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Introduction: Medications which target benzodiazepine (BZD) binding sites 
of GABAA receptors (GABAARs) have been in widespread use since the 
nineteen-sixties. They carry labels as anxiolytics, hypnotics or antiepileptics. All 
benzodiazepines and several nonbenzodiazepine Z-drugs share high affinity 
binding sites on certain subtypes of GABAA receptors, from which they can be 
displaced by the clinically used antagonist flumazenil. Additional binding sites exist 
and overlap in part with sites used by some general anaesthetics and barbiturates. 
Despite substantial preclinical efforts, it remains unclear which receptor subtypes 
and ligand features mediate individual drug effects. There is a paucity of literature 
comparing clinically observed adverse effect liabilities across substances in 
methodologically coherent ways.

Methods: In order to examine heterogeneity in clinical outcome, we screened 
the publicly available U.S. FDA adverse event reporting system (FAERS) database 
for reports of individual compounds and analyzed them for each sex individually 
with the use of disproportionality analysis. The complementary use of physico-
chemical descriptors provides a molecular basis for the analysis of clinical 
observations of wanted and unwanted drug effects.

Results and Discussion: We found a multifaceted FAERS picture, and suggest 
that more thorough clinical and pharmacoepidemiologic investigations of the 
heterogenous side effect profiles for benzodiazepines and Z-drugs are needed. 
This may lead to more differentiated safety profiles and prescription practice for 
particular compounds, which in turn could potentially ease side effect burden 
in everyday clinical practice considerably. From both preclinical literature and 
pharmacovigilance data, there is converging evidence that this very large class 
of psychoactive molecules displays a broad range of distinctive unwanted effect 
profiles - too broad to be explained by the four canonical, so-called “diazepam-
sensitive high-affinity interaction sites”. The substance-specific signatures of 
compound effects may partly be mediated by phenomena such as occupancy 
of additional binding sites, and/or synergistic interactions with endogenous 
substances like steroids and endocannabinoids. These in turn drive the wanted 
and unwanted effects and sex differences of individual compounds.
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1. Introduction

1.1. GABAA receptors

GABAA receptors are a heterogeneous protein family in the 
nervous system and in non-neuronal tissues. They assemble as 
transmembrane homo-or heteropentameric anion channels, which 
specifically conduct bicarbonate and chloride anions and are gated by 
the endogenous ligand GABA. In most instances, opening of neuronal 
channels facilitates chloride movement from the extracellular space 
into the cytoplasm, with a net inhibitory effect (1–3). GABAARs can 
be categorized into (1) postsynaptic receptors, which facilitate fast 
point to point communications between cells following action 
potentials, (2) extrasynaptic ones, which show high GABA affinity and 
a steady, non-desensitizing stream of ionic flow in order to provide 
tonic inhibition, as well as (3) perisynaptic receptors thought to chiefly 
gate synapses (4). Moreover, presynaptic GABAA receptors were 
described (5–7).

Due to the existence of 19 GABAA receptor genes encoding for 
α1-6, β1-3, γ1-3, δ, ε, π, ρ1-3, θ subunits in human and non-human 
mammals, and variants from splicing and RNA editing, the number 
of possible GABAAR pentamers is vast even considering the hitherto 
identified assembly rules (8–16). It is generally believed that most 
receptors contain two to three β- (or β-like subunits), one or two 
α-subunits, and one odd subunit which is most commonly γ2, 
oriented in a counter-clockwise manner, in α-β-α-γ-β-order. However, 
there is still an overwhelming number of receptor subtypes with 
unknown or divergent native receptor composition, assembly and 
stoichiometry (17, 18). Their physiological functions and 
pharmacological properties vary greatly, as known from heterologous 
expression systems as well as in vitro and in vivo studies in rodent 
systems (19–24).

1.2. Benzodiazepines and Z-drugs

Benzodiazepines have dominated the pharmaceutical market of 
GABAA receptor targeting compounds since their introduction in the 
1960s by Hoffmann La Roche (25). At the time, they replaced the 
previous generation of GABAA receptor targeting central nervous 
system (CNS) depressants, the barbiturates, due to a better 
pharmacological profile and safer use. They are a heterocyclic class of 
molecules chemically defined by an aromatic benzyl ring annulated to 
an unsaturated diazepine-ring (Figure  1). The compounds that 
incorporate a 1,4 – diazepine partial structure are the ones most 
frequently used clinically. To exert effects at low doses, BZDs require 
a high affinity binding site on GABAA receptors which is known to 
be localized at extracellular interfaces between an α1-3,5 “principal” 
subunit, together with a γ1-3 “complementary” subunit (27–33). 
Preclincial research and the low abundance of the γ3 subunit have led 
to the notion that the four sites formed by α1-3,5 together with γ2 

account for the major share of drug effects that are mediated by the 
resulting four high affinity binding sites. Many receptors that lack the 
high affinity sites still can be  modulated by BZDs in higher 
(micromolar) concentrations but lack low concentration BZD effects 
(34–36). However, it should be noted that the distinction is largely 
based on data originating from heterologous expression systems 
which do not account for endogenous GABAA receptor modulators 
and their allosteric interactions with BZD effects (37, 38).

As a class, BZDs have a broad variety of therapeutic effects, 
including anxiolysis, hypnosis, sedation, muscle relaxation and 
anticonvulsant effects (39–42). Dose-dependent euphorogenic and 
amnestic actions are described as well, which might contribute to their 
popularity in recreational and illicit use (43). In the Anatomical 
Therapeutic Chemical Classification (ATC) System, BZDs run under 
the codes N03 (antiepileptics), and N05 (psycholeptics) in which they 
are further divided into N05B (anxiolytics) and N05C (hypnotics and 
sedatives). They are useful therapeutics in many diseases and 
disorders, such as anxiety disorders, epilepsy or sleeping disorders. 
However, in most therapeutic regimens their broad pharmacological 
profile evokes unwanted or adverse effects in addition to the wanted 
effects. General side effects of BZDs include cognitive impairment 
(44), increased risk of fall and injury in the elderly (45), disturbance 
of sleep architecture (46), sedation, and muscle relaxation, among 
others (42, 47, 48). Sudden discontinuation after prolonged use may 
lead to withdrawal symptoms such as depressive mood, irritability, 
sleep disturbances, muscular tension, and tremor or even grand 
mal-like seizures. Treatment-emergent BZD use disorder is a rare, but 
sometimes serious adverse drug reaction. Additionally, in less than 1 
% of patients or users, BZDs can induce paradoxical reactions ranging 
from talkativeness, restlessness, hyperactivity, excessive movement, to 
agitation and aggressive behavior in word and action, or even to 
seizures (46, 49, 50). Juveniles and elderly are especially susceptible to 
adverse effects (39).

Another group of molecules which target the high affinity 
benzodiazepine binding sites on GABAARs, are the Z-drugs: zaleplon, 
zolpidem, zopiclone and eszopiclone (see Figure  1). They were 
introduced in the 1990-ies and marketed as drugs of the millennium 
with claims for lower abuse potential and fewer side effects compared 
to BZDs. However, since their launch, the number of adverse event 
reports connected to the Z-drugs has been rising. They were shown to 
produce euphorogenic effects like prominently abused 
benzodiazepines such as lorazepam (Ativan), alprazolam (Xanax) and 
flunitrazepam (Rohypnol) (51). In addition, paradoxical reactions 
similar to those of BZDs have been described for Z-drugs as well (52). 
Overall, the side effects for Z-drugs are converging toward the ones 
observed for BZD administration, apart from a better performance on 
some cognitive measures in older populations (53). We will refer here 
to benzodiazepines and Z-drugs together as “BZ-site ligands” 
for brevity.

A variety of prescription drugs can affect benzodiazepine 
pharmacokinetics and effects by interfering with their liver 
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metabolism through the cytochrome P450 (CYP) system, especially 
isoenzyme 3A4 and 2C19 action (54–57). This can lead to 
accumulation of the compounds, with severe side effects, or to therapy 
failure due to accelerated clearance of BZ-site ligands. Combining 
diazepam (Valium) with drugs such as rifampicin or the antiepileptic 
drug carbamazepine can dramatically accelerate its clearance (58–60). 
Hormonal oral contraceptives, on the other hand, can reduce 
clearance and increase the half-lifetime for multiple benzodiazepines 
(61–65). Natural grapefruit juice can severely impair diazepam 
metabolism by inhibition of CYP3A4 (66, 67) leading to clinically 
relevant stronger diazepam effects and accumulation. It has been 
observed that additional benzodiazepines can interfere with other 
CYP isoenzyme activity and/or with glucuronidation (68–71).

1.3. Useful or problematic drugs: 
controversial issues concerning dose 
escalation, non-medical use, and 
unwanted effect severity

Between 1996 and 2014 the number of adults in the US that 
filled prescriptions for BZ-site ligands increased significantly (8.1 

million, 4.1% to 13.5 million; 5.6%) (72). Accordingly, the total 
filled quantity tripled and overdose deaths involving BZ-site 
ligands quadrupled from 0.58 to 3.07 per 100.000 adults. There is 
an evident gap between prescription rates of BZ-site ligands 
between sexes reported in multiple sources, such that women 
receive prescriptions for these drugs about twice as often as men 
(73, 74). Remarkably, despite this fact and their widespread usage 
in the clinics, coherent systematic studies on sex differences in 
effects of BZ-site ligands are rare. The existing studies point toward 
a controversy in terms of substance misuse risk due to sex with 
some indicating male sex as a risk factor (75–77) and others vice 
versa (78–80). However, due to different study designs, comparison 
among them is difficult.

Owing to their widespread in vivo effects, BZ-site ligands are 
prominent among commonly misused drugs. Since they have mainly 
CNS depressant effects, they are categorized as “downers” (81). In the 
US, all benzodiazepines are controlled in schedule IV of the 
“Controlled Substances Act” meaning they are considered to have 
relatively low addictive properties while serving a medical need. 
Nonetheless, BZDs and to a similar extent Z-drugs can cause physical 
and psychological dependence after relatively short periods of time, 
which is why the rule for treatment regimen is “as short as possible, as 

FIGURE 1

Chemical entities of benzodiazepines and Z-drugs, as in “New benzodiazepines in Europe review 2021” (26). (A) Benzodiazepine scaffolds are depicted. 
(B) Z-drug scaffolds, note that zopiclone comprises two entities (enantiomers), which are not reflected in this 2D- representation.
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long as needed.” An added concern is that BZ-site ligands may induce 
drug tolerance in many of their effects, meaning that a higher dose is 
required for achieving the same effects.

Therefore, although they are generally perceived as a safe class of 
compounds, BZDs and Z-drugs can be  problematic in long term 
treatments and illicit drug use. If taken alone, the potential of 
benzodiazepine overdose to cause fatal adverse effects is comparatively 
low in contrast to other depressants, such as barbiturates, but existent 
(82–84). Between 2005 and 2011 the emergency department visits that 
involved BZ-site ligands almost doubled, according to the DAWN 
(Drug Abuse Warning Network) report (84). The risk for serious 
outcomes during an emergency department visit was higher for 
benzodiazepine users compared to non-users, and was escalated 
further by combining benzodiazepines with alcohol or opioids (84). 
In addition, BZDs have been shown to approximately double the risk 
for motor vehicle accidents (85), and similar effects have been 
described for zopiclone (86, 87).

BZ-site ligands are often not a primary drug of abuse, but are 
taken in combination with other drugs (43). In particular, BZDs 
with a rapid onset of action can create euphoric effects, usually 
observed at higher concentrations. Diazepam (Valium) and 
alprazolam (Xanax) are combined with methadone to potentiate its 
mood enhancing effect further (43). Cocaine and other stimulant 
users utilize BZDs to mitigate side effects (43) or for “coming 
down.” The analysis of more than 1,200 oxycodone related drug 
abuse deaths from a postmortem database highlighted the 
prevalence of diazepam co-abuse in oxycodone users (84), as also 
described in other sources (88). The combination of alcohol and 
BZDs is particularly problematic given the low inhibition threshold 
of alcohol procurement by its social acceptance and easy 
accessibility (89). Furthermore, alcohol and BZ-site ligands both 
chiefly act as depressants, thus exerting a compounded effect when 
taken together. There is some evidence that for individuals with 
alcohol use disorder (AUD) a stronger psychoactive effect can 
be achieved after benzodiazepine administration. People with AUD 
in their familial history may also experience a different sensitivity 
and effects of alprazolam (90–93). Studies exist which describe drug 
– alcohol interactions and adverse outcomes that are associated 
with BZ-site ligands, but systematic comparisons between 
individual drugs are lacking. Thus, it remains unclear for most 
approved substances whether they are more or less problematic in 
different forms of medical and non-medical use, despite 
considerable anecdotal evidence that suggests that specific 
compounds are particularly well suited, e.g., as date rape drug, or 
have tendencies to elicit bad trips.

After all, Bz-site ligands have been an indispensable part of 
everyday clinical practice for decades and they remain so today (94). 
Attempts to restrict their use via tighter regulatory requirements for 
their prescription were followed by an increase in overdose 
emergencies involving drugs with a less favorable safety profile (95–
97). Moreover, if due to excessive Bz-site ligand doses, acute sedation 
or respiratory depression are readily antagonized by intravenous 
flumazenil in clinical or emergency medicine settings. Thus, increased 
awareness and a more detailed understanding of the mechanisms 
mediating unwanted and at times dangerous BZD effects, in addition 
to supporting rational clinical decision making, could help to promote 
developing drugs with similar benefits but even more favorable 
risk profiles.

1.4. FAERS and use of pharmacovigilance 
data

At least partly because those substances are no longer protected 
by patents, comprehensive controlled studies and interindividual 
substance comparisons according to current scientific standards are 
lacking for the majority of BDZs & Z-drugs among indications in 
which they are currently used.

Pharmacovigilance is a rapidly growing scientific discipline that 
strives to detect, assess, understand and prevent drug-related issues 
and adverse events, thus in short includes every activity that is 
connected to better drug safety (98). To collect real world post 
marketing drug-adverse event observations, the U.S. government 
provides a federal database called FDA Adverse event reporting 
system (FAERS). The FAERS database includes adverse events, 
medication errors and product quality complaints that were submitted 
to the FDA by either health care professionals such as prescribers or 
pharmacists, but also by patients or other public members (99). 
Pharmacovigilance analysis typically utilizes these metrics to 
determine if a drug is associated with an adverse event. A greater value 
for these measures signifies a more substantial association between the 
medication and the unfavorable outcome. Thus, post-marketing 
pharmacovigilance data such as those in FAERS can provide highly 
useful signals for adverse reactions that were not observed in the early 
phases of the drug approval procedure. Due to the inherent limitations 
of the real-world data, such as a gap in provided dosages of the 
reported drug, co-usage of other substances, a lack of demographic 
data and others, specialized methods of data analysis have been 
developed (100–102). It is generally understood that a strong signal 
implies an association between a drug and an outcome, but cannot 
provide any evidence for causation. Thus, and due to other properties 
of real-life observations, pharmacovigilance data is not suitable for 
comparative pharmacology (101). However, it is the only data available 
to generate hypotheses on the basis of large numbers of real world 
observations and across a substantial number of drugs.

FAERS encourages use of “preferred terms” to report adverse 
events in MedDRA terms (See Figure 2). The MedDRA dictionary 
hierarchy is a categorization of medical terminology, which hence 
allows to analyze FAERS reports at the different MedDRA levels. The 
five levels of the dictionary are System Organ Class (SOC), High Level 
Group Term (HLGT), High Level Term (HLT), Preferred Term (PT), 
and Lowest Level Term (LLT) (103). For an overview of the MedDRA 
hierarchy and which levels were used in this study, see Figure 2A.

Since Bz-site ligands (comprising benzodiazepines and Z-drugs) 
are a broadly prescribed class of medications, the number of reports 
connected to their usage is vast. However, no comprehensive 
comparison between reports of individual compounds for Bz-site 
ligands has been performed to our knowledge yet. Here, we employ 
disproportionality analysis, which provides mathematically well-
defined parameters for the strength of an association signal (104). 
Specifically, the commonly used information component (IC) value 
gives a measure of the strength of the quantitative dependency 
between the specific drug and the reported adverse event. Here we use 
the IC025, see Figure 2 and methods, which defines the endpoint of 
the 95% credibility interval (100). We analyzed a large FAERS dataset 
in order to generate individual drug profiles. We found and reported 
tendencies of drug-heterogeneity, some of which are confirmed by 
other sources containing clinical study data.
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Molecular foundation for drug heterogeneity may be triggered by 
a variety of off-target and on-target effects. Conducting systematic 
investigations to explore every potential off-target effect of a drug may 
be impractical, given the vast number of molecules in the body. Thus, 
off target effects were not further considered in this study. For 
on-target heterogeneity, structural data provides hypotheses for 
mechanisms that can drive a multiplicity of overlapping and 
non-overlapping effects of the investigated drugs. These largely stem 
from multiple binding sites and their cooperativity at various receptor 
subtypes. The compounds for which informative FAERS records exist 
were thus also examined in terms of their chemical features that drive 
the pharmacodynamics with the hope to identify common drug 
properties that drive certain unwanted effects and a short overview of 

binding site heterogeneity within the family of GABAARs is 
also provided.

2. Results

We mined the publicly available FAERS (FDA Adverse Event 
Reporting System) data set from Khaleel et  al. (105) to establish 
pharmacovigilance profiles per drug and sex, for all Bz-site ligands 
with sufficient data. For all steps of our analysis, the datasets from 
female and male reports were treated separately to obtain individual 
results per sex, in the same vein as done by Drug Central (106). The 
applied workflow is displayed in Figure  3 (see also the Methods 

FIGURE 2

Overview of MedDra dictionary system and employed IC025 usage. (A) The five levels of MedDra hierarchy are displayed with specific examples to 
them; red: system organ class (SOC); blue: High level group (HLG), Cyan: Preferred term (PT). Arrows indicate the direction from higher levels to lower 
levels, dashed arrows indicate that we surpass the high level terms in the analysis shown in this work. (B) Different IC025 values and their respective 
calculations are shown. IC025 reflects on the drug-AE association; cIC025 is the sum of all IC025s for a drug within an HLG; ScIC025 gives the 
summation of cumulative IC025s for a HLG or SOC.
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section). The full data set comprised 170.565.117 drug – adverse event 
combinations, including 100.085.277 female drug-adverse event 
combinations and 59.680.210 male drug-adverse event combinations. 
These reports were filtered for 173 drugs composed of benzodiazepines 
and Z-drugs from our drug list (for detailed information, see Methods 
section and Supplementary Item 1). The filtering process left us with 
2.701.733 female drug-adverse event combinations and 1.447.028 
male drug-adverse event combinations, from the use of 44 
benzodiazepines, for which a FAERS entry exists, and which are 
referred to as data pool 1 for brevity (see Figure  3; 
Supplementary Table S1). Disproportionality analysis was performed 
to identify drug-adverse event associations. Our primary criteria for 
inclusion of a record into data pool 2 were the commonly used 
thresholds of PRR > 2 and IC025 > 0 (107–110) as well as the existence 
of five or more records. Supplementary Item 2 provides the 
composition of pools 1 and 2 (see Figure 3) with respect to the total 
reports per drug that were analyzed. The main criterion used for 
subsequent data filtering was the IC025 value, as suggested by the 
UMC (Uppsala Monitoring Center) (111), since higher IC025 values 
reflect a stronger signal. Only 39 of the 44 drugs found in the dataset 

met the applied criteria and thus were used for further analysis (pool 
2). The raw data is provided in Supplementary Items 3, 4 in 
Excel format.

The records from pool 2 (after the disproportionality analysis) 
were analyzed with the use of the MedDRA categories, and in some 
instances pool 1 data was utilized for comparison. To analyze pool 2 
data, which contains only drug-AE associations, we  employ the 
following nomenclature (see Figure 2B): IC025 denotes the value for 
a particular drug and an individual adverse effect combination where 
usually only positive values from pool 1 were used in the downstream 
calculations of aggregate values. Simple sums, cumulative IC025 
(cIC025), are the aggregate of all positive IC025 values for a specific 
drug within a category (HLG or SOC). Summative cumulative IC025 
(ScIC025) indicates the sum of cIC025-values for all drugs combined 
within the group (HLG or SOC), see Figure 2B.

2.1. Overview across all SOCs

At the highest MedDRA level of system organ classes (SOCs), 
associations were obtained for all 39 drugs, in 27 SOCs, Figure 3. To 
obtain an overview, the summed cumulative IC025 (ScIC025) values 
per SOC were computed and are displayed in Figure  4A. Not 
surprisingly, the largest summed cumulative signals were observed for 
“nervous system disorders” and “psychiatric disorders,” together 
comprising the “neuropsychiatric” group. Owing to the widespread 
non-medical use of Bz-site ligands, it is not unexpected that the SOC 
“injury, poisoning and procedural complications” also displays a high 
ScIC025 as seen in Figure 4A, closely followed by “investigations.” The 
top four SOCs were fully decomposed into the contributing HLGs, see 
Supplementary Figures S1–S3.

For each of the four top SOCs, we ranked the contributing drugs 
by ScIC025 over the whole SOC to investigate the gross contributions. 
The top 10+ drugs for each SOC are depicted in Figure 4B, where 
more than 10 drugs are shown because the top 10 differed between the 
sexes. It is noteworthy that each SOC features a unique drug ranking, 
and the top ranked drug is different for all four analyzed SOCs. 
Clobazam is top ranked in “nervous system disorders” for both sexes, 
and occurs in the top 10 for the other three SOCs as well. In the 
“psychiatric disorders,” the top ranked drug is clonazepam, which is 
also found among the top  10  in all four datasets. Its relative 
contribution to each SOC differs in part considerably between sexes. 
Midazolam, as a procedural anesthetic, is the top ranked compound 
in the HLG “injury, poisoning and procedural complications,” and is 
not among the top  10  in the “psychiatric disorders.” The SOC 
“investigations” is very heterogeneous, as it does not reflect a single 
organ system but comprises parameter changes across all SOCs. There, 
striking differences in cIC025 between the male and female signals 
occur for several drugs, e.g., temazepam and nitrazepam. Closer 
inspection of this SOC and its constituent subgroups, see 
Supplementary Figure S3, reveals high ScIC025 value for females in 
cardiac investigations. This is also matched by the higher ScIC025 for 
females in the SOC “cardiac disorders,” Figure 4A.

Results obtained for the four analyzed SOCs suggest a 
heterogeneous side effect pattern associated with individual 
compounds – while some drugs occur only in the top 10 of individual 
SOCs (e.g., brotizolam only occurs in “investigations”), others 
dominate several or all of the SOCs. In order to investigate drug 

FIGURE 3

Pipeline that was performed on the FAERS dataset. Green boxes 
display the results obtained after the filtering steps, which are 
represented by blue boxes. Data that was used for analysis according 
to MedDRA categories is identified as “pool 1” and “pool 2” 
respectively.
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heterogeneity upon more detailed decomposition, we zoomed further 
into the top two SOCs – after merging them into “neuropsychiatric 
reports,” see Figure 5. Supplementary Figures S1, S2 provide more 
details on the SOCs “nervous system disorders” and “psychiatric 
disorders” separately.

2.2. Analysis of neuropsychiatric AEs

Closeup analysis of the neuropsychiatric SOCs was performed in 
a next step. The largest contributing higher level groups in the 
neuropsychiatric SOCs are displayed in Figure  5. They comprise 
groups with “neurological/psychiatric disorders not elsewhere 
classifiable (nec),” two groups with disturbances in movement/motor 
systems, signs and symptoms related to sleep, anxiety signs, seizures, 
suicidal and self-injurious behaviors, and a group with disturbances 
in thinking and perception. The ScIC025 per HLG differs only to a 
small degree between sexes (Figure 5). As a next step we looked a 
drugs’ contribution in terms of cIC025 to each HLG.

In line with the large contributions to the ScIC025 by clobazam, 
clonazepam and diazepam to the whole nervous system and 
psychiatric SOCs, these drugs are seen to have rather large cIC025 
values in the individual neuropsychiatric HLGs as well. However, 

heterogeneity emerges at this level too: Clobazam is seen to contribute 
with a considerable association to the “seizures” HLG, as we have 
noted previously (112) but, e.g., with only a small signal to “anxiety 
disorders and symptoms.” In the two groups concerned with 
movement and muscle symptoms, several drugs carry different 
association strength as can be seen in Figure 5B where clobazam has 
a stronger signal in males.

2.3. Neurological disorders not elsewhere 
classified

Interestingly, the HLG 1 (“neurological disorders nec,” Figure 5A) 
accounts for almost half of the ScIC025 from the SOC “nervous 
system disorders” with a summed cumulative IC025 value of about 
900 in females and 800 in males. This HLG was thus analyzed in detail 
at the level of the individual adverse event associations (= IC025 
values), see Figure 6.

The major contributing AEs to this HLG are signs of sedation 
and over-sedation, including sedation, somnolence, sopor and 
coma, all indicative of CNS depression of various degrees (see 
Figure  6). The second largest group comprising agitation, 
restlessness and logorrhoea reflects paradoxical responses (see 

FIGURE 4

Distribution of AE associations across all organ system classes: (A) Summed cumulative IC025 (ScIC025) values per SOCs for all drugs which had a 
positive IC025 separated by sex. Bars reflecting female reports are light red, those reflecting male reports are light blue. (B) Pie charts are presented for 
the top 10 drugs for each sex (together 10 or more) with the highest cIC025 contribution to the four highest ranked system organ classes (SOCs) in 
terms of summed cIC025 (ScI025). The size of the displayed segments corresponds to the cIC025 contribution of each drug to the summed 
cumulative IC025 (ScIC025) and is shown as percentage. The outer circles reflect data for males, while the inner circles represent data for females, 
with the drugs sorted according to the female ScI025 rank values, starting at the top and descending in clockwise direction.
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Figure 6). It is interesting to note that the cumulative signal for 
logorrhoea differs markedly between the sexes, and displays some 
drug specificity. For example, logorrhoea sticks out in the male 
dataset (IC025 = 5.3), and shows no association for females. This is 
due to the low number of reports (<5) and thus was not taken into 

pool 2. More detail can be  found in the provided data in 
Supplementary Items 3, 4. In total, a large share of cIC025 in the 
neuropsychiatric groups thus reflects the known and expected signs 
of sedation and over-sedation on the one hand side, and paradoxical 
reactions on the other hand side.

FIGURE 5

Distribution of AE associations across the organ system classes “nervous system disorders” and “psychiatric disorders”: Higher level groups from the 
“nervous system -” and “psychiatric – disorders,” in which a summed cumulative IC025 of both sexes adds up to 300 or higher, are displayed as polar 
bar charts. The individual cIC025 contribution per compound to the summed one in the neuro-psychiatric disorders is displayed as patterned 
segments as defined in the legend. Drugs in the polar bar chart are sorted by their total contribution of ScIC025 within the whole SOC per sex from 
high to low, with the higher ranked drugs at the outer rims. The table below identifies the nine largest contributions from the top two SOCs. green: 
nervous system disorders; blue: psychiatric disorders.
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2.4. Highest ranked psychiatric HLGs

To investigate contributions to the cumulative neuropsychiatric 
signal beyond sedation and paradoxical responses in more detail, 
we analyzed the four psychiatric HLGs with the highest summed 
cumulative IC025 (Figure  3A) individually as shown in Figure  7. 
These comprise “psychiatric disorders nec,” “sleep disorders and 
disturbances,” “anxiety disorders and symptoms,” and “suicidal and 
self-injurious behavior.” Since sleep related disturbances occur both in 
the psychiatric and nervous system disorder SOCs, we merged these 
prior to the analysis (see Figure 2; Supplementary Figure S4). The 
individual AEs that contribute to each of the groups are provided in 
Supplementary Figures S4–S7 and Supplementary Table S2.

The HLG”psychiatric disorders nec” displays a higher fraction of 
total reports for males compared to females, and relatively balanced 
values are seen for the remaining three HLGs (Figure 7A). Diazepam 
has the highest cumulative signals for both sexes in the 
groups”psychiatric disorders nec” and “suicidal and self-injurious 
behavior.” Additionally, three of the five highest ranked drugs for both 

sexes are diazepam, alprazolam and clonazepam 
(Supplementary Table S2). Figure  7B provides for each drug the 
fractions of reports within each of the HLGs from panel A from the 
respective per drug 100% values. An interesting contributor to the 
male dataset “psychiatric disorders nec” is nordazepam, for which 
>13% of all associated AEs are from these four HLGs, Figure 7B. The 
group of “psychiatric disorders not elsewhere classifiable” comprises 
AE associations chiefly from abuse and withdrawal signs, see 
Supplementary Figure S5. We noted that nordazepam generally has a 
large signal, i.e., strong associations with “drug abuse,” “substance 
abuse” and related AEs. To look into these AEs more closely, 
we extracted the IC025 for each abuse-, addiction-and withdrawal 
relevant term from the neuropsychiatric SOCs on a per drug basis, 
and observed considerable heterogeneity there as well, see 
Supplementary Figure S8. In addition to nordazepam, oxazepam and 
lormetazepam have rather high IC025 values for most AEs related to 
abuse/addiction compared to loprazolam and flunitrazepam 
(triazulenone), which have only weak signals for males and no 
association for females at all. Notably, alprazolam is the only drug that 

FIGURE 6

Distribution of AE associations across the HLG “neurological disorders nec”: The top two polar bar charts display the individual adverse events that have 
a signal in this HLG as cumulative IC025 across all contributing drugs. For plotting, a cutoff was used: all AEs with a cumulative IC025 > 30 for both 
sexes added are plotted, the full dataset is in Supplementary Items 3, 4. The drugs are identified in the list on the bottom of the graph. Panel B is an 
enlarged view of panel A, note the cIC025 scale (0–20).
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is associated with all investigated AEs in that bucket 
(Supplementary Figure S8).

Clonazepam not only features a strong cIC025 in the “psychiatric 
disorders nec,” but is also among the top 5 ranked compounds in the 
HLGs “sleep disorders and disturbances,” “suicidal and self-injurious 
behaviors nec” and “anxiety disorders and symptoms.” In fact, for the 
male dataset, these four AE groups add up to nearly 10 % of all AEs 
this drug is associated with, Figure 7B.

In the merged HLG “sleep disorders and disturbances,” the 
strongest signals are seen for eszopiclone and zolpidem. For the case 
of eszopiclone, the fraction of reports falling into this HLG is also 
exceptionally high, as seen in Figure 7B. At the level of the individual 
adverse events that add up to the drugs’ cumulative signal in this 
group, eszopiclone is chiefly associated with signs of insomnia, while 
zolpidem is chiefly associated with various disturbances of sleep such 
as somnambulism and sleep related eating issues, see 
Supplementary Item 5. Interestingly, in sleep order and disturbances, 

two (male) and three (female) of the five highest ranked drugs are 
Z-drugs (Zolpidem, Eszopiclone, Zaleplon) as further described in 
Supplementary Table S2.

For the HLG “anxiety disorders and symptoms,” clonazepam is the 
top ranked drug for both sexes. For some drugs, striking differences 
in the normalized report numbers between sexes are seen 
(Supplementary Figure S7). Specifically, eszopiclone has a high 
cumulative signal of this HLG for females, but not for males. Vice 
versa, and, e.g., midazolam, tetrazepam and zaleplon feature stronger 
associations for males. The top AE observed in this HLG, namely 
agitation, (Supplementary Figure S7) is also contained in the 
neurological disorders nec. Group and is not specific for anxiety 
related issues. For individual drug-AE combinations, agoraphobia and 
panic signs add up to considerable signal strength for the case of 
clonazepam, in both sexes.

The selected examples highlight the fact that individual drugs 
have different association strengths with adverse events that belong to 

FIGURE 7

Detailed analysis of the top four psychiatric HLGs. (A) The left axis refers to the scatter plot. For each drug, the cumulative IC025 in the respective HLG 
is displayed. The drugs with the highest cIC025 value within each HLG are displayed on the graph; the respective cIC025 value is given next to the 
drug. The right axis refers to the bar graphs; blue: male, red: female; Bar height indicates the report percentage of all drugs within the HLG in relation to 
the reports of all drugs in all HLGs, as specified in the methods. Calculated as specified in the methods. (B) For each drug, the percentage of reports for 
a HLG in relation to the total reports from a drug are displayed as specified by the color legend. The raw data that is summarized in this Figure can 
be found in Supplementary Items 2–5 and Supplementary Table S2.
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different groups of symptoms, and in part also between sexes. While 
the findings need to be interpreted with due care, the overall picture 
that emerges strongly suggests an unexpected degree of 
compound heterogeneity.

2.5. Sex differences

Given the occurrence of different signals for the two sexes in 
multiple datasets throughout our analysis, we next analyzed the data 
specifically with regard to sex differences in the neuropsychiatric 
SOCs on a per drug basis. In a first step, the merged neuropsychiatric 
data was visualized on a scatter plot where all drug/ AE pairs were 
plotted according to the respective sex-specific IC025 values, see 
Figure 8A. To capture those drug/ AE pairs, which have a stronger 
association in one sex, we filtered the data with an IC025 threshold of 
2: 1 as displayed in Figure 8A. The further the ratio is from 1:1, the 
greater the distance between the data point and the diagonal. Thus, 
neuropsychiatric drug/AE events that occur in one sex only with a 

positive IC025, are reflected by points on the axes in Figure 8A. From 
the pools that have a signal ratio > 2:1 (and a signal in both sexes), 
we investigated the AEs with the highest cumulative IC025 from all 
the drugs per sex. The resulting top 20 for each sex are displayed in 
Figures 8B,C. The drug-AE pairs that have a signal only in one sex 
were also further analyzed by filtering for 20 drug-AE pairs with the 
highest IC025, see Supplementary Figures S9, S10. In addition, 
we identified the 10 drugs, which have the biggest contribution to 
adverse events in the same dataset, thus for all drug/AE pairs with a 
cIC025 ratio > 2:1 (Figure 8D).

Multiple psychiatric AEs are found in the data pool with stronger 
signals in one sex. Signs of paradoxical responses such as logorrhoea, 
mania, restlessness, and hypomania are seen for several drugs with a 
stronger association in males, but are absent from the top ranked AEs 
in the female >2:1 dataset. Nordazepam has an outstandingly strong 
signal for males not only for paradoxical responses, but a wide range 
of neuropsychiatric signs (see Supplementary Figure S11). Logorrhoea 
is associated with male reports exclusively for nordazepam, 
tetrazepam, and oxazepam see Supplementary Figure S9. For the data 

FIGURE 8

Sex differences in signal strength for neuropsychiatric AEs: (A) Scatter plot with all AE/drug pairs that exceed an IC025 ratio of 2:1 in either sex 
displayed in strong colors, pale colors for those <2. Points on the diagonal have equal IC025 for both sexes. (B,C) Top 20 neuropsychiatric AEs from 
the data of panel A above the 2:1 threshold toward one sex, are displayed (male: B; female: C) with the per drug contributions color coded. (D) The 
top 10 contributing drugs from the male and female data above threshold.
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with a female: male ratio 2:1 or larger, the top ranked AEs are a mix of 
partly unspecific signs of neuropsychiatric changes. Among those 
AE-drug associations that are seen in females only, we  note that 
anterograde amnesia is particularly strongly associated for clorazepate 
and lormetazepam, in the striking absence of an association for males 
(Supplementary Figure S10). Intrigued by this finding, and due to the 
relevance for illicit uses such as date rape of amnestic drugs, we mined 
the dataset for amnestic effects and confirmed the strikingly strong 
association for these two compounds, see Supplementary Figure S12. 
A minor point of interest here is that zolpidem is associated with a 
panel of amnestic AEs for both sexes, to a higher extent than the 
classical benzodiazepines.

Zolpidem is one of a few compounds with a stronger signal in the 
male:female >2:1 dataset, while the converse is true, e.g., for 
bromazepam and the already mentioned lormetazepam. Of the 
compounds which display stronger associations for males, the 
majority has more female reports in pool 2, thus, the difference in 
signal strength is likely a specific phenomenon. From the data that can 
be  mined in this way from FAERS, findings concerning such 
sex-specific AE profiles of some drugs would be  an interesting 
substrate for further pharmacoepidemiological and clinical follow 
up studies.

2.6. Physico-chemical descriptors

In total, pharmacovigilance data strongly suggests that the profiles 
of Bz-site ligands differ considerably in terms of the human in vivo 
effects that they can elicit, and that safety profiles for some of the drugs 
might be somewhat incomplete. The question of molecular drivers of 
such heterogeneity are manyfold, and deserve brief consideration to 
further align the pharmacovigilance derived effects with testable 
hypotheses for future research.

To get insight into molecular patterns of similarity and 
heterogeneity at the drug level, we evaluated all compounds based on 
physico-chemical and 3D properties. This was done as the integration 
of pharmacophore models and fingerprints in pharmacovigilance data 
analysis can reveal previously unknown safety concerns associated 
with a drug scaffold, and thus enable the implementation of measures 
to enhance drug safety. One such measure is to avoid certain moieties 
in drug development or to abstain from certain drugs to circumvent 
the occurrence of specific adverse events. Furthermore, this could 
allow for the exclusion of these derivatives in specific patient cohorts. 
A systematic view onto drug similarities and differences can also 
reveal unexpected cliffs in the structure–activity landscape and thus 
inform bed-to bench considerations for further drug development.

In the past, it has been difficult to establish structure–activity 
relationships for molecules targeting the GABAA receptors due to 
small changes in chemical scaffolds causing in part unexpected 
observed heterogeneity of structure–activity landscapes derived in 
heterologous expression systems, or even in preclinical and clinical in 
vivo outcomes (113, 114). The goal here was to approach the question 
of heterogeneity from the perspective of pharmacovigilance, and to 
relate the outcomes with ligand-based approaches. To accomplish this, 
we used two methods to describe the physico-chemical properties and 
3D features of the molecules being studied. Firstly, we produced ligand 
fingerprints, which represent each molecule as a combination of 
recognized physico-chemical parameters, see Methods section. 
We  then clustered the molecules, as shown in the upper panel of 

Figure  9. Secondly, we  employed a pharmacophore model that 
incorporates both pharmacophore features (termed “color” by the 
used software) and molecular shape to group the substances based on 
their 3D orientation/size and functional groups, which are all critical 
factors in drug-protein target interactions. Their overlap in properties 
was used to group compounds, as shown Figure 9.

Our analysis revealed a more complex molecular landscape in the 
ligand fingerprint analysis than anticipated based on the 2D/3D-
structure similarity of the compounds, which is consistent with the 
more traditional pharmacophore analysis. The pharmacophore 
demonstrated that all isomers of the “xazolam” compounds 
(cloxazolam, ketazolam, mexazolam, oxazolam) formed a distinct 
cluster due to their shared structural features. Similarly, the triazolo-
compounds as well as the traditional 1,4-benzodiazepines such as 
diazepam and its metabolites also cluster together (Figure 9, lower 
panel). While ligand fingerprint analyses generally agree with the 
former, we resolved some unexpected clusters of compounds, such as 
zaleplon grouping together with lormetazepam (Figure  9, upper 
panel), which are structurally dissimilar based on 3D properties alone. 
Similarly, zolpidem formed a cluster closest to midazolam and 
clotiazepam, despite its distinct chemical 3D-body compared to the 
others. Thus, the ligand fingerprint analysis, based on various 
physicochemical properties, revealed a more nuanced picture, which 
is less intuitive but complements the 3D properties obtained by the 
pharmacophore results.

2.7. Complexity of on target effects

The from FAERS signals suggested considerable compound 
heterogeneity is not too surprising in the light of the observed 
compound promiscuity at single GABAARs in the past combined with 
the existence of multiple homologous GABAAR subtypes (17, 115, 
116). Recently structural data is accumulating that confirms and 
extends the existence of non-canonical binding sites and differential 
usage of binding modes, and thus provides structural correlates and 
hypotheses for effects specific to certain compounds. The current 
status of structural evidence is summarized in Figure 10.

The current structural evidence thus demonstrates several 
important points for the understanding of drug structure–activity 
relationships: (i) Compounds with a common chemical core can have 
different binding modes at the high affinity site, as demonstrated by 
the flumazenil binding mode that differs from the one observed for 
diazepam and alprazolam (118–120). (ii) The non-canonical sites that 
have been postulated on the basis of mutational studies are largely 
confirmed, and extended by the structural evidence (121, 122). The 
structural evidence again demonstrates distinct binding modes in 
these sites as well, as shown in Figure 9B (120). (iii) Biochemical 
evidence for further non-canonical binding sites, such as those 
observed at ECD β2+/γ2-interfaces (123) are supported by the 
observation of receptors that lack alpha subunits (17).

2.8. The complex relationship between 
chemical similarity and pharmacological 
trends

It is known that drug-protein interactions for ligands with 
chemical similarity form structure activity landscapes with “smooth” 

https://doi.org/10.3389/fpsyt.2023.1188101
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Koniuszewski et al. 10.3389/fpsyt.2023.1188101

Frontiers in Psychiatry 13 frontiersin.org

and “rugged” features, reflecting the interactions with binding sites 
that enable binding of similar molecules, and possess spatial features 
that lead to drops in activity due to small chemical changes. Thus, 
compounds that form clusters in chemical space are more likely to 
have overlapping pharmacological profiles – up to a degree. Intrigued 
by the seemingly dissimilar patterns of AEs found for zopiclone and 
eszopiclone, we analyzed these two compounds more closely along 

with another pair of chemically similar drugs, namely brotizolam and 
etizolam as displayed in Figure 11. For eszopiclone, the IC025 and 
fractional report share in the HLG “sleep disorders and disturbances” 
is outstandingly high. In contrast, zopiclone has no particularly strong 
association with any disturbance in sleep. This is intriguing as 
zopiclone is the racemic mix of eszopiclone and the presumed less 
affine/active R-enantiomer (124, 125).

FIGURE 9

Clustering of 39 benzodiazepines and Z-drugs (from data pool 2 in Figure 2) based on their physico-chemical parameters and 3D properties. Upper 
panel: results of a ligand fingerprint analysis, which groups compounds based on their physico-chemical descriptors. Lower panel: results of a 
pharmacophore approach, which considers the size/shape and functional groups of compounds, thus is based chiefly on 3D properties of the 
molecules. Multiple stereoisomers of substances were considered for 3D- structure analysis and denoted by “_1” or “_2”: For many compounds, only 
one structure exists, for enantiomers with a single chiral center two molecules exist as is the case for zopiclone, and for mexazolam, four molecules 
exist. The original values were obtained from vROCS® (for stereoisomer generation and shape/color calculations) and can be accessed in 
Supplementary Item 6. Connecting lines indicate some representative compounds that are grouped together by both, the ligand fingerprint analysis, 
and the pharmacophore approach. Dashed connecting lines indicate selected differences in clustering.
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First, it is very interesting to note that the top  10 AEs for 
eszopiclone and zopiclone display no overlap at all. As expected from 
the data presented in Figure 5, the majority of strong AE associations 
for eszopiclone are disturbances in sleep and sleep-related phenomena. 
They affect both sexes to a comparable degree. For these sleep related 
AEs, zopiclone in stark contrast has a mixed pattern of positive and 
negative associations. The top 10 AEs for zopiclone cover a broad 
spectrum of neuropsychiatric phenomena, some of which lack 
corresponding reports for eszopiclone altogether. For dystonic tremor, 
only male reports exist, and for muscle spasticity, a negative 
association for males and a robust positive signal for females are seen. 

In the case of intentional self-injury, which bears a strong association 
for zopiclone, the negative IC025 for eszopiclone strongly implies that 
this adverse event is associated specifically with zopiclone. These data, 
taken together, suggest that R-zopiclone is not simply a molecule with 
lower affinity (124), but rather can exert highly specific and dominant 
side-effects and can potentially overcome the paradoxical responses 
to eszopiclone on the sleep-related side effects. We also compared 
another pair of drugs which cluster together very closely in both 
fingerprints and pharmacophore features, namely etizolam and 
brotizolam. For this case, the FAERS profiles are highly similar as 
would be anticipated.

FIGURE 10

Benzodiazepine and zolpidem binding sites. (A) Extracellular high affinity binding site (BS) shared by BZDs and Z-drugs, which requires an α1,2,3 or 5 
subunit as a principal component (+) of the BS and a γ1-3 as a complementary part (−) of the interface. Light gray: α1+; dark gray: γ2-; red surface: 
ligands bound to the binding site in various structures as listed in the table. (B) Diazepam and zolpidem low affinity binding sites within the 
transmembrane domain (TMD) of the GABAA receptor. Diazepam density has been resolved in both the α2+/β2-, and the β2+/α1- pockets within the 
interface at the upper TMD between the two subunits. Zolpidem was found only in the latter, in 8DD2 (117). Light gray: β2+/γ2+ subunit, dark gray: 
α1−/β2- subunit; ligand surfaces are superposed in blue and cyan. The insert shows the three ligands in superposition, color coded to emphasize the 
different binding modes that diazepam displays in the two sites, respectively.
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3. Discussion

As FAERS data has serious limitations that cannot be  readily 
compensated for, pharmacoepidemiological studies would be needed 
to further substantiate or falsify the associations we  identified. To 
address the question of robustness, we  examined several selected 
drug-adverse event combinations that yield strong signals in our 
analysis with a semi-systematic search in the literature and in 
databases that rely in part on other means of evidence, such as the 
SIDER database (126) which chiefly utilizes product information, 
which in turn is derived from results obtained in appropriate clinical 
trials. The results of this analysis are provided in Table 1.

This compilation of converging pieces of evidence is far from 
comprehensive, but serves to demonstrate that strong associations 

derived from disproportionality analysis of large datasets often are 
confirmed in systematic studies.

With this study, we challenged the notion that benzodiazepines 
and Z-drugs are often considered to comprise a class of interchangeable 
drugs, apart from well accepted differences in pharmacokinetic 
properties. This is in striking contrast to anecdotal evidence and early 
preclinical literature (133). In order to examine data from human 
observations, we  performed a comprehensive analysis of the 
pharmacovigilance data of BZ-site ligand associated AEs mined from 
the FDA adverse event reporting system. We  included reports 
collected between 2004Q1 and 2021Q3. Those data suggest a diverse 
portfolio of AEs per compound, in part vastly different between 
individual compounds. This is partly reflected in product information 
and in the scientific literature, but systematic data and individual 

FIGURE 11

Top 10 neuropsychiatric AEs of four drugs to examine putative patterns of similarity induced by chemical similarity. (A) Eszopiclone and zopiclone: The 
left-hand side displays the top 10 adverse events of eszopiclone from the neuropsychiatric SOCs, as reflected by the IC025, and the corresponding 
values for zopiclone are displayed in addition. The right-hand side displays the top 10 adverse events of zopiclone from the neuropsychiatric SOCs, as 
reflected by the IC025, and the corresponding values for eszopiclone are displayed in addition. The y-axis reflects the IC025 value, which must 
be positive for an association between a drug and a reported adverse event. Data with negative values is taken from the data pool 1 prior to the 
disproportionality filter. (B) The left-hand side displays the top 10 adverse events of brotizolam from the neuropsychiatric SOCs, as reflected by the 
IC025, and the corresponding values for etizolam are displayed in addition. The right-hand side displays the top 10 adverse events of etizolam from the 
neuropsychiatric SOCs, as reflected by the IC025, and the corresponding values for brotizolam are displayed in addition. The y-axis reflects the IC025 
value, which must be positive for an association between a drug and a reported adverse event. Data with negative values is taken from the data pool 1 
prior to the disproportionality filter.
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safety profiles are scarce. Thus, pharmacovigilance data is a precious 
source of human observations and can play a pivotal role in the 
identification of individual compound profiles.

Here we focused chiefly on neuropsychiatric AEs, as the BZ-site 
ligands are mostly classified as psychotropic substances, apart from a 
few antiepileptics. In the data extracted for neuropsychiatric MedDRA 
terms, only 11 of the 39 investigated drugs are responsible for more 
than 58% of the total neuropsychiatric ScIC025 (see 
Supplementary Figure S13) – this suggests that the currently available 
drugs show different dispositions to induce adverse neuropsychiatric 
signs. Our data suggests that this is not chiefly due to factors such as 
prescription bias, because we  find drugs with small numbers of 
records (e.g., nordazepam) as well as compounds with high report 
numbers (e.g., diazepam) in the group with strong neuropsychiatric 
AE signals, but also highly prescribed substances such as triazolam or 
eszopiclone with a relatively low cumulative neuropsychiatric signal, 
see Figure 5 and Supplementary Figures S1, S2.

Outside of the neuropsychiatric SOCs, it was interesting to note 
though that in the MedDRA higher level group “investigations” 
we also found a high cIC025 signal. Interestingly, in records from 
females, changes in electrocardiogram parameters and in blood 
pressure are particularly strong compared to males (see 
Supplementary Figures S3, S14, S15).

Not surprisingly, multiple signs of over-sedation and related 
effects dominate the total neuropsychiatric ScIC025, closely followed 
by a very strong cumulative signal for signs indicative of paradoxical 
responses as seen in the group “neurological disorders nec,” see 
Figure 6. The observation that only few of the compounds strongly 
associate with signs of paradoxical responses might suggest that they 
are specific to certain drugs, and thus, their incidence should 
be quantified per drug and not for the class as a whole. At least at the 
level of pharmacovigilance we find clear signs for a high degree of 
drug specificity, which is in good agreement with preclinical work. 
The most startling observation in this category is probably the very 
strong association of eszopiclone, classified as a hypnotic drug, with 
different forms of insomnia and other sleep disturbance signs which 
is nearly absent in the zopiclone data (Figures 7, 11).

In the psychiatric higher-level groups, apart from expected effects 
such as signs of confusional states and impaired psychomotor 
responses due to over-sedation, we observe strong signals also for 
anxiety symptoms, and for self-injurious behaviors. In this group, 
we note another difference between zopiclone and eszopiclone: Self-
injurious behaviors are strongly associated with zopiclone only (see 
Figure  11). In total, the FAERS data suggests considerable drug 
heterogeneity. This applies not only to unwanted effects of medically 

used BZ-site ligands, but also issues related to non-medical drug use. 
We extracted the IC025 values per drug for signs and symptoms of 
dependence, drug abuse, and for withdrawal symptoms 
(Supplementary Figure S8). While this dataset needs to be interpreted 
with due care and may be biased by many confounding factors, it does 
feature considerable drug heterogeneity that is worthy of 
further investigation.

Non-medical drug use can be recreational due to desired drug 
effects, e.g., as downers or to enhance effects of other psychoactive 
substances, or for illicit purposes such as “date rape” drug 
administration. In this context, amnestic effects are of particular 
interest. We noted that anterograde amnesia is associated with female 
records exclusively for the case of lormetazepam and clorazepate with 
an IC025 > 3 (Supplementary Figures S10, S12). Only 17 (of 39 drugs 
in our pool of disproportionately strong associations) drugs were 
found to be associated with any amnestic effects, and for example 
among the Z-drugs, zaleplon has none. These findings suggest that the 
individual drugs show also considerable heterogeneity with respect to 
properties that are compatible with abuse as date rape drugs. While 
the limitations of pharmacovigilance data fully apply, further follow 
up of such hints toward drug heterogeneity should stimulate 
systematic investigations.

In this study we  specifically identified pronounced drug 
differences in AE event profiles of a substantial number of compounds. 
Taking into consideration that benzodiazepines are prescribed 
approximately twice as often to women as to men in the US, a similar 
ratio of adverse event reports in the FAERS database would 
be anticipated in absence of sex specific factors involved. However, 
additional layers of complexity have to be taken into consideration 
that limit data interpretation: (1) the possibility that adverse reports 
are more often reported for a specific sex, even if they occur in the 
other sex as well (2) that some benzodiazepines are prescribed more 
often than others for women (such as for anxiety disorders) and might 
bias the reports therefore for certain indications toward one sex, (3) 
the dark figure of individuals abusing benzodiazepines without 
prescription, which is reported to be higher in men, (4) the missing 
total number of prescriptions for a specific drug and sex in the FAERS 
database from which the reports result, and (5) the reports resulting 
from prescription for different indications, and thus different dosages 
which information is mostly lacking (6) the reports based on illicit use 
that is lacking prescription and is combined with other substances 
such as opioids and alcohol often and (7) others.

However, preclinical and in vitro research provides some hints 
though why some compounds may display sex differences that are not 
due to data bias: Supra- additive effects with endogenous cannabinoids 

TABLE 1 FAERS signals and other evidence for selected drug-AE event pairs: from the SIDER database, side effects reported as “frequent” or “common” 
are indicated with +, others as (+), and effects not mentioned there are indicated with -, n/a stands for absent drugs.

AE-Drug IC025 PRR SIDER
Studies* in 
agreement

Seizures- clobazam M: 4.54\F: 4.71 M: 25.64\F: 28.77 – (127, 128)

Aggression-Nordazepam M: 3.81\F: 2.00 M: 18.89\F: 9.78 n/a

Alanine-Aminotransferase level abnormal – Nitrazepam M: 4.93\F: 4.66 M: 82.06\F: 65.95 – (129)

Propofol Infusion Syndrome-Midazolam M: 4.84\F: 5.26 M: 58.51\F: 104.06 – (130, 131)

Dysgeusia – Eszopiclone M: 4.77\F:5.03 M: 30.5\F: 35.27 Undefined frequency (132)

*Studies include clinical trials and papers reporting or analyzing clinical studies.

https://doi.org/10.3389/fpsyt.2023.1188101
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Koniuszewski et al. 10.3389/fpsyt.2023.1188101

Frontiers in Psychiatry 17 frontiersin.org

(37) and (neuro-) steroids (134) have been observed for 
benzodiazepines in vitro. Recent studies propose native GABAA 
receptors to possibly harbor endogenous allopregnanolone before the 
addition of benzodiazepines (38).

We attempted to correlate molecular properties with FAERS 
derived drug profiles which we identified. Overall, we found very 
little evidence for any correlations between the chemical compound 
properties and their pharmacovigilance fingerprints. The limitations 
of a ligand-based approach to structure–activity relationships is 
impressively demonstrated by the vastly different FAERS profiles of 
eszopiclone and zopiclone. Our data implies the coexistence of two 
phenomena: As evidenced by the highly overlapping chemical and 
FAERS profiles of etizolam and brotizolam (see Figure 11), highly 
similar compounds can share most key properties as drugs – and in 
contrast, steep cliffs in structure activity landscapes can occur as well 
as appears to be  the case for S- and R- zopiclone. The latter 
phenomenon has its structural correlation in the multitude of 
binding sites with which each molecule can interact with individual 
affinity and efficacy. It has long been hypothesized that a multitude 
of distinct receptor subtypes with unique binding sites are and 
mediate the broad range of in vivo effects that are observed for 
benzodiazepine site ligands as reviewed in (135). In line with this, 
research from rodent models on subtype specific pharmacology has 
had limited translation success (113), which is at least in part owed 
to different transcriptomes of neuronal cell types, e.g., in the limbic 
system and discrepancies in regio-specific subunit expression 
between animals and humans (136). Hence, there is accumulating 
evidence that not only the so-called “high affinity” binding sites of 
these drugs contribute to pharmacologically relevant effects, but that 
additional binding sites that are shared in part with general 
anesthetics also contribute to the observed in vivo spectrum of 
effects. Differences in compounds’ ability to utilize these interaction 
sites will lead to specific pharmacodynamic profiles. It is already 
clear that the tendency for individual BZ-site ligands to occupy 
additional sites apart from the canonical high affinity sites is different 
among compounds (120, 122), which can be expected to impact 
massively on the spectrum of in vivo effects due to the near complete 
lack of isoform- differences in the low affinity sites (137). A recent 
surge in structural findings allows an updated view of known and 
putative allosteric sites by which wanted and unwanted 
pharmacological effects are potentially mediated, as summarized in 
Figure 10.

Moreover, even the heterogeneity of compound binding and 
effects at the canonical sites is vastly understudied: The pharmacology 
for γ1 and γ3 is very incomplete, and the high expression level of the 
γ1 subunit in human limbic system structures might account for 
highly specific drug effects for substances that act on γ1- containing 
receptors (133). An added layer of complexity comes from the 
modulatory efficacy, which can range per compound, substance 
concentration and high affinity site from strong GABA enhancing 
(PAM) effects to strong GABA diminishing (NAM) effects (133, 138–
140). For most approved benzodiazepines and Z-drugs, data of their 
modulatory effect in the major receptor subtypes is completely lacking 
and PAM effects are assumed, with the exception of the “antagonistic” 
chiefly silent modulator flumazenil. Beyond the vast diversity of 
allosteric sites used by “Bz-site-ligands” on GABAARs, off-target 
effects certainly may be drivers of individual drug effects as well, even 
though broad panel CNS- target assays indicate that most of these 

compounds have fewer off-targets compared to many other 
CNS therapeutics.

In summary, this study provides insights into the pharmacological 
properties of BZD compounds and Z-drugs and helps to inform 
clinical decision-making and drug development in this area. The 
analysis of the FAERS dataset and the application of ligand fingerprint 
and pharmacophore analyses reveal a more nuanced picture of the 
heterogeneity of BZ-site ligands, which can help to identify potential 
therapeutic uses and adverse effects as well as shape clinical studies on 
this topic in the future. The FAERS profiles of many compounds 
suggest sex-specific side effects.

Our analysis produced strong drug-AE associations. While 
pharmacovigilance data cannot confirm alerts nor offer mechanistic 
interpretations, we hope our findings stimulate follow up research, 
and potentially adaptations of prescription practice to meet modern 
standards of sex-specific care. If appropriate clinical studies can 
confirm some of the associations derived from the FAERS dataset, 
product information and subsequently also the legal classification of 
individual compounds could conceivably be adjusted to account for 
increased risks of unwanted effects by the addition of specific warnings 
to product information.

4. Materials and methods

4.1. Data mining

Four publicly available sources were used to generate a list of 
benzodiazepines and Z-drugs: Drugbank (141), Wikipedia (142, 143), 
and Wikidata (144). To accomplish this, different data extraction 
techniques were utilized for each source. To collect pharmaceuticals 
from Drugbank, for example, a Python script was used to filter 
compounds associated with each GABAAR subunit, and this list was 
then manually screened for benzodiazepines and Z-drugs. We used 
SPARQL to search Wikidata for drugs related to any of the 19 
components. We also obtained benzodiazepines from two Wikipedia 
pages (142, 143). The final list included 173 benzodiazepines and 
Z-drugs.

4.2. FAERS analysis

To conduct the pharmacovigilance analysis of benzodiazepines 
and Z-drugs, a FAERS (FDA Adverse Event Reporting System) dataset 
was utilized, which was taken from Khaleel et al. (105). This dataset 
covers adverse event reports from Q1 2004 to Q3 2021. Initially, the 
dataset was divided into male and female subsets. Records with 
unknown sex were removed. Records from female reports that deal 
with occurrences of the offspring were removed by manual curation 
if the need arose. Afterwards, a disproportionality analysis was 
performed for each drug-adverse event pair in both datasets.

Disproportionality analysis was used to assess the association 
strength between drug use and reported unfavorable outcome (or 
adverse event, AE) (100–102). For each drug-adverse event pair, the 
information component (IC), 95% confidence interval of IC (IC025) 
(100, 102), proportional reporting ratio (PRR), and reporting odds 
ratio (ROR) was calculated (101, 105). The IC was employed to 
evaluate the likelihood of genuine values falling within an assigned 
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range. The Uppsala Monitoring Centre developed and validated this 
approach using Bayesian neural networks to create the information 
component IC (111, 145), which represents the logarithmic base 2 of 
observed/expected ratios and is commonly used for analyzing WHO 
databases (100, 102, 146). In numerous studies conducted by both 
UMC and other researcher groups, IC025 has been utilized as a 
benchmark for identifying positive drug-adverse event connections 
(102, 104, 147–151). Further investigations employ the PRR measure 
with the IC025 and necessitate a minimum of 5 observations to ensure 
an affirmative signal (107–110), which we followed in this work. All 
relevant records were extracted for the 173 drugs on our drug list 
belonging to the benzodiazepines and Z-drugs categories from the 
dataset and examined the system organ classes (SOCs) and higher 
level groups (HLGs) within the MedDRA. For this MedDra Version 
22.1 was used and only adverse events have been considered which 
could be identified in this MedDra version. The level of individual AEs 
was analyzed where appropriate by application of filters. Cumulative 
IC025 values, as well as relative and absolute report numbers were 
obtained as appropriate sums from the filtered records.

Drug All other 
drugs

Total

Adverse event a b a + b

All other adverse events c d c + d

Total a + c b + d n = a + b + c + d

a = Reports of the drug of interest with the adverse event of 
interest. b = Reports of all other drugs with the adverse event of 
interest. c = Total drug reports of all other adverse events. d = Total 
reports of all other drugs with all other adverse events.

 

Proportional Reporting Ratio PRR

a
a c
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a
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  ( ) =

For all calculations, the python libraries pandas 2.8.2 and 
numpy 1.22.4 have been used with python 3.10. All the figures with 
the FAERS results have been generated with plotly 5.13 with 
python 3.10.

Calculation which has been used in Figure 4B:
Calculation:

025   
100.Drug percent

0
ag

25  
e

 
cumulative IC of a specific drug in SOC
sum of cumulative IC of all drugs in SOC

∗=

Calculation which has been used in Figure 7B:
Calculation:

    
100Reports percenta

 
e

  
g

total reports of drug in HLG
total reports of drug

∗=

4.3. Ligand based methods and creation of 
plots

4.3.1. Fingerprints
To calculate multiple molecular fingerprints from the sdf files of 39 

drugs, Python 3.10 and PyBioMed 1.0 library were utilized which included 
moe, ghosecrippenfingerprint, cats2d, connectivity and topology. Further 
analysis was carried out through principal component analysis (PCA) 
using scikit-learn 1.0.2 library while plotly version 5.13 was used to create 
the dendrogram for graphical representation of the results.

4.3.2. 3D-structure similarity analysis
3D structures of the investigated drugs were retrieved from 

PubChem (152) as individual SD-files which were then merged to 
obtain a single file for further processing. The drug data set SD-file was 
then processed by the software Flipper (153) [version 3.1.1.2, executed 
with the following settings: (enumEZ true-enumNitrogen false-enumRS 
true-enumSpecifiedStereo true-warts true)], to enumerate all possible 
stereoisomers of drugs having one or more stereocenters. In the output 
file (SD format) the stereoisomers of the drugs are distinguished by a 
name suffix that consists of an underscore followed by the number of the 
stereoisomer. The stereoisomer enriched drug data set was then 
subjected to conformer ensemble generation using the software 
OMEGA (153, 154). Default settings were used for all parameters except 
for the energy-window (−ewindow) and the RMSD-threshold (−rms) 
setting for which values of 20.0 and 0.25, respectively, were chosen to 
obtain a more detailed representation of the conformational space of the 
compounds. The generated conformers were stored as a single SD-file 
which then served as input for molecular shape-based drug similarity 
calculations using the program ROCS (154). In order to calculate shape 
similarity values for all possible drug stereoisomer pairs, the obtained 
multi-conformer SD-file was specified both as an input file for the query 
(= reference) structures (−query) as well as for the evaluated database 
molecules (−dbase). For other ROCS parameters the preset defaults 
were used with the exception of the multi-conformer query flag, which 
was set to false (−mcquery false), the single-conformer database flag, 
that was set to true (−scdbase true) and the “per query structure 
generated ROCS reports” were merged into a single report output file 
(−report one). By means of a Python script (‘report_to_dist_matrix.py), 
the obtained ROCS report file was then converted to ‘shape distance’ 
matrices based on the listed ColorTanimoto, ShapeTanimoto and 
TanimotoCombo scores of all drug stereoisomer pairs. Only the 
TanimotoCombo was used for further processing. For a drug 
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stereoisomer pair ij, the shape distance Dij, which can adopt values in the 
range [0, 1], is calculated from the maximum similarity score Sij that was 
encountered among all evaluated conformer pairings as follows:

Dij = 1 – Sij/Smax

Smax denotes the maximum value the particular ROCS similarity score 
can reach (1.0 for Color- and ShapeTanimoto, 2.0 for TanimotoCombo) 
and is used to scale the similarity score Sij to the range [0, 1].

The combo scores of ROCS have been taken for further analysis. 
The dendograms have been created using python 3.10 with the library 
plotly 5.13.0.

4.4. Analysis of structural data

The PDB was mined for all structures of GABAA receptors with 
any of the analyzed BZ-site ligands in the complex. The resulting 
structures [8DD2 (subunit rendering), 6X3X (118), 6HUO (119), 
6X3U (120)] were superposed and rendered with Schrödinger/
Maestro Version 13.1.141.
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Glossary

ATC Anatomical Therapeutic Chemical Classification System

AE Adverse Event

AUD Alcohol Use Disorder

BS Binding site

BZD Benzodiazepine

cIC025 Cumulative IC025

CNS Central Nervous System

CYP Cytochrome P450 System

DAWN Drug Abuse Warning Network

FAERS FDA Adverse Event Reporting System

GABAAR GABAA Receptor

HLG Higher Level Group

IC Information component

OC Oral Contraceptives

PRR Proportional Reporting Ratios

PT Preferred Term

ROR Reporting Odds Ratio

ScIC025 Summed cumulative IC025

SOC System Organ Class

+ Principal component of the binding site

- Complementary component of the binding site
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