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Major depressive disorder (MDD) is characterized by impairments in mood and

cognitive functioning, and it is a prominent source of global disability and

stress. A functional magnetic resonance imaging (fMRI) can aid clinicians in their

assessments of individuals for the identification of MDD. Herein, we employ a

deep learning approach to the issue of MDD classification. Resting-state fMRI

data from 821 individuals with MDD and 765 healthy controls (HCs) is employed

for investigation. An ensemble model based on graph neural network (GNN)

has been created with the goal of identifying patients with MDD among HCs

as well as di�erentiation between first-episode and recurrent MDDs. The graph

convolutional network (GCN), graph attention network (GAT), and GraphSAGE

models serve as a base models for the ensemble model that was developed

with individual whole-brain functional networks. The ensemble’s performance

is evaluated using upsampling and downsampling, along with 10-fold cross-

validation. The ensemble model achieved an upsampling accuracy of 71.18%

and a downsampling accuracy of 70.24% for MDD and HC classification. While

comparing first-episode patients with recurrent patients, the upsampling accuracy

is 77.78% and the downsampling accuracy is 71.96%. According to the findings

of this study, the proposed GNN-based ensemble model achieves a higher

level of accuracy and suggests that our model produces can assist healthcare

professionals in identifying MDD.
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1. Introduction

Depression is a major source of disability and disease burden

worldwide, affecting about 264 million people. Major depressive

disorder (MDD) is a serious psychological problem that can

cause people to feel sad, lose interest, become listless, and have

trouble thinking (1). Individuals who have suffered from MDD

typically have difficulty adjusting together with their society. They

have a low opinion of themselves, which ultimately leads to a

decline in their performance at work. MDD can cause serious

emotional problems and suicidal thoughts and behavior if it is

not adequately recognized and treated (2). In patients suffering

from MDD, abnormalities in large-scale brain connections have

been identified more frequently in recent years. Depressed people

revealed significantly disrupted connections between the task-

related regions of the brain throughout a variety of task-directed

functions, such as working memory, executive control, facial

emotion perception, and impulse control (3, 4).

In recent years, research on MDD has focused on brain

structure and function using morphological or neurobiological

features. Functional magnetic resonance imaging (fMRI),

magnetoencephalography (MEG), electroencephalography (EEG),

and positron emission tomography (PET) are the common

physiological methods employed in comparing people with MDD

to healthy controls (HCs) (5). Researchers have found that patients

with MDD have abnormal communication among the functional

brain networks using functional connectivity (FC) of resting-state

fMRI (R-fMRI), which detects synchronized and desynchronized

spontaneous activity within anatomically diverse networks (6–8).

In the present study, whole brain FC is extracted from R-fMRI data

in order to determine whether or not the subject is MDD, and for

classification between first-episode and recurrent MDD.

FIGURE 1

The process of MDD and HC classif ication: 1. Recording R-fMRI

signal, 2. Extracting time series of regions of interest, 3. Calculating

correlation matrices of the time series, 4. Converting correlations in

graph representations, 5. Applying deep learning to classify between

patients and controls.

Machine learning (ML) methods are of increasing interest for

the medical industry at present, and it has emerged as an essential

part of the diagnosis and treatment of conditions pertaining to

oncology, neurology, and cardiology. The process involved in

a typical deep learning pipeline for the identification of MDD

can be highlighted as follows: region of interest (ROI) extraction

from R-fMRI, functional connectivity matrix generation, graph

construction, deep learning model training, and classification

(9). Figure 1 depicts the processes required in identifying MDD

from HCs.

This study presents a high-performance graph neural network

(GNN)-based deep learningmethod for classifying individuals with

MDD using R-fMRI data. In recent years, graph neural network

(GNN) has become increasingly popular in graph-based learning.

GNN become the optimal deep learning approach for analyzing

graph-structured information. GNN algorithm combines node

attributes, edge attributes, and graph topology by embedding node

characteristics in a neural network and transferring data through

the graph’s edges. GNN can work well on non-euclidean domains

and this is in contrast to traditional convolutional neural networks,

which are limited to accepting only euclidean inputs (10). GNN has

replaced older ML approaches due to their greater performance in

analyzing graph-based information (11, 12).

Studies onMDDhave progressed in recent years understanding

changes of brain structure and function using morphological or

neurobiological features. The studies summarized here used a

number of machine learning algorithms, such as support vector

machines (SVM), logistic regression, and neural networks, to

differentiate between MDD and HCs using fMRI data. Especially,

resting-state functional connectivity characteristics of the entire

brain were studied in MDD. In order to distinguish individuals

with MDD from controls, several studies (13–16) employed SVM-

based multivariate pattern analysis (MVPA) techniques, achieving

a better classification accuracy. However, there are limitations

to this approach that stem from small sample sizes, scanner

variability, and the absence of a comprehensive independent data

set. By computing the Hurst exponents of resting-state networks,

researchers examined their long-term memory for distinguishing

depressive patients from HCs (17). Scale-free dynamics of

depression-related brain activity were seen as describing the

long-term memory of resting-state networks. An SVM-based

classifier was used to test the data with a leave-one-out cross-

validation (Loocv) method. Others studied the effects of MDD and

schizophrenia on whole brain R-fMRI using SVM based MVPA in

Yu et al. (18), Lois and Wessa (19), Zhu et al. (20), and Li et al.

(21). Again, the dimensionality reduction technique relied on the

Loocv strategy due to the small sample size. However, it is essential

to evaluate the classification performance of these perspectives

using a larger sample of subjects. Others showed that whole-

brain R-fMRI connectivity may effectively predict antidepressant

medication status in people with serious MDD (22). Medication-

naive patients were distinguished from controls by the use of a

trained linear SVM classifier based onMVPA technique. A different

MVPA strategy based on linear, radial basis function (RBF)-SVM

classification with the elastic net feature selection technique could

accurately distinguished MDD patients from control subjects (23).

The hyper-networks in this study were built using an elastic net

and the group lasso technique. Hyper-edge, brain area, and average
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metric analyses suggested that the hyper-networks built with elastic

net and group lasso differed structurally (24). Further, functional

connection density measures derived by R-fMRI have shown to

be successful to determine the relationship between the changes

in resting-state activities and the responses to electroconvulsive

therapy in 23 patients with MDD (25). The neural indices that

were discovered as classification criteria were entered into linear

SVM based MVPA, which was then used to categorize MDD

patients. In another study, the identification of MDD among

subjects, was explored via different static and dynamic connection

metrics retrieved from R-fMRI (26). In this study a feature

vector for classification was built by combining features from

static and dynamic techniques. To determine the final predictor

performance, a Loocv procedure was implemented. Differential

sub-graph entropy and dynamic connectivity characteristics have

been used in an SVM classifier to distinguish between people with

MDD and HCs. A sliding-window approach was implemented

to determine functional connectivity in the context of dynamic

processes (27). The dynamic functional connectivity matrices

were then employed as features in a non-linear SVM model to

differentiate MDD patients from controls. Analysis techniques

based on the minimum spanning tree need the computation of

measurable qualities and the selection of these attributes as features

in the classification. Using two feature types to measure two aspects

of the network, a multi-kernel SVM classification method (28)

allows the use of both brain region features and subgraph features.

All studies discussed above made use of an approach that is based

on linear SVM, multi-kernel SVM and RBF-SVM to differentiate

between MDD patients and HCs.

Some other studies have used different ML methods, such

as regression and neural networks, to differentiate between

individuals with MDD and HCs. Using partial least squares

regression on R-fMRI data, researchers developed a low-

dimensional representation that links symptoms to brain activity

and predicts clinical measures (29). R-fMRI connectivity in

another study was calculated by employing the automated

anatomical labeling layout with a partial correlation method (30).

The calculations of the metrics and the classification analysis

were performed in the frame of neural network. However, the

efficacy and sorting of selected features, as well as sample size,

kind of classifiers, and distribution of data, all have a role in

determining the appropriate amount of features. For example,

when developing a classifier for melancholy MDD (31), it

has been shown that is it crucial to identify vitally relevant

functional connections. It is for such cases recommended to use

logistic regression to evaluate the uniformity vs. heterogeneity

connectivity hypotheses.

The concept of deep learning has recently received significant

attention. Notably, graph-based techniques, such as GNN, have

been used to investigate detailed node pair in imaging/nonimaging

characteristics among participants, with the goal of identifying

significant phenotypes for clinical identification. Successfully

applying a whole-brain data-driven approach with R-fMRI,

confirmed the use of effective connectivity for MDD detection

by calculating its measures via a group sparse representation

and a structured equation modeling approach (32). Successful

integration of effective connectivity and nonimaging phenotypic

information allowed the use of spectral graph convolutional

networks (GCN) based on a population graph to differentiate

drug-naive MDD patients fromHCs. Using functional connectivity

as a characteristic, Ktena et al. (33) trained a spectral GCN

with subjects as nodes. The spectral GCN was used to diagnose

the problem by grouping the nodes into their respective

categories. Others used a mutual multi-scale triplet GCN

(34) for the purpose of analyzing static FC and structural

connectivity with the intention of identifying brain disorders.

Further a spatio-temporal GCN framework was created to train

discriminative features from FC measures for the automated

identification and treatment response prediction of MDD (35).

The GCN model was developed to every participant’s whole-

brain functional network in order to differentiate MDD patients

from HCs, recognize the most important regions making

a contribution to classifying, and investigate the association

between structural features of salient regions and clinical

features (36).

In this research, our main aim is to employ an ensemble-based

GNN framework to perform the primary classification analysis

between MDD and HCs as well as subgroup analysis between first-

episode and recurrent (REC). Instead of using a single unified

GNN model to learn representations for all of the nodes in a

large graph, it is better to use ensemble learning methods (37)

to improve classification performance. With ensemble learning,

many fundamental classifiers are combined to boost the predictive

power of the model. Therefore, to enhance the efficiency of scalable

GNN, we propose a GNN-based ensemble model that creates

customized models.

1.1. Aims

This study provides a methodology for MDD analysis and

classification using brain functional networks derived from R-fMRI

data. Since the brain is a complex network system, the present study

analyses the R-fMRI as the whole brain functional structure rather

than individual FCs. In this research, our main aim is to employ

an ensemble- based GNN framework to perform the primary

classification. Our main scientific contributions are as follows:

• Developing a robust ensemble-based GNNmodel that takes R-

fMRI data for the detection ofMDD.A created novel ensemble

model is used for identifying individuals with MDD fromHCs

as well as to perform analysis between two sub groups of MDD

patients, namely first episode drug nive (FEDN) and recurrent

(REC) MDD patients.

• GCN, GAT, and GraphSAGE models are created as the

base line models for the ensemble model, for improving

classification accuracy. A developed ensemblemodel is trained

using individual whole-brain functional networks.

• Methods of upsampling and downsampling are employed to

achieve balanced sample size. A 10-fold enumeration is used to

refine the classification process. Empirical investigations with

a large sample size showed that our model is more accurate

and beneficial for classification of MDD compared to other

models that are currently available.
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FIGURE 2

Overall framework of the proposed method for MDD classification. Ensemble model is designed to create meta model from the out features of each

base models. GAT, graph attention network; GCN, graph convolutional network; SAGE, GraphSAGE technique, ReLU, Rectified Linear Unit; ELU,

Exponential Linear Unit, MDD, major depressive disorder; HC, healthy controls.

2. Materials and methods

2.1. Subjects

R-fMRI data from the REST-meta-MDD collaboration (6),

which contained 25 datasets totaling 2428 persons (1300 MDD

patients and 1128 HCs from 17 hospitals), was used in the

present study. There have been 562 patients with MDD who

were experiencing their first episode of the disorder, as well as

282 patients with MDD who have been experiencing recurring

episodes of the disorder. According to a previous publication

on the dataset (6), we used criteria such as missing data, low-

quality spatial normalization, insufficient coverage, noticeable head

movement, and sites with fewer than 10 subjects to exclude.

This was produced in a sample of 821 people with MDD and

765 HCs from 16 different sites. Drug consumption data was

submitted by 527 patients; 219 of these individuals are currently

using first episode MDD patients without medication treatment

was defined as FEDN, and REC is the MDD patients with recurrent

episode regardless of medication status. Two research groups

(Sites 5 and 13) contributed data on 117 FEDN patients and

72 patients with REC MDD, five research groups (Sites 4, 5, 9,

13, and 16) contributed data on 227 FEDN patients and 388

HCs, and six research groups (Sites 3, 5, 7, 12, 13, and 14)

contributed statistics on 189 patients with REC and 423 HCs.

The studies involving human participants data were reviewed

and approved by the Institutional Review Board of Kunsan

National University.

2.2. Preprocessing

Data from R-fMRI and structural MRI were acquired and the

DPARSF toolkit (38) was used to perform preprocessing procedure.

Slice timing correction, head motion correction, normalization,

and the elimination of confounds were the main preprocessing

procedures. Dosenbach’s atlas was used as a reference point during

the process of segmenting the entire brain into 160 distinct regions

of interest (ROI) (39). The voxel-level BOLD values were extracted

and averaged across all ROIs. The Pearson correlation coefficient

of the related time series was used to assess FC between each pair

of ROIs. Finally, the correlation estimates were transformed using

Fisher’s z-transform to generate FC matrix in the range of 160 ×

160 for each subject (40).

2.3. Methods

The overall process of the GNN-based ensemble model is

shown in Figure 2. The FC matrix the whole brain is initially

depicted as a weighted undirected graph G(N,E), where N and

E are collections of nodes and edges. Nodes are the 160 brain

regions identified by the ROIs, and their characteristics are the

matrix representation of the functional connection between them.

The link between nodes are represented by a weighted adjacency

matrix (A). Each node is linked to its nearest neighbors using a k-

nearest neighbors (KNN) technique to establish edges (36). In order
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FIGURE 3

Structure of the base model.

FIGURE 4

Flowchart to show the process of ensemble model.

to construct the GNN-based ensemble model, the GCN, GAT, and

SAGE models are used as the base models. The core operation of

an ensemble model is to combine out features of base models and

apply the softmax activation function to translate final scalers into

predicted probabilities of the each class.

2.3.1. Base models
First, the FC matrix was represented as a graph structure,

along with an adjacency matrix and node characteristics. The GAT

model uses a graph attention layer to learn the node representation,

followed by an attention pooling layer and a classification layer to

retrieve the node representation and perform the task of learning.

We began by stacking three GAT layers with exponential linear

unit (eLU) activation functions, then moved on to a global mean

pooling layer, then a dropout layer, and finally fed that information

into a classification layer. The head size is 8 and the dropout rate

is 0.5 in the GAT model. Input layer, graph convolutional hidden

layer, fully connected layer, and global average pooling layer are

the components that make up GCN model. After each hidden

layer, there is a rectified linear unit (ReLU) activation function. The

dropout rate is 0.3 in the GCN model. We also use GraphSAGE

with three layers (K = 3) as a base model. The dimensions of

the node embeddings are the same as the size of the hidden units

that are used in each GraphSAGE layer, which is 64. The ReLU

activation function and a dropout rate of 0.3 are used in each of

the GraphSAGE layers. Also, Every model has a weight decay value

of 5 x 10−4 and a learning rate of 0.01. Each model in GNN, such

as GCN, GAT, and GraphSAGE, is trained with the same set of

node features, edge features, weights, and learning rate. Figure 3

illustrates the processes involved in creating a base model.

2.3.2. Ensemble model
We use the ensemble-based GNN model in order to determine

the essential features that contribute to the prediction of MDD. The

suggested ensemble-GNN procedure is depicted in the flowchart

described in Figure 4. We construct a GNN-based ensemble model

using GCN, GAT, and GraphSAGE as building blocks. Both the

node features and the adjacencymatrix are fed into the basemodels,

and the features’ identities are then extracted from the respective

models. Each model’s predicted output features are fed into the

ensemble model. Then, for class prediction, we add fully connected

layers with a softmax activation function. The cross-entropy loss

function is put into effect to this extent. The adam optimizer is used

to find the optimal values for each of the model’s parameters.

2.4. MDD identification and evaluation

MDD classification employs ensemble-based GNN supervised

learning classifiers, and this classification makes it simple to

compare the efficacy of various machine learning strategies for

processing fMRI data. Both training and testing are required for

supervised learning classification. With the help of the samples’

class labels, the classifier identifies a decision boundary that divides

the input space during the training phase. Once the decision

function has been calculated using the training set, it may be

applied to unseen testing data to infer the corresponding class

label. In order to reduce the overfitting problem and to offer a

reliable and generalizable classification performance evaluation, the

effectiveness of the classification framework is evaluated using the

10-fold cross validation scheme. In order to balance the sample

size, oversampling is accomplished by copying data from minority

classes, whereas undersampling is carried out by selecting data from

majority classes. The performance of the classification system is

measured and analyzed based on its accuracy (ACC), specificity

(SPE), sensitivity (SEN), and area under the curve (AUC). The
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FIGURE 5

10-Fold cross validation for MDD and HC samples depicting accuracy, sensitivity, specificity and the area under the curve. (A) Upsampling and (B)

Downsampling.

diagnostic accuracy of a classifier can be measured with the use of

receiver operating characteristic, which is a curve that is generated

by graphing the true positive rate against the false positive rate. The

process of determining classification ACC, SPE, and SEN is denoted

as,

ACC =
TP + TN

TP + FP + FN + TN
(1)

SPE =
TN

TN + FP
(2)

SEN =
TP

TP + FN
(3)

In this case, TP indicates a successful classification of

positive samples, TN indicates a successful classification of

negative samples, and FP indicates incorrect classification

of negative samples as positive, and FN indicates incorrect

negative classification.

3. Results

In this section, we validate the efficiency of the suggested MDD

identification approach by analyzing the following scenarios: (a)

using FC as features; (b) using GCN, GAT, and GraphSAGE as

base learners; (c) using an ensemble classification model. We used

a 10-fold cross-validation, and in that cross-training, we split the

samples of all MDD and HCs into 10 groups. Each time the method

is modified, one unit is chosen as the testing dataset for assessing

the performance of the model, while the remaining 9 units are used

as the training dataset. By stratifying the 10-fold cross-validation,

we are able to keep the percentage of samples from each class

in every fold equal across the entire sample. In this case, the

samples are not balanced, so in order to create samples that are

balanced, random upsampling is performed on themajority classes,

and random downsampling is performed on the minority classes.

For the primary analysis, there were a total of 1,586 participants

included in our method (821 patients with MDD and 765 HCs).

Based on the clinical data for the patients who are included, 243

were FEDN patients, and 203 are REC patients.

3.1. MDD vs. HC classification

The ensemble model attained an accuracy of 71.8% for

upsampling and 70.4% for downsampling when it came to

classifying MDD and HC. When using upsampling, the ensemble

model achieves an AUC of 76.53%, while using downsampling,

it achieves an AUC of 71.27%. Specificity and sensitivity values

for upsampling are 74.96 and 68.23%, respectively, whereas the

values for downsampling are 67.27 and 72.88%. The findings for

upsampling and downsampling based on a 10-fold cross validation

for MDD and HC classification are given in Figure 5.
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3.2. FEDN vs. HC classification

FEDN could be distinguished from HCs with a classification

accuracy of 88.93% for upsampling and 64.17% for downsampling.

Classification of FEDN patients with HC achieved an upsampling

AUC of 85.75% and a downsampling AUC of 62.25%. Upsampling

has a specificity and sensitivity of 89% and 85.79%, whereas

downsampling has a specificity and sensitivity of 60.31 and

61.36%. The findings from classifying FEDN and HCs are shown

in Table 1.

3.3. REC vs. HC classification

Classification accuracy for upsampling REC with HC is

91.6%, whereas classification accuracy for downsampling REC

patients with HC is 68.78%. Using upsampling, we are able

to classify REC patients as distinct from HC with an AUC

of 88.24%, while using downsampling, we are only able to

reach an AUC of 67.11 %. The respective results for specificity

and sensitivity while upsampling are 93.15 and 87.20%, while

they are 60.96 and 66.92% when downsampling. Table 2

describes the results produced from the classification of REC

and HCs.

3.4. FEDN vs. REC classification

The FEDN and the REC are discriminated from each other by

the use of a subgroup analysis. There is a 77.78% accuracy rate

when upsampling FEDN against REC and a 71.96% rate when

downsampling. When we compared the existing approach (36) to

the subgroup analysis, we found that the classification performance

TABLE 1 Ensemble model performance for FEDN vs. HC classification.

Ensemble Model - FEDN vs. HC

Sampling ACC SEN SPE AUC

Upsampling 0.8893 0.8900 0.8597 0.8584

Downsampling 0.6417 0.6031 0.6138 0.6225

TABLE 2 Ensemble model performance for REC vs. HC classification.

Ensemble Model - REC vs. HC

Sampling ACC SEN SPE AUC

Upsampling 0.9160 0.9315 0.8720 0.8824

Downsampling 0.6878 0.6096 0.6692 0.6711

TABLE 3 Ensemble model performance under FEDN vs. REC classification.

Ensemble Model - FEDN vs. REC

Sampling ACC SEN SPE AUC

Upsampling 0.7778 0.7281 0.8191 0.7519

Downsampling 0.7196 0.7150 0.7152 0.7177

for the characterization of recurring patients was greater than that

of FEDN. Using upsampling, we achieved an AUC of 75.19%,

whereas using downsampling, we achieved an AUC of 71.77%.

Upsampling yields results of 72.81 and 81.91% for specificity

and sensitivity, whereas downsampling yields results of 71.52 and

71.56%. The outcomes of the FEDN and REC classifications are

shown in Table 3.

4. Discussion

We proposed an ensemble-based GNN method for automatic

MDD identification using whole brain functional network features.

Using a large open source dataset, the current study employed an

ensemble based GNN to classify MDD as well as to classify FEDN

with REC, and the resulting upsampling classification performance

outperformed typical machine learning approaches by around,

71.18% and 77.78%, respectively. In the analysis process, initially,

separate base models are created, and then the classification

performance of each model is examined. Models such as GCN,

GAT, and GraphSAGE are employed as base line models. The

GAT approach is utilized during the training of the model, which

resulted in an upsampling accuracy of 66.24% when comparing

MDD toHC and 71.67%when comparing FEDN to REC. The GCN

technique is also separately applied during the training process

of the model, which led to an upsampling accuracy of 64.72%

while correlating MDD to HC and 73.58% while comparing FEDN

to REC. Also, the GraphSAGE model alone was employed when

training the model, which produced in an upsampling accuracy

of 64.47 % for MDD among HC classification and 72.78% for

FEDN with REC classification. In addition to this, we used an all-

individual model to analyze subgroups such as FEDN with HC and

REC with HC. The results of the individual base models such as

GCN, GAT, and GraphSAGE are listed in Table 4. The GNN-based

ensemble model is developed to improve the classification accuracy

of primary analysis as well as subgroup analysis in analyzing

MDD. Already, the base models are trained independently, and

while some findings indicate that GCN produces better results,

other findings show that GAT or GraphSAGE produces better

outcomes. That indicates that no one model achieves better results

for all classes. Because of this, a combined model is developed

to produce more accurate results for the whole sample. Figure 6

displays the results of a comparison between the base model and

the ensemble model.

In the majority of the earlier investigations, the ML algorithm

was employed to differentiate between all MDD and HCs (20, 41–

43). To identify brain disorders, researchers have created a number

of deep learning techniques, including BrainNetCNN (44) and

discriminative/generative long short-term memory (45). However,

the sample size that they employed for the investigation was

comparatively small. The use of GNN to distinguish between

MDD and HCs has been proven effective in a small number

of studies. Some previous research (32, 34, 46) has shown that

the graph convolution technique can be used to distinguish

disorders in patients with HC. This is in contrast to others, who

employed MVPA of static or dynamic functional connectivity in

the brain network (47, 48), which neglected topological elements
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TABLE 4 Base model performance under di�erent group analysis.

Model Upsampling Downsampling

ACC SEN SPE AUC ACC SEN SPE AUC

MDD vs. HC

GCN 0.6472 0.6171 0.6537 0.7122 0.6519 0.5991 0.7041 0.7089

GAT 0.6624 0.6619 0.6667 0.6734 0.6219 0.6176 0.6270 0.6640

SAGE 0.6447 0.5968 0.6715 0.7220 0.6213 0.6713 0.5705 0.6859

FEDN vs. HC

GCN 0.8593 0.8599 0.8588 0.8543 0.5759 0.7263 0.4188 0.6185

GAT 0.8320 0.8299 0.7929 0.8387 0.5759 0.6446 0.4862 0.6200

SAGE 0.8520 0.8780 0.7986 0.8692 0.5667 0.5304 0.5994 0.6211

REC vs. HC

GCN 0.8913 0.9397 0.8728 0.9051 0.6363 0.5936 0.6824 0.6625

GAT 0.8527 0.8846 0.7929 0.8534 0.5609 0.5763 0.5828 0.6653

SAGE 0.8746 0.8889 0.8627 0.8946 0.5826 0.5964 0.5705 0.6035

FEDN vs. REC

GCN 0.7358 0.7069 0.6822 0.7653 0.6651 0.6562 0.6776 0.7101

GAT 0.7167 0.6876 0.7267 0.7113 0.6109 0.6420 0.5945 0.7016

SAGE 0.7278 0.6608 0.8000 0.7539 0.6652 0.7138 0.6166 0.7126

FIGURE 6

Comparison analysis between the individual model and the ensemble model. (A) Upsampling and (B) Downsampling.

that could provide key clues for diagnosis. The ensemble-GNN

algorithm combines the results of numerous GNN classifiers into

a single model in order to minimize the impact of overfitting.

In addition, by using ensemble-GNN, the deviation caused by a

single classifier can be reduced, resulting in improved reliability.

When applied to imbalanced datasets with the same number of

learning epochs, ensemble-GNN obtains a higher classification

accuracy than a single classifier does. We took primary analyses

into consideration such as all MDD with HCs as well as

subgroup analyses including FEDN among HCs, REC with HCs,

and FEDN along with REC. In addition, We also analyzed the

model using the Craddock and Automated Anatomical Labeling

(AAL) atlases.Our ensemble GNN model achieves an accuracy

of 74.75% for the AAL atlas and 73.37% for the Craddock

atlas when classifying MDD vs. HC upsampling data. Tables 2,

4 of the Supplementary material contain the primary and all of

the sub class analysis results for the AAL and Craddock atlas,

respectively.
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5. Limitations

Some limitations should be taken into account when evaluating

the present findings. We were not able to reach the classification

performance in the case of MDD with HC categorization when

compared with the previous approach (36). However, our methods

achieve higher performance in subgroup classification. In order to

solve the problem of imbalanced class representation, we tried both

random sampling. Upsampling gives better results, but it can add

a redundant samples to the model, which slows down training and

vulnerable to overfitting. In our approach, the overfitting problem

is reduced by utilizing cross-validation; however, training speed is

not taken into account. Also, with respect to the population, most

MDD was females which may have a confounding effect on MDD

classification. However, it should be noted that the same GNN

model structures could also successfully classify between MDD

subgroups, FEDN vs. REC, implying that MDD classification is not

entirely dependent on the sex effect. Further studies that aim to test

this effect requires a much larger sample size for controlling sex or

adequate matching.

6. Conclusion

In this study, we effectively created an ensemble model

based on GNN for classifying MDD by utilizing R-fMRI data.

In particular, we investigated a sub-group analysis between

FEDN with REC. The proposed model that employs whole

brain functional connectivity classifies MDD patients and healthy

individuals with high accuracy. In order to improve the overall

performance of the ensemble model, we used three different

GNN base models under 10-fold cross-validation. Based on large

dataset and a number of different of validation techniques, an

ensemble model could classify MDD and HCs with a feasible

accuracy of 71.18% for upsampling and 70.14% for downsampling.

When compared to earlier approaches, the findings that these

methods yield in the subgroup analysis are higher. This method

achieves an accuracy of 77.78% for upsampling and 71.96%

for downsampling when applied to an analysis of FEDN and

REC. The findings of this validation suggest that our model

produces a feasible application to assist healthcare professionals in

identifying MDD.
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