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Animal studies reveal that the
ghrelin pathway regulates
alcohol-mediated responses
Elisabet Jerlhag*

Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy
at the University of Gothenburg, Gothenburg, Sweden

Alcohol use disorder (AUD) is often described as repeated phases of binge

drinking, compulsive alcohol-taking, craving for alcohol during withdrawal,

and drinking with an aim to a reduce the negative consequences. Although

multifaceted, alcohol-induced reward is one aspect influencing the former three

of these. The neurobiological mechanisms regulating AUD processes are complex

and one of these systems is the gut-brain peptide ghrelin. The vast physiological

properties of ghrelin are mediated via growth hormone secretagogue receptor

(GHSR, ghrelin receptor). Ghrelin is well known for its ability to control feeding,

hunger, and metabolism. Moreover, ghrelin signaling appears central for alcohol-

mediated responses; findings reviewed herein. In male rodents GHSR antagonism

reduces alcohol consumption, prevents relapse drinking, and attenuates the

motivation to consume alcohol. On the other hand, ghrelin increases the

consumption of alcohol. This ghrelin-alcohol interaction is also verified to

some extent in humans with high alcohol consumption. In addition, either

pharmacological or genetic suppression of GHSR decreases several alcohol-

related effects (behavioral or neurochemical). Indeed, this suppression blocks the

alcohol-induced hyperlocomotion and dopamine release in nucleus accumbens

as well as ablates the alcohol reward in the conditioned place preference

model. Although not fully elucidated, this interaction appears to involve areas

central for reward, such as the ventral tegmental area (VTA) and brain nodes

targeted by VTA projections. As reviewed briefly, the ghrelin pathway does not

only modulate alcohol-mediated effects, it regulates reward-related behaviors

induced by addictive drugs. Although personality traits like impulsivity and risk-

taking behaviors are common in patients with AUD, the role of the ghrelin

pathway thereof is unknown and remains to be studied. In summary, the ghrelin

pathway regulates addiction processes like AUD and therefore the possibility

that GHSR antagonism reduces alcohol or drug-taking should be explored in

randomized clinical trials.
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1. Introduction

In society harmful alcohol consumption is a global health
problem, where alcohol use disorder (AUD) is a top pathology
associated with this risky consumption (1). The health problems
and socioeconomic burden of AUD for individuals and society in
large are major concerns (2, 3). AUD is often referred to a cycle of
different phases that are repeated over time [for review see Koob
(4)]. Alcohol-induced reward is one central aspect influencing
phases like the initial binge phase, the latter compulsive alcohol-
taking and craving for alcohol during withdrawal. Besides these,
drinking with an aim to a reduce the negative consequences is
another important phase. An AUD diagnosis is defined according
to a set classification system which includes parameters such as loss
of intake control, persistent desire, craving and tolerance. Although
not a part of the AUD diagnosis, both risk taking and impulsivity
are common characteristics observed in patients with AUD (5).
A complex disease like AUD involves a vast number of underlying
pathways and neurobiological substrates which are being identified
by means of both preclinical and clinical research. During latter
years gut-brain peptides appear to be important players for the
AUD process, possibly due to an interference with alcohol-induced
reward [for review see Jerlhag (6)]. To date, multiple gut-brain
peptides exist and ghrelin is one of these.

The stomach-derived hormone ghrelin (acyl-ghrelin) exerts its
physiological effects via activation of growth hormone secretagogue
receptor (GHSR), a receptor known for its intrinsic activity and
ability to heterodimer with other receptors [for review see Cornejo
et al. (7)]. The receptor is today often referred to the ghrelin
receptor, and earned its initial name from the growth hormone
releasing ability after activation of the receptor (8). Ghrelin is to
date the only identified orexigenic (appetite promoting) gut-brain
peptide (8). Notably, the feeding aspects influenced by ghrelin
include both the hedonic and homeostatic (7, 9). The homeostatic
properties of ghrelin are further evident as it promotes hunger,
appetite and body weight gain [for review see Cornejo et al. (7)].
Ghrelin also has a myriad of other physiological properties as it for
instance regulates secretion of gastric acid and gastric motility [for
review see Cornejo et al. (7)]. This review summarizes the available
research on if and how the ghrelin pathway modulates alcohol-
related effects (behaviors and neurochemistry) in animals. It should
be noted that there are no clinically available GHSR ligands, but for
research purposes antagonists like JMV2959 and [D-Lys3]-GHRP-
6 and the inverse agonist PF-5190457 are used. The name of these
have been omitted throughout the review to increase the readability
of the review. First, the ability of ghrelin signaling to modulate
different aspects of alcohol drinking is introduced. Then the review
will cover the effect of genetic or pharmacological suppression
of its receptor on the rewarding aspects of alcohol. Further, this
reward reduction is suggested as a tentative explanation to why
the alcohol consumption is reduced after GHSR suppression.
Thereafter, brain regions and neurocircuits central for the ghrelin-
alcohol interaction will be introduced. The review will then briefly
cover the role of ghrelin pathway in drug taking. Moreover,
confounding factors are described. On a final note, future directions
are discussed and the clinical trial testing the effect of GHSR
antagonists/inverse agonists on alcohol drinking in AUD patients
is suggested as a concluding remark.

The reviewed articles presented herein were selected by means
of keywords and the included articles were quality checked before
inclusion (Table 1). As this is a review rather than systematic
overview, the presented articles were thus not selected using
PICOS, PRISM, Cochrane, or JBI. A systematic overview provides a
higher reliability, and the lack of such design should be considered
as a limitation. It should also be noted that previous reviews cover
aspects of this research field. In these, several gut-rain peptides
are introduced, the clinical aspects/data or alcohol-associated liver
disease are introduced in detail [examples of other reviews within
the field (10–14)]. The novelty of this review is the detail insight
into available preclinical studies, where the link between ghrelin-
pathway and alcohol-related effects is described in detail. Moreover,
novel future directions are discussed.

2. The role of the ghrelin pathway
on alcohol-related effects in animals

2.1. Inhibition of the ghrelin pathway
reduces various alcohol drinking
behaviors in rodents

The ability of GHSR antagonists to reduce alcohol drinking
has been shown in numerous preclinical studies (Figure 1). It was
initially found that acute administration of a GHSR antagonist
lowers alcohol intake in male mice (15), high alcohol preferring
male rats (16) or male rats consuming alcohol for long periods
of time (17). Notably, a dose-dependent reduction was evident
after repeated injections of a GHSR antagonist (17). The findings
that the decline in alcohol drinking is greater at seven compared
to three months of alcohol exposure (17) are interesting from
clinical perspective. Indeed, it is plausible that a GHSR antagonist
would reduce alcohol drinking more in patients with severe AUD
compared to those with a mild AUD. The lack of tolerance toward
the GHSR antagonist in drinking experiments (17) is further
clinically beneficial, as it indicates that there would not be a
dose adjustment during treatment. Although these initial findings
report that GHSR antagonists are effective in rodents consuming
alcohol for extensive periods of time prior to treatment, the ability
of an antagonist to reduce drinking is also evident in animals
consuming alcohol for shorter periods of time. On this note, male
mice/rats/prairie voles exposed to alcohol shortly before treatment
display a decline in alcohol consumption after acute or repeated
treatment with a GHSR antagonist (18–22). The ability of GHSR to
regulate alcohol consumption is further evident as alcohol drinking
is lower in GHSR knockout male mice (15) or rats (23) compared
to wild-type littermates. From a mechanistic perspective, vagal
afferents appear to be involved in the ability of a GHSR antagonist
to reduce alcohol intake in male rats (24).

In support for these initial findings where a decline in alcohol
drinking after GHSR inhibition is reported, are additional studies
demonstrating a beneficial role of GHSR antagonists on other
alcohol drinking behaviors. One of these is relapse drinking after
abstinence, a trait blocked by a GHSR antagonist in male mice
(15) and male rats (17). These findings may be intriguing from
a clinical perspective as a declined relapse drinking may reflect
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TABLE 1 Main keys words for the selected articles presented in the present review.

Main key words for ghrelin pathway Ghrelin, acyl-ghrelin, des-acyl-ghrelin, GOAT, JMV2959, GHSR, GHSR-1A, ghrelin receptor

Main key words for alcohol and addiction Alcohol, ethanol, alcohol use disorder, alcohol addiction, alcohol dependence, reward, dopamine, addictive drugs,
mesocorticolimbic dopamine system, nucleus accumbens, ventral tegmental area

Main key words for methods Alcohol intake, consumption, alcohol preference, alcohol-seeking, operant self-administration, motivation to consume alcohol,
relapse drinking, locomotor activity, condition place preference, dopamine release, progressive ratio

Additional key words Cocaine, amphetamine, methamphetamine, cannabinoids, LSD, opioids, ecstasy, nicotine, addictive drugs, drugs of abuse

Article search was conducted 30th of August, 20th of September, and 6th of December 2022. No exclusion criteria were used. Quality check was based on scientific experience and refers to
quality of the methods, number of animals included, design of experiments.

a reduction in alcohol craving, which is observed in humans
during relapse. Moreover, pharmacological (16, 19) or genetic (23)
suppression of the GHSR attenuates the motivation to consume
alcohol in the operant self-administration paradigm in male rats.
As for regular alcohol intake, the ability of a GHSR antagonist
to reduce self-administration is persistent in animals exposed to
alcohol for long or short periods of time before treatment (16,
19, 23). Moreover, this reduction is also observed in female rats
treated with a GHSR antagonist into the nucleus accumbens (NAc)
(25). Together these findings indicate that GHSR regulate aspects of
the AUD process such as escalated intake, craving for alcohol and
motivation to consume alcohol. A clinical relevance is provided as
polymorphisms of the GHSR gene is associated with high alcohol
intake or AUD diagnosis (26–28). Moreover, in patients with AUD
an inverse GHSR-1A agonist reduces self-reported alcohol craving
(29) as well as decreases hangover symptoms after intravenous self-
administration of alcohol (30). Collectively, these studies imply
that GHSR are required for various alcohol drinking behaviors.
However, individuals drink alcohol due to various reasons where
impulsivity and risk-taking are important features. Upcoming
studies should therefore explore the role of the ghrelin pathway for
such characteristics in patients with AUD.

Opposed to the clear outcome on alcohol drinking by the GHSR
antagonists administered into the brain or systemically, the role
of central versus peripheral ghrelin is unclear. An initial study
reveals that male mice with an overall ghrelin knockout drink less
alcohol compared to their wild-type littermates (18). Moreover,
ghrelin administration into the ventricles of the brain increases
alcohol intake in male mice consuming alcohol for months before
the ghrelin infusion (15). An effect also observed after a systemic
administration in one study of male rats (31), but not in another
study of male mice (32) exposed to alcohol for a short-period
of time. Moreover, neutralization of circulating ghrelin does not
influence alcohol intake in male rats drinking alcohol for months
prior to treatment (33). The reasons for these diverging results
remain to be determined, but may be due to parameters such as
different drinking models, time of alcohol exposure prior to test
or animals/strain used. The role of circulating ghrelin for AUD
processes is further discussed as circulating levels of ghrelin are
reduced by acute alcohol in male rats (34, 35) and enhanced by
alcohol drinking (36). Whereas another study reveals no differences
in plasma ghrelin between low and high alcohol-preferring rats
(16). The association between ghrelin and alcohol in humans is
extensively reviewed elsewhere (6). In brief, in patients with AUD
the high plasma levels of ghrelin is associated with the craving for
alcohol (37–41), possibly involving the ventral striatum (41). An
area also central for ghrelin-alcohol interaction in animals (25).
On the same note, in patients with AUD intravenous infusion of a

high dose of ghrelin declines the latency to first alcohol containing
drink (42) and elevates alcohol craving in patients with AUD (43).
Besides, polymorphisms in the pre-pro-ghrelin gene are associated
with aspects of the AUD diagnosis (28, 44, 45).

Collectively, these findings raise the discussion whether
circulating or central ghrelin signaling is required for a modulation
of the alcohol-related effects, an aspect that should be addressed
in upcoming studies. It should also be noted that the divergence
between central and peripheral signaling exist when it comes
to another gut-brain peptide; glucagon-like peptide-1 (GLP-1).
Indeed, central, but not peripheral GLP-1 receptors appear to be
important for the ability of a GLP-1 receptor agonist to attenuate
alcohol-related responses in male mice (46).

2.2. Suppression of the ghrelin pathway
attenuates the alcohol-related responses
(behavioral or neurochemical) in rodents

The decline in alcohol drinking by GHSR antagonists in
animals exposed to long or short-term alcohol may be due to a
reduction in alcohol’s rewarding experience as this also is reduced
by GHSR antagonism (Figure 1). A feature essential for the several
phase of the addiction cycle (4) and associated to the development
of AUD later in life (47). In animal models alcohol reward can be
measured by its ability to activate the mesolimbic dopamine system,
consisting of dopamine projections from the ventral tegmental
area (VTA) to the NAc shell [for review see Jayaram-Lindström
et al. (48)]. Specifically, alcohol causes a locomotor stimulation,
dopamine release in NAc shell and causes a conditioned place
preference (CPP) in rodents that are alcohol naïve prior to test
[for review see Jayaram-Lindstroöm et al. (48) and Sanchis-Segura
and Spanagel (49)]. Importantly, the elevated dopamine in NAc
shell is translated into human studies, where the dopamine release
is positively correlated to the reward of alcohol [for review see
Jayaram-Lindström et al. (48)]. It should however be noted that
this correlation is influenced by factors such as sex (50), possibly
due to alcohol’s ability to affect multiple neurotransmitters. When
it comes to ghrelin pathway and alcohol reward, preclinical studies
of male mice reveal that the ability of alcohol to cause a locomotor
stimulation, dopamine release in NAc or CPP is blocked both
by pharmacological or genetic suppression of the GHSR (15).
A similar finding also observed after sub-chronic administration
of a GHSR antagonist (51). On a similar note, these behavioral
and neurochemical responses to alcohol are ablated in male mice
with an overall ghrelin knockout (52). A finding later replicated as
ghrelin knockout male mice do not display a CPP to alcohol (18).
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FIGURE 1

Illustrative summary of available preclinical studies on how ghrelin administration (adm) or genetic/pharmacologic (pharm) GHSR (growth hormone
receptor, ghrelin receptor) suppression influences various alcohol-related responses. ↓, decreases; ↑, increases; 6=, no effect. Created with
BioRender.com.

In mice using an overall ghrelin knockout the role of central versus
peripheral ghrelin cannot be elucidated. In attempts to explore
this, a study explored the alcohol responses after neutralization of
circulating ghrelin (33). Intriguingly, neutralization of circulating
ghrelin did not affect the alcohol-induced locomotor stimulation,
dopamine release in NAc and CPP (33). As reviewed extensively
elsewhere (10, 11, 13, 14), in humans (and rodents to some
extent) associations between alcohol responses and plasma ghrelin
have been found. Briefly, a high subjective intensity of alcohol is
associated to circulating ghrelin levels (53). On a similar note, in
a study with individuals self-administrating alcohol intravenously
an intense subjective alcohol experience is positively associated
with higher fasting ghrelin levels (54). Taken together, these studies
imply that GHSR are required for alcohol to elicit reward and that
the role of central versus peripheral ghrelin should be explored in
detail.

2.3. Brain areas participating in the
interaction between ghrelin and alcohol
in rodents

Areas and circuits responsible for the ghrelin-alcohol
interaction remain to be fully elucidated, but may involve
areas central for reward (Figure 2). First of all, these brain
regions express GHSR (55–57), indicating that these areas mediate
ghrelin effects. When it comes to NAc, high alcohol intake
elevates the GHSR expression in this area (17). Moreover, local
infusion of a GHSR antagonist into the NAc blocks the operant
self-administration of alcohol in female rats (25). A finding also
apparent in humans, as the ability of ghrelin to cause craving for
alcohol involves the ventral striatum (corresponding to NAc in
rodents) (41). Furthermore, preclinical studies imply that GHSR
within the VTA, an area interconnected with the NAc, may be
central for the interaction of ghrelin pathway and alcohol. Initial
studies demonstrate that local infusion of ghrelin into the VTA
increases alcohol intake in male mice (15), and causes reward
per se (51, 58–62). Similarly, male rats with short exposure to
alcohol prior to treatment display elevated alcohol intake after
ghrelin into the VTA (63). This interaction is further evident as
high-alcohol consuming rats display higher expression levels of the
GHSR in the VTA than low-alcohol consuming rats (17). However,
this association was not replicated in a human study (64). Direct

application of ghrelin into the VTA of male rodents increases
the activity dopamine cells (65) and activates the mesolimbic
dopamine system (59, 60, 65–68). Similarly, GHSR on dopamine
neurons in the VTA controls brain stimulation reward induced by
optogenetic stimulation (69). Within the VTA, a local dopamine
release controlled by the GHSR possibly located on dopamine
neurons (65) appears central for either ghrelin or alcohol to
activate this reward pathway (68). On this note, the ability of
GHSR to form a heterodimer with dopamine receptors regulate the
activity of dopamine neurons (70–72). These findings collectively
suggest that ghrelin and dopamine signaling interact within the
VTA to control the ability of stimuli like alcohol to activate the
mesolimbic dopamine system. NAc and VTA are bidirectionally
interconnected and opposed to VTA-NAc dopamine projection
the GABA projection from NAc to VTA does not regulate brain
stimulation reward (69).

Besides NAc, the VTA projects to reward-related areas like
amygdala [for review see Jayaram-Lindström et al. (48)], or to
Edinger–Westphal nucleus (73). When it comes to the role of
GHSR in the amygdala (56, 74), both preclinical and clinical studies
reveal that GHSR within this area modulate the alcohol response.
Specifically, ghrelin elevates the amygdala levels of GABA in alcohol
dependent or naïve male rats (34, 74). Moreover, in this area the
protein levels of GHSR and the immunoreactive GHSR cells are
elevated by high alcohol intake (34), as are the GHSR expression
(17). In humans, ghrelin enhances the ability of alcohol-related cues
to activate amygdala an effect involving inflammation markers (42,
75). Although studied to less extent, a GHSR antagonist prevents
the ability of alcohol to activate the perioculomotor urocortin-
containing neurons of the Edinger–Westphal nucleus (20). The
notion that the activity of dopaminergic neurons of the VTA
is modulated by afferents from the laterodorsal tegmental area
(LDTg) or lateral hypothalamus [for review see Larsson and Engel
(76)], raises the possibility that these areas could participate in
the ghrelin-alcohol link. Indeed, local infusion of ghrelin into the
LDTg activates the dopaminergic neurons of the VTA and enhances
alcohol drinking in male mice (15, 58). Additionally, alcohol
elevates ghrelin and dopamine within the lateral hypothalamus in
male rats with short or long-term alcohol exposure (34). On a
similar note, high alcohol consumption increases the protein levels
of GHSR and immunoreactive GHSR cells in lateral hypothalamus
(34). As the expression of GHSR in the brain is wide spread (55–57),
additional area and circuits most likely are involved and should be
defined in more detail.
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FIGURE 2

Illustrative summary of available preclinical studies on the main brain regions participating in the interaction between alcohol and the ghrelin
pathway. VTA, ventral tegmental area; NAc, nucleus accumbens; LDTg, laterodorsal tegmental area; LH, lateral hypothalamus; AMY, amygdala; exp,
expression; ant, antagonist; prot, protein; IR, immunoreactivity; ↓, decreases; ↑, increases. Created with BioRender.com.

2.4. Antagonism of the ghrelin pathways
decreases drug-related behaviors in
rodents

In addition to alcohol-mediated responses, the ghrelin pathway
appears to influence behaviors induced by addictive drugs such as
the psychostimulants. Indeed, the locomotor stimulatory properties
(77) and CPP reward (78, 79) of cocaine are enhanced by ghrelin
in male rodents. An interaction plausibly involving the ghrelin
pathway in the VTA (80, 81) and NAc (82). In contrast to
ghrelin, systemic administration of a GHSR antagonist attenuates
the cocaine-induced hyperlocomotion, NAc dopamine release and
CPP in male mice (83–86). On a similar note, GHSR inhibition
reduces the reinstatement of cocaine-seeking in rats with a history
of cocaine taking (81). This is further supported as GHSR inhibition
reduces the ability of cocaine to cause a locomotor sensitization
(84, 85). These cocaine responses appear to be mediated via
central rather than peripheral ghrelin (86). Although cocaine does
not alter the plasma levels of ghrelin in humans (87), enhanced
circulating ghrelin is associated with cocaine seeking and cocaine
taking in male rats (88, 89). Likewise, in male rodents a GHSR
antagonist reduces relapse and drug-seeking for methamphetamine
(90) and decreases the amphetamine-induced hyperlocomotion,
NAc-dopamine and CPP (51, 68, 83). On a similar note, GHSR
antagonism prevents nicotine (91–94) to activate the mesolimbic
dopamine system in male rodents. Moreover, ghrelin potentiates
the nicotine-induced dopamine release in striatal rat brain slices
(92). These interactions between addictive drugs and ghrelin
pathway in rodents are supported by few human genetic studies,
where polymorphism of the GHSR genes is associated with
either amphetamine or nicotine dependence (28, 95). Although
the associations between ghrelin and smoking in humans are
contradictory (96–102), craving for nicotine during abstinence
appear positively associated with plasma ghrelin (101, 103).

A finding in line with the association between ghrelin and alcohol
craving (37–41).

The opioid crisis is a world-wide health problem, and
novel treatment options is thus needed for opioid addictions.
Intriguingly, GHSR could be a potential target as antagonists
suppress the reward aspects and the drug taking of various
opioid including morphine and fentanyl in male rodents (104–
108). Another opioid interacting with the ghrelin pathway is
oxycodone. Indeed, in the operant self-administration model
systemic administration of a GHSR antagonist reduces the taking
and breakpoint for oxycodone in male rats (81). The importance
of ghrelin pathway for addictive drugs is also transferred
to other addictive drugs, like cannabinoids. Indeed, GHSR
antagonism attenuates whereas ghrelin enhances cannabinoid self-
administration, seeking, and reward (109, 110). Collectively, these
findings report that the ghrelin pathway modulate drug-taking and
reward associated with additive drugs in male rodents.

3. Confounding factors

Although the above-mentioned articles provide support for
that alcohol effects (drinking, behaviors, and neurochemistry) are
enhanced by ghrelin and reduced by GHSR suppression, there are
confounding factors that may influence the interpretation of these
data. One such may be caloric intake and consummatory behaviors
as these are well-established functions of ghrelin [for review see
Espinoza Garcia et al. (111)]. This appears less likely as GHSR
antagonism prevents alcohol responses like hyperlocomotion,
dopamine release in NAc and CPP that are less controlled by such
factors [for review see Shevchouk et al. (12)]. Yet another support
for that reward, rather than consummatory behaviors and calories,
are the findings that the ghrelin pathway controls drug responses
which are driven by reward rather than consumption/calories. On
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a final note, in a choice situation GHSR antagonism decreases the
most rewarding food, suggesting that reward rather than general
consumption is affected. When using GHSR antagonists like [D-
Lys3]-GHRP-6 receptor unselectively may be a concern. However,
this appears less likely to influence the interpretation as different
antagonists display similar results and opposite results to ghrelin
itself. The possibility that enhanced alcohol metabolism rather
than reduced alcohol reward should be taken into consideration as
another confounding factor. Although not studied for the ghrelin
pathway, gut-brain peptides like GLP-1 and amylin do not display
such effect (112, 113). Stress is a factor that could influence the
ability of the ghrelin pathway to control alcohol effects as ghrelin
effects the hypothalamus-pituitary-adrenal axis (114, 115). When
it comes to GLP-1, nausea/aversion is a common side effect that
might influence the obtained data. This may also a possibility
when it comes to ghrelin pathway as ghrelin decreases nausea
(116). However, this may be less likely as GHSR antagonists do
not (i) reduce water intake, (ii) alter CPP alone, or (iii) changes
locomotion or NAC-dopamine per se.

4. Future directions and concluding
remarks

Although these preclinical studies show that different GHSR
antagonists have a similar ability to decline alcohol drinking,
all but one study (25) are conducted in male animals. Besides,
the neurobiological underpinnings of AUD may diverge between
sexes [for review see Becker et al. (117)], and a sex-divergent
difference is also when it comes to ghrelin in plasma from
AUD patients (38). Upcoming studies should thus evaluate the
influence of the ghrelin pathway on alcohol-mediated behaviors in
female subjects. Although the above reviewed studies imply that
reward-related areas are central for the alcohol-ghrelin interaction,
additional studies are warranted in an attempt to define brain
nodes, circuits and neurobiological substrate central for this
interaction. One of the mechanisms that should be explored in
detail is the ghrelin-dopamine-VTA interaction that has been
implied in separate studies (7, 68, 70–72). Moreover, reward
has been suggested as a central mechanism contributing to the
ability of the ghrelin pathway to control alcohol drinking, but
other tentative biological mechanisms should be evaluated for this
interaction. Therefore future studies should explore how ghrelin
affects impulsivity and risk-taking, behaviors central for AUD
diagnosis. Although human and rodent studies reveal similar
expression of GHSR (55–57, 64), differences are evident when it
comes to effects and regions involved (17, 64). Therefore, studies
should explore if similar or diverging mechanisms contribute
to the ghrelin-alcohol association in humans as in rodents.
Importantly, such studies should control for factors like time of
alcohol exposure, withdrawal or not, gender and feeding status.
Although available research indicates that GHSR are required
for several steps of the AUD cycle, its role for drinking to
avoid negative consequences are unknown and a subject for
upcoming studies. When it comes to feeding and body weight,
the combination of gut-brain peptides synergistic-like decline
these parameters (118). Therefore, upcoming studies should test
the possibility that the combination of a GHSR antagonist with

other gut-brain peptides synergistically or additively reduces on
alcohol drinking.

As reviewed above, ghrelin and its receptor appear central for
alcohol responses. However, other substrates of the ghrelin pathway
exist and their role in addiction processes is unknown. The ghrelin
gene is translated into ghrelin-obestatin, which is converted to pro-
ghrelin which after acylation by GOAT and conversion forms the
active form of ghrelin; acyl-ghrelin (here denominated ghrelin) [for
review see Muller et al. (119)]. Ghrelin is then formed into des-acyl-
ghrelin (DAG) (120), which previously was considered inactive.
However, recent advances show that DAG affects behaviors as
it regulates feeding (121) and block physiological properties of
ghrelin (121–123). Although, plasma levels of DAG are not
associated with alcohol craving in humans (40, 41) its association
with various aspects of the AUD process should be elucidated
in detail. Another substrate of the ghrelin pathway is LEAP2, an
endogenous inverse GHSR agonist that appears to reduce ghrelin-
induced behaviors and impair dopaminergic signaling (72, 124–
126). As the role of GOAT, DAG, or LEAP2 in addiction processes
is unknown, future studies should explore this in detail; both
in humans and animals. Besides, LEAP2 has not been explored
in relation to alcohol craving or other aspects of the AUD
cycle, a tentative focus on warranted plasma-association studies.
Speculatively, these studies could be used to identify individuals
with elevated alcohol craving that tentatively could benefit from
agents targeting the ghrelin pathway. Another aspect that needs
further attention is the role of central versus peripheral ghrelin
signaling in addiction processes.

In conclusion, the vast number of preclinical studies reveal
that the ghrelin pathway is central for reward, reinforcement and
addiction processes. Besides, findings from these preclinical studies
are accompanied with supporting studies in humans [for review see
Morris et al. (127)]. When identifying mechanisms like the ghrelin
pathway which is central for AUD, indirect insight into impulsivity
and risk-taking are provided. Collectively these studies indicate
that pharmacological approaches to dampen the GHSR should be
evaluated in patients with AUD.
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