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Endoplasmic reticulum (ER) stress has been demonstrated to play important roles 
in a variety of human diseases. However, their relevance to autism spectrum 
disorder (ASD) remains largely unknown. Herein, we  aimed to investigate the 
expression patterns and potential roles of the ER stress regulators in ASD. The 
ASD expression profiles GSE111176 and GSE77103 were compiled from the 
Gene Expression Omnibus (GEO) database. ER stress score determined by the 
single sample gene set enrichment analysis (ssGSEA) was significantly higher 
in ASD patients. Differential analysis revealed that there were 37 ER stress 
regulators dysregulated in ASD. Based on their expression profile, the random 
forest and artificial neuron network techniques were applied to build a classifier 
that can effectively distinguish ASD from control samples among independent 
datasets. Weighted gene co-expression network analysis (WGCNA) screened 
out the turquoise module with 774 genes was closely related to the ER stress 
score. Through the overlapping results of the turquoise module and differential 
expression ER stress genes, hub regulators were gathered. The TF/miRNA-hub 
gene interaction networks were created. Furthermore, the consensus clustering 
algorithm was performed to cluster the ASD patients, and there were two ASD 
subclusters. Each subcluster has unique expression profiles, biological functions, 
and immunological characteristics. In ASD subcluster 1, the FAS pathway was 
more enriched, while subcluster 2 had a higher level of plasma cell infiltration 
as well as the BCR signaling pathway and interleukin receptor reaction reactivity. 
Finally, the Connectivity map (CMap) database was used to find prospective 
compounds that target various ASD subclusters. A total of 136 compounds were 
significantly enriched. In addition to some specific drugs which can effectively 
reverse the differential gene expression of each subcluster, we found that the PKC 
inhibitor BRD-K09991945 that targets Glycogen synthase kinase 3β (GSK3B) might 
have a therapeutic effect on both ASD subtypes that worth of the experimental 
validation. Our finding proved that ER stress plays a crucial role in the diversity 
and complexity of ASD, which may inform both mechanistic and therapeutic 
assessments of the disorder.
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1. Introduction

Autism spectrum disorder (ASD) is a complex, early-onset 
neurodevelopmental disorder. Its core symptoms are social 
interaction deficits, communication impairments, and repetitive 
stereotyped behaviors (1). According to the Centers for Disease 
Control and Prevention, ASD affects roughly 1 in every 54 children 
(2), and the prevalence is rising over time. Patients with ASD 
sometimes have co-morbid conditions like intellectual disabilities, 
sleep disorders, and schizophrenia (3–5), which places a significant 
cost on families and society. Although the etiology and 
pathogenesis of autism are currently unknown, it is generally 
believed that risk factors for ASD include anomalies in 
neurodevelopment (6, 7), neuroinflammation (8), oxidative stress 
(9), viral infections in the mother (10), and alterations in gut 
microbes (4). Until now, the diagnosis of ASD still mainly relied on 
subjective methods such as parental interviews and symptom 
scales. However, early ASD diagnosis and treatment have a direct 
impact on the recovery and development of ASD-affected 
youngsters (11), therefore, a deeper understanding of the 
mechanism underlying ASD is critical to the development of more 
accurate diagnoses and effective treatments.

In eukaryotic cells, the endoplasmic reticulum is a reticular 
organelle made up of many tubular structures and flattened vesicles. 
It is primarily in charge of protein synthesis, processing, and transport, 
as well as lipid and sterol biosynthesis. When cells are driven by a 
variety of physicochemical variables (such as hypoxia, aberrant Ca2+ 
concentration, hunger, viral infection, etc.), the normal folding and 
modification of proteins are hampered, and the unfolded protein 
response (UPR) is activated, leading to the accumulation of misfolded 
proteins in the ER (12). In this case, IRE1 (inositol-requiring protein 
1), PERK (PKR [double-stranded-RNA-dependent protein kinase]-
like ER kinase), and ATF6 (activating transcription factor 6), regarded 
as sensors of ER stress, initiate the intracellular signaling pathways to 
promote the in-folding or degradation of a protein, thus maintaining 
cellular homeostasis (13–15). However, apoptosis is produced when 
cells are subjected to high amounts of ER stress for an extended 
period (16).

Recent research has revealed that endoplasmic reticulum (ER) 
stress, a protective stress response, has emerged to play a significant 
role in many diseases and may present new prospects for 
ASD. Amanda Crider and his colleague found significant increases in 
the mRNA levels of ATF4, ATF6, PERK, XBP1, CHOP, and IRE1 in 
the middle frontal gyrus of ASD subjects, and this change was 
positively connected with the diagnostic score of ASD stereotypic 
behavior (17). Further, Daoyin Dong and his team compared the 
activation of ER stress signals in different brain regions and they found 
that IRE1α was activated in the cerebellum and prefrontal cortex but 
ATF6 was activated in the hippocampus (18). In particular, genetic 
variations in several synaptic genes (such as GPR85 (19), NLGN3 (20), 
and CADM1 (21)) implicated in ASD have been shown to induce ER 
stress genes. These findings are intriguing, but they only focus on the 
expression of a small fraction of ER stress molecules in ASD, without 
exploring the possible mechanisms involved and the heterogeneity of 
ASD. Therefore, a thorough analysis of the various ER stress regulators 
expression profiles between normal tissues and ASD, the distinct 
subtypes, as well as the immunological features of ASD would help 
supply new ideas for clinical prevention and precision treatment.

In the present study, we systematically evaluate the expression 
pattern of the ER stress regulators in ASD. We found that ER stress 
regulators can well distinguish between control and ASD patients. 
WGCNA analysis revealed that the turquoise module was closely 
linked to the elevated ER stress scores in ASD. Furthermore, 
we clustered ASD samples based on the core ER stress regulators. Each 
subtype has distinct expression profiles, biological functions and 
immunological characteristics. Besides, we anticipated compounds for 
different subclusters to achieve accurate treatment, and the PKC 
inhibitor BRD-K09991945, which targets GSK3B, may have a positive 
therapeutic impact on both subclusters and is therefore worth 
further investigation.

2. Methods

2.1. Data collecting and pre-processing

We collected the expression profile datasets GSE111176 (22, 23), 
GSE77103 (24) and GSE38322 (25) of ASD from the GEO database 
by R package “GEOquery” (26). The dataset GSE111176 was 
contributed by Vahid H Gazestani et al., which contains information 
on the expression profiles of leukocytes derived from 119 ASD 
patients and 126 controls. One validation set GSE77103, which 
includes the expression patterns of peripheral blood mononuclear 
cells obtained from 4 healthy controls and 4 ASD patients, was 
submitted by Inoue R et al. Another validation set GSE38322, contains 
the expression patterns of brain tissues sourced from 18 controls and 
18 ASD patients, was contributed by the Matthew Ginsberg et al. All 
samples were included in this analysis. The GPL10558 (Illumina 
HumanHT-12 V4.0 expression bead chip) was used for the GSE11176 
dataset and the GSE38322 and the GPL17077 (Agilent-039494 
SurePrint G3 Human GE v2 8x60K Microarray 039381 (Probe Name 
version)) was used for the GSE77103 dataset. During data processing, 
the “removeBatchEffect” function of the “limma” (27) package was 
used to remove the batch effect of the sub-datasets of the GSE111176. 
And the expression profiles of three datasets were normalized by the 
“normalizeBetweenArrays” function of the “limma” package. Finally, 
Gene probes were annotated with official gene symbol, and mean 
values were taken if multiple gene probes matched to the same gene.

2.2. Collection of the reticulum 
stress-related genes

From the Molecular Signatures Database V7.0 (MSigDB) (28), 
we  retrieved the endoplasmic reticulum stress-related gene sets 
“GOBP NEGATIVE REGULATION OF RESPONSE TO 
ENDOPLASMIC RETICULUM STRESS” and “GOBP POSITIVE 
REGULATION OF RESPONSE TO ENDOPLASMIC RETICULUM 
STRESS,” which includes a total of 256 genes.

2.3. Differential gene expression analysis

The “limma” package of the R software was applied for 
differential gene analysis. The screening criteria for the DEGs of 
normal and ASD patients were |logFC| > 0 and an adjusted value of 
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p<0.05. As for the ASD patterns, the threshold was set as 
|logFC| > 0.2 and pvalue<0.05. The R packages “ComplexHeatmap” 
(29) and “ggplot2” (30) were used to plot the findings of the 
differential analysis. The R package “RCircos” (31) is used to 
display information on the chromosomal location of 
differential genes.

2.4. Machine learning methods

Two machine learning (random forest (RF) and artificial neural 
network (ANN)) approaches were applied to construct the ASD 
classifier. Random forest regression is a machine-learning algorithm 
that takes an ensemble learning approach for prediction. It is made up 
of various decision trees, each trained on random features. ANN 
consists of the input layer, the hidden layer and the output layer. The 
number of neurons in the input layer indicates the number of features 
being evaluated; while the neurons in the output layer are the 
dependent variables; Each neuron in the hidden and output layers is 
linked to all neurons in the previous layer by the corresponding 
numerical weights. To develop the predictive signature, the 
differentially expressed endoplasmic reticulum stress genes were 
subjected to random forest analysis using the R package 
“randomForest” (32), and genes with gene importance scores greater 
than 4 were selected for the further neural network created using the 
“NeuralNetTools” (33) and “neuralnet” packages (34). Using the R 
package pROC (35), the ROC curve was drawn and the area under the 
curve was determined to assess the distinguishing performance of the 
signature. Additionally, the external validation set GSE77103 confirms 
the classifier’s diagnostic effectiveness.

2.5. WGCNA

Weighted Gene Correlation Network Analysis (WGCNA) (36) is 
mainly used to identify co-expressed gene modules and examine the 
connection between gene networks and phenotypes. For 
computational efficiency, the top 25% of variant genes based on an 
analysis of variance were selected for WGCNA analysis using the 
“WGCNA” package (36). The soft threshold was calculated by the 
“picksoftthreshold” function and scale-free networks were built. 
Subsequently, the adjacency matrix was transformed into a topological 
overlap matrix (TOM). The hierarchical clustering and dynamic 
tree-cut method were used to identify gene modules. Co-expression 
modules were defined using a minimum module size of 50 genes and 
by merging modules with a module eigengene dissimilarity below 0.2. 
Finally, the correlations between modules and clinical features were 
determined by spearman correlation analysis.

2.6. Identification of the ER stress patterns

The varied ASD patterns were identified using the 
ConsensusClusterPlus (37) R package, and the clustering was carried 
out using the pam method with a sampling proportion of 0.8, and it 
was employed for 100 iterations to assure clustering stability. The 
clustering score for the cumulative distribution function (CDF) curve 
was calculated to estimate the ideal number of clustering. The 

consensus clustering’s reliability was confirmed by Principal 
Component Analysis (PCA).

2.7. Biological enrichment analysis for the 
different ER stress patterns

Based on the differentially expressed genes, Gene Ontology (GO) 
(38) terms, which provide context for cellular component (CC), 
molecular function (MF), and biological process (BP), as well as the 
Kyoto Encylopaedia of Genes and Genomes (KEGG) analyses (39), 
were employed to assess the biological changes of ASD patterns. 
We  used the R package “clusterprofiler” (40) for GO and KEGG 
analysis and the R package “pathview” (41) to visualize the significantly 
distinct KEGG pathways between ASD patterns. Terms with a false 
discovery rate (FDR) < 0.05 were considered statistically significant. 
Gene Set Enrichment Analysis (GSEA) (42) is a method that 
determines whether a priori-defined set of genes show statistically 
significant expression variations between two biological states. From 
the MSigDB database, we have gathered the gene set “c2 cp all v7.0 
symbols.gmt.” The GSEA analysis was performed using the R package 
“clusterprofiler” and it was determined that the |normalized 
enrichment score| (|NES|) > 1 and FDR < 0.25 were significant results.

2.8. Master regulator analyses

Master regulator analysis (MRA) (43) is an algorithm used to infer 
transcription factors (TFs) controlling the transition between the two 
phenotypes and the maintenance of the latter phenotype. In this study, 
we applied a recently developed coexpression-based gene network 
inference and interrogation tool, corto (44), to determine the master 
regulator genes of the transition from normal control to ASD subtypes. 
The collection of human transcription factors was used as the potential 
centroids for the model input, along with the gene expression matrix 
of normal controls and two ASD subclusters. And then, a list of master 
regulators sorted by normalized enrichment scores (NES) was 
obtained through the “mra” function of “corto” package. The NES is 
positive if the centroid network is higher in the sample vs. the mean 
of the dataset, negative if lower.

2.9. Correlation analysis between ER stress 
patterns and immune characteristics

The analytical tool CIBERSORTx (45), developed by Newman et al., 
uses gene expression data to perform cell-type deconvolution and offers 
an estimate of the abundances of member cell types in a mixed cell 
population. The online tool CIBERSORTX (https://cibersortx.stanford.
edu/) was applied to estimate immune cell infiltration in ASD patterns. 
Single sample gene set enrichment analysis (ssGSEA) was performed 
according to previous studies, which was used to determine enrichment 
scores (ES) for each coupling of a sample and immune reaction gene sets 
in the ImmPort database.1 The R package “GSVA” (46)was used for the 

1 http://www.immport.org/
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A B C

FIGURE 1

The expression pattern of the ER stress regulators in ASD. (A) Box plot for ER stress score between control ASD group. *p < 0.05, **p < 0.01. (B) The 
volcano plot of the 256 ER stress regulators in control and ASD groups. (C) Chromosomal positions of the differential expressed ER stress regulators.

ssGSEA analysis and “ggplot2” for visualization. The Wilcox test was 
used to assess the enrichment scores representing immunocyte 
abundance and immune response activity between ASD patterns.

2.10. miRNA-gene and TF-gene interaction 
network

NetworkAnalyst2 (47) is an online visualization and analysis 
platform which can perform differential gene expression analysis, 
protein–protein interaction analysis and integrated analysis of 
multiple datasets. With the use of this platform, we were able to obtain 
chromatin immunoprecipitation data from the ENCODE database 
(48) for the construction of TF-gene network and experimentally 
verified data for the construction of miRNA-gene interaction network 
from the miRTarBase database (49). Afterward, the Cytoscape 
software (50) was utilized for visualization.

2.11. Identification of the candidate 
compounds for the ER stress patterns

The Connectivity Map database (Cmap) (51) focuses on the 
interaction between compounds, genes and disease states. It contains 
induced gene expression profiles of more than 25,200 perturbagens of 
which ~19,800 are small molecules, 314 biologics and ~ 5,075 genes 
with altered function by shRNA, cDNA, and/or CRISPR. These 
perturbagens were assayed in different cell lines to produce around 1.3 
million individual gene expression profiles corresponding to ~473,000 
gene expression signatures (52). Each ASD subcluster’s differentially 
expressed genes were submitted to the Camp database, and the 
connectivity score—which measures how closely compounds-induced 
transcript modifications resemble user-input differential gene 
alterations—was obtained. Additionally, the mechanism of action 
(MoA) of the compounds was analyzed.

2 https://www.networkanalyst.ca/

2.12. Statistical analysis

R programming (version 4.0.2, available at https://www.rproject.
org) was used for all data calculations and statistical analysis. The 
Spearman test was utilized for correlation analysis. p < 0.05 was 
considered statistically significant.

3. Results

3.1. The landscape of ERS regulators 
between control and ASD samples

The ASD expression profiles were downloaded from the GEO 
database, and the mean values of gene expression for each sample were 
essentially the same after normalization (Supplementary Figure S1). 
We have estimated the ER stress score for each sample in the dataset 
using the ssGSEA method. The Wilcox test results highlighted the 
significant upregulation in the ER stress score between the ASD and 
normal samples (Figure 1A), which indicates that ER stress has an 
important role in the development and progression of ASD. Further, 
the expression of the ER stress genes was evaluated in the two groups, 
and 37 genes with differential expression were found, including 30 
up-regulated genes and 7 down-regulated genes (Figure 1B). Figure 1C 
displays the chromosomal locations of the ER stress genes that are 
differentially expressed.

3.2. Construction of the ASD classifier and 
validation

To investigate differentially expressed ER stress regulators’ 
contribution to the diagnosis of ASD, a series of bioinformatic 
algorithms were employed. We  used a random forest to filter the 
variables, which showed the lowest average error rate at 99 trees 
(Figure 2A), and then we analyzed the importance of the variables by 
calculating the Gini index of a mean decrease (Figure 2B). Seven 
variables with the mean decrease Gini index greater than 4 were 

https://doi.org/10.3389/fpsyt.2023.1136154
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.networkanalyst.ca/
https://www.rproject.org
https://www.rproject.org


Li et al. 10.3389/fpsyt.2023.1136154

Frontiers in Psychiatry 05 frontiersin.org

selected for subsequent analysis, and they were UBE4B, PIK3R1, 
MAP3K5, DNAJB14, USP13, P4HB, TMEM117, respectively. The 
above-mentioned seven genes were used as input variables into the 
artificial neural network, a five-neuron layer that extracts and fuses 
features from the input layer was used to determine the final binary 
classification result using well-trained weight coefficients and bias 
(Figure 2C). ROC analysis was implemented to determine the value 
of the classifier in diagnosing ASD, the results revealed that this 
classifier was effective at differentiating between healthy people and 
ASD patients (Figure 2D). Additionally, we verified its effectiveness 
and dependability in two independent validation set GSE77103 and 

GSE38322, both of which had AUC value of 0.75 (Figure 2E) and 
0.759 (Figure 2F), respectively.

3.3. Identification of key modules 
associated with the ERS score

Given the previous analysis suggested that ER stress may 
be  involved in the development of ASD. We  further analyzed the 
co-expression genes associated with ERS scores in patients with 
ASD. A dendrogram of ASD patients in GSE11176 with ER stress 

A

C

D E

B

FIGURE 2

Construction of the ASD classifier. (A) The average error rate of random forest model. (B) Variable importance ordered by the gini index of a mean 
decrease in random forest. (C) The schematic diagram of artificial neural network model. (D) ROC curves show the AUC values of the ASD classifier in 
GSE111176. (E) ROC curves show the AUC values of the ASD classifier in GSE77103. (F) ROC curves show the AUC values of the ASD classifier in 
GSE38322.
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FIGURE 3

The weighted gene co-expression network analysis. (A) Clustering dendrogram of ASD sample with trait heatmap. (B) The scale-free topology model 
fit (R2) (left) and the mean connectivity of the co-expression network (right) given different soft-thresholding powers. (C) Gene dendrogram obtained 
by average linkage hierarchical clustering. The color row underneath the dendrogram shows the module assignment determined by the Dynamic Tree 
Cut. (D) Heatmap of the correlation between module eigengenes and ER stress score. (E) The scatterplot of gene significance (GS) for ER stress score 
vs. module membership (MM) in the turquoise module.

score was clustered using the average linkage method and Pearson’s 
correlation method (Figure 3A). To obtain a signed network fulfilling 
the scale-free topology, the soft-thresholding power parameter was set 
to 7 (at this point scale-free R2 > 0.85) (Figure  3B). A total of 12 
modules that have sizes between 65 and 774 genes were identified in 
the average hierarchical clustering and dynamic tree clipping 
(Figure 3C). To find the most correlated modules with ERS scores in 
ASD, we performed spearman correlation analysis (Figure 3D), and 
the results showed that the turquoise module appeared to have the 
highest association with ER stress scores (cor = −0.42, p = 2e-06), while 
magenta (cor = 0.26, p = 0.005), pink (cor = 0.3, p = 9e-04), brown 
(cor = 0.29, p = 0.002) modules showed a significant positive 
correlation with ERS scores (Figure 3E). We therefore selected the 

turquoise module for further analysis, which included 774 genes. A 
significant correlation existed between the module membership (MM) 
and gene significance (GS) of the turquoise modules (Figure 3F).

3.4. Construction of the miRNA-gene and 
TF-gene interaction network

The overlapped results of the turquoise module and differentially 
expressed ER stress gene was considered to be the hub ER stress genes 
of ASD. As a result, five genes were obtained, namely SEC16A, EXTL3, 
DNAJB14, SGTA and UFM1 (Figure 4A). Further, they were subjected 
to the NetworkAnalyst web to collect the miRNA-gene and TF-gene 
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interactions. The miRNA-gene network consists of 12 nodes and 14 
interaction pairs, and DNAJB14 was regulated by 4 miRNAs in this 
network (Figure 4B). In addition, the TF-gene network includes 11 
nodes and 17 interaction pairs (Figure 4C). The transcription factor 
SP2 may be closely associated with ASD because it regulated four hub 
ER stress regulators in this network. These 7 miRNAs and 6 TF 
regulate more than one hub ER stress gene of the network, which 
indicates high interaction of the miRNA/TF with hub ER stress genes.

3.5. ER stress regulators mediated ASD 
patterns

To study the sub-clusters in ASD, the unsupervised consensus 
cluster analysis was carried out on ASD patients based on the 
expression of the hub ER stress regulators. There were found to be two 
distinct ASD modification subclusters (Figures  5A-C), with 45 
samples in cluster 2 and 74 samples in cluster 1. Tsne analysis also 
verified that ASD patients can be  categorized into two patterns 
(Figure 5D). We also looked at the hub ER stress gene expression levels 
across the different subtypes, and the results showed that UFM1 and 
DNAJB14 were up-regulated in subcluster 1, while SEC16A and 
EXTL3 were up-regulated in subcluster 2 (Figures 5E,F), indicating 
that the various ASD subclusters may have various transcriptome or 
other characteristics.

3.6. Biological properties and MRA of 
different ER stress patterns

We performed differential analysis between ASD subclusters and 
obtained a total of 167 DEGs, of which 127 genes in ASD cluster 2 and 
40 genes in ASD cluster 1 were expressed at lower levels (Figures 6A,B). 
Further enrichment analysis was carried out using these DEGs. GO 
enrichment analysis showed that ATP synthesis coupled electron 
transport, protein targeting to ER and phosphatidylinositol metabolic 
process were involved in the biological process subsection; Cellular 
component exhibits significant involvement of mitochondrial related 
complex in DEGs; Molecular function subsection data indicate the 
structural constituent of ribosome terms were most enriched (Figure 6C). 

Moreover, pathways of neurodegeneration-multiple diseases, oxidative 
phosphorylation, primary immunodeficiency interacted with the most 
number of genes according to the KEGG pathway database (Figure 6C). 
We  also conducted the GSEA analysis, the results showed that 
REACTOME TRANSLATION (Figure  7A), REACTOME 
REGULATION OF EXPRESSION OF SLITS AND ROBOS (Figure 7B), 
REACTOME SELENOAMINO ACID METABOLISM (Figure 7C) and 
REACTOME RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID 
DEFICIENCY (Figure 7D) pathway were significantly enriched in ASD 
cluster2, while KEGG LEISHMANIA INFECTION (Figure  7E), 
(Figure 7F), WP EBOLA VIRUS PATHWAY ON HOST (Figure 7G), 
KEGG SYSTEMIC LUPUS ERYTHEMATOSUS (Figure 7H) and PID 
FAS PATHWAY (Figure 7I) were significantly enriched in ASD cluster1. 
Next, we focused on the master regulator genes significant enriched in 
ASD clusters. The findings demonstrated that the transition from normal 
control to ASD cluster 1 was supported by the repression of ATF3, 
UHRF1, BATF2, and the activation of the BCL6 (Figure 8A). While 
inhibition of AHR, BZLF1, and CREB1 assisted the transition from 
normal control to ASD cluster 2 (Figure 8B). Overall, based on DEGs, 
functional enrichment and the master regulatory analysis, we highlighted 
two distinct biological phenotypes of ASD, which validated the existence 
of heterogeneity of ERS processes in ASD.

3.7. Identification of the immune 
microenvironment characteristics of 
different ER stress patterns

To examine the variations in the immune microenvironment, 
we compared the immune infiltrating cells, immune reaction gene sets 
and HLA gene expression between distinct subtypes. Analysis of the 
abundance of 22 immune microenvironment infiltrating cells revealed 
that ASD subtype 2 had a higher amount of plasma cell infiltration 
while the other 21 immune cells had a similar abundance (Figure 9A). 
Regarding the immune reaction process, the activity of the synonyms 
B cell receptor (BCR) signaling pathway and interleukin receptor 
activity were both increased in ASD subcluster2, but interferon 
receptor activity was decreased in subcluster2 (Figure 9B). Therefore, 
we speculated that a more active immune system in ASD subcluster2. 
In addition, the expression of different HLA was also different between 

A B C

FIGURE 4

TF/miRNA-hub gene interaction network. (A) Hub ER stress regulators representation through a Venn diagram. (B) Network for miRNA interaction with 
hub ER stress regulators. The purple nodes represent the hub ER stress regulators and the other nodes represent miRNAs. (C) Network for TF 
interaction with hub ER stress regulators. The purple nodes represent the hub ER stress regulators and the other nodes represent TFs.
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FIGURE 5

Identification of the ER stress patterns in ASD. (A) Consensus clustering cumulative distribution function (CDF) for k = 2–7. (B) The tracking plot shows 
the cluster assignment of items (columns) by color for each k (rows). (C) Heatmap describing co-occurrence proportions for ASD samples (k = 2). 
(D) Tsne analysis for the transcriptome profiles of the ER stress patterns revealed a difference between ASD subclusters. (E,F) Heatmap and box plot of 
hub ER stress regulators’ expression in ASD subclusters. *p < 0.05, **p < 0.01. *** < 0.001.

ER stress patterns, HLA-DRA and HLA-E were downregulated in 
ASD subtype2 (Figure 9C). These results confirmed again that ER 
stress modification plays a crucial regulatory role in forming different 
immune microenvironments in ASD patients.

3.8. Identification of the potential 
compounds that target different ER stress 
patterns

The CMap database was employed to find prospective compounds 
that can effectively reverse the differential gene expression of different 

ASD subclusters. Differences between Subcluster 1 and Subcluster 2 
were also apparent in compound prediction (Figure 10A). We found 
a total of 118 compounds that were significantly enriched in the ASD 
subcluster1, and 18 compounds that were enriched in the ASD 
cluster2. Among them, the PKC inhibitor BRD-K09991945 that 
targets Glycogen synthase kinase 3β (GSK3B) might have a therapeutic 
effect on both clusters, whereas the PI3K inhibitor BGT-226 and 
Radical formation stimulant temoporfin might worsen the situation 
of different ASD subclusters, respectively (Supplementary Table S1). 
Furthermore, we  conducted the MoA analysis of the potential 
compounds. The result of four compounds (fexofenadine, VUF-5681, 
JNJ-10191584 and amodiaquine) shared the MoA of histamine 
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receptor antagonist, another three compounds (imperatorin, 
CGP-60474 and BRD-K19136521) shared the MoA of the CDK 
inhibitor in ASD subcluster1 (Figure 10B). Compounds that target 
ASD subcluster2 enriched the MoA of Adrenergic receptor 
antagonists, Cytochrome P450 inhibitor and other substances 
(Figure 10C).

4. Discussion

ASD are mental disabilities that have a serious impact on the 
quality of life of children with these disorders. Previous studies have 
shown that the activation of ER stress is associated with the occurrence 
and development of ASD (19, 21). The disruption of neuronal protein 
homeostasis (53–55), the dysregulation of calcium homeostasis (56, 
57), the induction of inflammatory cytokines, such as TNF-α (58, 59), 
IL-33 (60), and IL-1β (61), and other pathways have all been proposed 
as contributing factors (59). Despite the previous role of ER stress in 
the pathophysiology of ASD has been highlighted, research on ER 
stress regulators in the ASD field remains in its infancy. To the best of 
our knowledge, this was the first in-depth bioinformatics analysis of 

the landscape of ER stress regulators in ASD disease, which may 
provide reliable directions for future experimental studies of ASD as 
well as novel chances to develop effective therapies.

In the present study, we first calculated the ER stress scores for 
each sample in GSE111176, and the results revealed that ER stress 
score was significantly higher in the ASD group; Differential 
expression analysis showed that there were 37 ER stress regulators 
altered in the ASD patients, suggesting that ER stress might play a key 
role in the ASD that deserves further investigation.

Parental interviews and the use of scales to score the specific 
symptoms displayed by the affected kid are the current diagnostic 
techniques for ASD, but they are both subjective. Recently, we are 
starting to see the impact of machine learning methods on data 
modeling and classification. Using random forest and artificial neuron 
network methods, a classifier built on the seven ER stress regulators 
could be effective at differentiating between healthy people and ASD 
patients (AUC >0.7 among independent datasets), which may help a 
clinician diagnose in the future.

Moreover, WGCNA is a powerful tool that provides module 
construction and correlation analysis within the gene expression data 
to determine the associations between modules and pathological 

A

C

B

FIGURE 6

Identification of the differential expressed genes between different clusters in ASD. (A,B) Volcano plot and heatmap showed the differential expressed 
genes in ASD cluster 2 compared with the ASD cluster 1. (C) GO and KEGG enrichment analysis based on the differential expressed genes between 
ASD clusters. Abbreviations: BP, biological processes; CC, cellular components; MF, molecular functions.
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FIGURE 7

Gene Set Enrichment Analysis between ASD clusters. (A-I) Enrichment plots of pathways in c2.cp.all.v7.2.symbols.gn in ASD subcluster 2 obtained after 
GSEA analysis.

features of the disease. We investigated the co-expression modules 
linked to elevated ER stress scores in ASD patients using the WGCNA, 
and the turquoise module with 774 genes showed a significant 
correlation with ER stress scores. To increase the reliability of the data, 
we  took the intersection of turquoise modules and differentially 
expressed ER stress regulators, referring to them as hub ASD-related 
ER stress genes, including SEC16A, EXTL3, DNAJB14, SGTA, and 
UMF1. SEC16A gene encodes a protein that forms part of the Sec16 
complex, which is involved in protein transport from the endoplasmic 
reticulum (ER) to the Golgi and mediates COPII vesicle formation at 
the transitional ER. Jing-Jing Sun and colleagues found that SEC16A 
mRNA expression was higher in ASD serum samples, and it was able 
to form a diagnostic model with four additional genes to aid in the 
diagnosis of ASD (62). UFM1 is a ubiquitin-like protein that is 

conjugated to target proteins by the E1-like activating enzyme UBA5 
and E2-like conjugating enzyme UFC1  in a manner analogous to 
ubiquitylation. Individuals with UBA5 variants can develop severe 
irritability, stagnation of development and epilepsy (63). However, the 
association between the aforementioned genes and ASD is still 
unknown, future studies can include functional studies to elucidate 
such relationships.

Recently, based on the inter-individual deviation of functional 
connectivity (IDFC), Xiaonan Guo and colleagues found two ASD 
subtypes, each with a different level of social communication deficits 
and confined and repetitive behaviors (64). Ada J S Chan and his 
colleagues discovered that distinct genetic subtypes of ASD can enable 
the prediction of developmental outcomes (65). Molecular subtyping 
strategy is widely utilized in the biomedicine field, and the 
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identification of novel molecular subtypes may lead to a better 
treatment plan. In this study, ER stress patterns in ASD were explored 
using hub ER stress regulator expression profiles and unsupervised 
clustering analysis, and two subclusters with distinct ER stress patterns 
were discovered. Understanding the distinctions in their biological 
roles may aid in understanding the involvement of ER stress in ASD 
etiology. A meta-analysis revealed that genes in the FAS signaling were 
upregulated in the ASD (66)， however, we  found that the FAS 
pathway was more enriched in the subcluster1 than subcluster2. This 
further demonstrates that molecular typing is more conducive to the 
precise treatment of patients. Aside from transcript differences, each 

subcluster has particular immunological traits of its own. The ASD 
subcluster2 has a higher infiltration level of plasma cells and higher 
activity of the BCR signaling pathway and interleukin receptor 
reaction. Previous research has shown the role of both adaptive and 
innate immune cells in the etiology of ASD. It was reported that a 
single injection of IL-6 into pregnant mice led to autism-relevant 
behaviors in the offspring, while blockade of IL-6 trans-signaling in 
the brain of mice could cause improved autism-like behavioral 
symptoms (56, 57). Ahmed Nadeem and colleagues revealed that 
dysregulation in IL-6 receptors is associated with upregulated IL-17A-
related signaling in children with autism, and the IL-6/IL-17A-related 

A

B

FIGURE 8

Top master regulators of ASD clusters. (A) Master regulatory analysis of ASD subcluster 1. (B) Master regulatory analysis of ASD subcluster 2. Each 
network is indicated by its master regulators. A barcode-like diagram displaying all transcriptome genes, from most downregulated (left) to most 
upregulated (right), is used to display the genes in each network (right). Targets with positive (red) and negative (blue) correlations are overlaid as bars 
of different colors on the differential expression signature. p-values and normalized enrichment scores (NES) are also shown. The 12 most likely 
network putative targets of each MR are shown to the right in red if they are upregulated or blue if they are downregulated, with a pointed arrow 
indicating that they are predicted to be activated by the centroid protein and a blunt arrow indicating that they are predicted to be repressed.
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FIGURE 9

Different ER stress patterns are characterized by diversity in immune microenvironment features. (A) The variations of each immune microenvironment 
infiltrating immunocytes between ASD clusters. (B) The activity differences of each immune reaction gene set between ASD clusters. (C) The 
expression differences of each HLA gene between ASD clusters.

parameters are positively correlated with disease severity (58). The 
immunological traits of each subcluster confirmed the accuracy of the 
classification of various ER stress regulators utilized in 
this investigation.

At this time, anti-psychotic medicines like aripiprazole and 
risperidone continue to be  the mainstay of ASD pharmacological 
treatment. However, due to its metabolic and neurological effects, 
long-term efficacy and safety concerns continue to be debatable. More 
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studies are still required to develop more effective and targeted 
interventional treatments. After clarifying that different ASD 
subclusters have diverse expression patterns and immunological 
features, we  attempted to anticipate compounds for different 
subclusters to achieve accurate treatment. The findings demonstrated 
that the compound prediction outcomes for subtypes 1 and 2 were 
highly different, with more compounds targeting subcluster 1 than 
subcluster 2, suggesting a greater emphasis on a comprehensive 
assessment of the patients. ASD subclusters could be studied further 
at the molecular or immune level rather than the phenotypic level. 
We found the PKC inhibitor BRD-K09991945 that targets GSK3B 
might have a therapeutic effect on both clusters. In the previous study, 
the p-GSK-3β (S9) was increased in the ASD mice model, and the 
low-frequency rTMS (LF-rTMS) was able to lower the phosphorylation 
level of the GSK-3β and so improve the social function of mice (67). 
Therefore, the PKC inhibitor BRD-K09991945 can be considered for 
further verification by animal experiments or clinical trials.

5. Conclusion

In conclusion, our study revealed that ER stress score was 
significantly higher in ASD patients. The classifier consists of the 
seven ER stress regulators that can accurately predict the prevalence 
of ASD. Furthermore, we identified two ER stress patterns and found 
that the diversity of ER stress patterns affects the heterogeneity and 

complexity of the immune microenvironment in ASD. The 
comprehensive analysis of the ASD ER stress patterns will make a 
great contribution to understanding the underlying pathophysiology 
of ASD, inspiring more effective therapeutic approaches.
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