  replicated in animal studies 
showing that reduced n-3 PUFA intake leads to depressive-like 
behavior in rats, mice and monkeys (123–126). For a more detailed 
overview of the association studies between PUFAs and MDD (108, 
127, 128).

Several mechanisms have been implicated in mediating the 
beneficial effects of n-3 PUFAs, some of which are related to already 
known pathophysiological mechanisms related to depression. Firstly, 
PUFAs are known anti-inflammatory agents (129, 130). By increasing 
lipoxygenase (LOX) and cytochrome P450 (CYP450), EPA and DHA 
were shown to reduce inflammation in a hippocampal progenitor cell 
line. Strikingly, these findings could be replicated in a clinical study of 
22 MDD patients, demonstrating associations between LOX and 
CYP450 metabolites and depressive symptom severity (131). Building 
further on this idea, pro-resolving lipid mediators (SPMs) could 
mediate the reduction of inflammation that is induced by the increase 
in PUFAs (132). In short, SPMs are lipid mediators that are mainly 
derived from the conversion of n-3 fatty acids EPA, DHA and 
docosapentaenoic acid (DPA) via cyclooxygenase and LOX and are 
known to mediate the resolution of inflammation (133, 134). In line, 
EPA supplementation to MDD patients resulted in improved 
symptoms of depression, reduced systemic inflammation and 
increased plasma concentrations of SPMs (132), highlighting the 
resolution of inflammation via n-3 PUFA-induced increase of SPMs 
as a potential new approach for MDD.

Besides inflammation, PUFAs have also been directly linked to the 
elevation of neurogenesis, though confirmation in clinical studies is, 
to our knowledge, lacking at this point. Third, circumstantial evidence 
also suggests a link between the MDD effect of PUFAs and the 
HPA-axis as chronic EPA supplementation prevents increases in 
plasma corticosterone levels in mice (135, 136). Moreover, lower 
plasma n-3 PUFA levels were associated with an hyperactive HPA-axis 
in the general population (137) and plasma DHA levels negatively 
associated with evening cortisol concentrations in recurrent MDD 
patients, adding fuel the argument that PUFAs might play a role in 
HPA-axis activity (138). Further, another underlying PUFA-influenced 
mechanism that was recently identified relates to the dopamine system 
in the brain. Specifically, via a n-3 PUFA deficiency during gestation, 
the authors identified changes in brain phospholipid content which 
eventually manifested itself into motivational deficits in adulthood. 
This finding was further associated with increased inhibition of D2 
receptor-expressing medium spiny neurons onto dopamine D1 
receptor-expressing neurons in the nucleus accumbens (139). Though 
less research has been conducted on the impact of saturated fatty acids 
on MDD, recent investigations support an impact of this fatty acid 
subtype on depressive mechanisms. The specific accumulation of 
palmitic acid in the hypothalamus of mice exposed to a high-fat diet 
was found to be  associated with the onset of depression and the 
inhibition of the 3′,5′-cyclic AMP (cAMP)/protein kinase (PKA) 
signaling pathway (140) (see Figure 1). These findings offer a potential 
explanation for the association between the consumption of a 
Western-type diet and the prevalence of major depressive disorder 
(MDD) [(141); also see later].
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Finally, the proposition that eCB signaling may be involved in 
MDD is primarily supported by evidence indicating that the eCB 
system functions as a sophisticated signaling system that modulates 
synaptic transmission through retrograde, non-retrograde, and 
neuron-astrocyte signaling mechanisms (112). The disruption of eCB 
signaling has been associated with negative emotional states (142) and 
heightened stress responses (142). Furthermore, there is evidence 
suggesting that eCB signaling plays a role in the dysregulation of the 
HPA-axis. For instance, the signaling of amygdalar AEA through CB1 
receptors has been shown to contribute to the magnitude of the HPA 
response in rats (143). In addition to the HPA-axis, the eCB signaling 
system has also been implicated in neuroinflammation. Specifically, 
studies have demonstrated that rodents with overexpression of the 
CB2 receptor exhibit reduced levels of stress-induced inflammatory 
cytokines, whereas CB2 receptor knockout animals display an 
exacerbated neuroinflammatory phenotype (144). These observations 
are likely attributed to the expression of CB2 receptors on microglia, 
as both associative and causative evidence have linked the CB2 
receptor on microglia to anti-inflammatory properties (114), which 
may be modulated by AEA (145). While the role of the CB1 receptor 
in neuroinflammation has been investigated in some studies (146), 
conclusive evidence is lacking, necessitating further research in this 
area. Thirdly, a substantial body of evidence supports the role of the 
eCB system in neurogenesis. Specifically, the CB1 receptor has been 
identified as a mediator of adult neurogenesis (147, 148), a process 
that is likely facilitated by 2-AG in rodent models (149). In contrast, 
contradictory findings have been observed regarding the involvement 
of the CB2 receptor in neurogenesis, particularly in animals lacking 
CB2 receptors (150, 151). Consequently, further research is necessary 
to establish definitive conclusions regarding the role of the CB2 
receptor in neurogenesis. Lastly, several studies have even claimed the 
eCB receptors and their ligands as direct antidepressant targets. 
Indeed, AEA was shown to treat depression induced by acute stress in 
preclinical models (152). Furthermore, inhibitors for monoacylglycerol 
lipase (MAGL), the 2-AG-degrading enzyme, were successfully tested 
in preclinical models of MDD (153) and are likely to enter clinical 
trials soon.

Together, it is clear that fatty acids play a substantial role in the 
regulation of mood and as such the development of MDD with a 
particular role for the diet in maintaining this balance. Nevertheless, 
although their role and even their modulation appears advantageous 
to treat MDD, using fatty acids as novel targets for treatment seems 
premature at this stage as a better understanding of the underlying 
mechanisms of action seems highly desired given their wide 
physiological impact on cellular processes. Still, given the exceptional 
findings that have been generated by the use of this lipid, treatment 
regimens with fatty acids (in some form) appear to have an 
auspicious future.

3. Depressive signs in lipid-related 
disorders

Another approach to underscore the impact of lipids in MDD is 
by highlighting the comorbidities and/or reciprocal relationships 
between depressive symptoms and lipid-related disorders. For this 
purpose, the following paragraphs shortly highlight the links between 
MDD and obesity and type 2 diabetes.

3.1. Obesity

Overweight and obesity are generally defined as excessive fat 
accumulation that pose individuals at risk to health (154), which is 
often measured by the use of the body mass index [BMI; though the 
latter metric does not accurately represent fat amount and content 
(155)]. Excess fat is initially stored in adipose tissue depots that are 
able to expand in size, concomitantly causing weight gain. However, 
when the maximal capacity to store fat in the adipose tissue depots has 
been reached, lipids will accumulate in alternative, more deleterious 
places such as the arteries and the liver. This latter process is also 
referred to as ectopic lipid accumulation and is associated to 
pathophysiological processes such as inflammation (among other 
processes) (156).

Indeed, the low-grade inflammatory state during obesity is 
considered a prime instigator of depression onset in obesity (17, 157, 
158), even in metabolically healthy obese individuals who are 
characterized by only minor inflammatory elevations (159). A 
potential underlying mechanism for the development of a depressed 
state resulting from persistent low-grade inflammation involves the 
manifestation of neuroinflammation, which can lead to alterations in 
brain structure and excitability (17).

Another pathway that links MDD to obesity is via the HPA axis. 
In stressed individuals, weight gain is attributed to dysregulation of 
the HPA axis, mediated by cortisol-induced activation of brain 
glucocorticoid receptors, which subsequently promotes the 
consumption of palatable food. This effect leads to a reduction in HPA 
activity, providing temporary alleviation of negative affective states 
(160). This causal cycle between obesity, stress and depression is 
congruent with the well-established finding that obese individuals 
(adults, adolescents and children) are at increased risk to develop 
depression (161, 162), implying that obesity might also predispose 
individuals to depression. However, the relationship between obesity 
and depression seems rather bidirectional as underlying mechanisms 
are very closely intertwined (see the examples of inflammation and 
HPA-axis here above) (158, 162). This close connection was further 
exemplified by evidences showing that deep-brain stimulation in the 
nucleus accumbens, which is an antidepressive approach (163), is also 
effective in reducing body weight in obese rodents and patients (164), 
implying an overlap in the brain structure and neurotransmitter 
systems controlling mood at one hand and motivation for food at the 
other hand. As such, depression and obesity appear rather as a 
reciprocal relationship with each component contributing to and 
aggravating the other (162).

Indeed, vice versa, MDD patients categorized under the specifier 
atypical depression strongly associate with elevated BMI and are 
characterized by a plasma lipid profile which is similar to obese 
individuals (165). As such, obese individuals tend to develop the 
atypical MDD subtype (84), which is often associated with a more 
complex disease course [partly due to reduced sensitivity to 
pharmacological antidepressants (166)]. An underlying mechanism, 
which has been linked to the atypical subtype of MDD, is leptin 
signaling. While leptin is most recognized for its regulatory function 
on satiety and appetite (167), leptin resistance associates specifically 
with atypical MDD in humans (168). Furthermore, treatment with 
metreleptin, a leptin analog, possesses antidepressant properties in 
patients (169), further supporting the notion that leptin signaling is 
likely involved in atypical MDD.
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3.2. Type 2 diabetes

Next, to inflammation, ectopic lipid accumulation also results in 
the development of insulin resistance in both skeletal muscle and liver 
tissues (170). Insulin resistance refers to a pathological condition 
wherein cells exhibit an inadequate response to insulin, leading to 
disruptions in both lipid and carbohydrate metabolism (171). Diabetes 
mellitus is a clinical manifestation of insulin resistance and is the most 
prevalent metabolic disorder in humans, potentially leading to severe 
complications and organ failure (172). Diabetes mellitus is commonly 
categorized into three distinct types (type 1, type 2, and gestational), 
with type 2 diabetes representing the majority of diabetic cases, 
accounting for approximately 90%–95% of total diagnoses. Type 2 
diabetes is typically characterized by a combination of pancreatic beta 
cell deterioration and dysfunction, alongside insulin resistance in 
target tissues (173).

The co-occurrence of MDD and type 2 diabetes has gained 
significant attention among researchers due to the parallel increase in 
the prevalence of both disorders. As such, investigations have been 
conducted to explore their potential interrelation. Evidence suggests 
that depression is associated with a significantly higher risk of 
developing type 2 diabetes, and conversely, individuals with type 2 
diabetes have an increased risk of developing depression, although the 
latter association is less pronounced (174, 175). These observations 
support the idea that MDD and type 2 diabetes are intertwined and 
that their association is bidirectional, implying that a comprehensive 
approach to the management of these disorders may be beneficial 
(174–178). Indeed, diabetes medications such as metformin promote 
antidepressant-like responses by mechanisms that are, thus far, 
unclear (179, 180). Hence, since insulin resistance exerts its influence 
on numerous aspects of human metabolism beyond lipid metabolism, 
the exclusive contribution of lipid-related mechanisms to the 
association between depression and type 2 diabetes remains uncertain, 
given the present knowledge. However, given the impact of high-fat 
diets, obesity, and lipid profiles on depressive outcomes (178), it is 
reasonable to hypothesize that lipids may play a role in the relationship 
between depression and type 2 diabetes, to some degree, in patients 
affected by the latter.

4. Conclusion

An increasing amount of data demonstrates compelling evidence 
for the rise of MDD in global society. Although lipids are central 
players in neurophysiology and pathology, their potential involvement 

in the context of MDD has received relatively little attention. The 
evidence presented in this review emphasizes the potential 
contribution of lipids in elucidating the complex pathophysiology of 
MDD and in enhancing the efficacy of existing therapeutics. 
Furthermore, lipids may help explain the already known underlying 
mechanisms involved in MDD, such as disturbances in inflammation 
and dysregulation of the HPA-axis. The available evidence also 
suggests that an unhealthy lifestyle, particularly a high-fat diet, can 
significantly impact the development of MDD, an aspect that has been 
controversial in the literature (181). Therefore, further research is 
necessary to investigate the potential effect of diet on MDD and 
existing antidepressive approaches. Finally, the bidirectional 
association between MDD and lipid-related disorders such as obesity 
and type 2 diabetes implies the existence of shared underlying 
mechanisms, which could be  employed for the management and 
treatment of both conditions.
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