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Introduction: Loss of control (LOC) eating is the perceived inability to control 
how much is eaten, regardless of actual amount consumed. Childhood LOC-
eating is a risk factor for the development of binge-eating disorder (BED), 
but its neurobiological basis is poorly understood. Studies in children with 
BED have shown both increased gray matter volume in regions related to 
top-down cognitive control (e.g., dorsolateral prefrontal cortex) and reward-
related decision making (e.g., orbital frontal cortex) relative to healthy controls. 
However, no studies have examined brain structure in children with LOC-
eating. To identify potential neurobiological precursors of BED, we conducted 
secondary analysis of five studies that conducted T1 MPRAGE scans.

Methods: A total of 143, 7–12-year-old children (M = 8.9 years, 70 boys) were 
included in the study, 26% of which (n = 37) reported LOC-eating (semi-structured 
interview). Age, sex, and obesity status did not differ by LOC-eating. Differences 
between children with and without LOC were examined for gray matter volume, 
cortical thickness, gyrification, sulci depth, and cortical complexity after adjusting 
for age, sex, total intercranial volume, weight status, and study.

Results: Children with LOC, relative to those without, had greater gray matter 
volume in right orbital frontal cortex but lower gray matter volume in right 
parahippocampal gyrus, left CA4/dentate gyrus, and left cerebellar lobule VI. 
While there were no differences in cortical thickness or gyrification, children 
with LOC-eating had great sulci depth in left anterior cingulate cortex and 
cuneus and greater cortical complexity in right insular cortex.

Discussion: Together, this indicates that children with LOC-eating have 
structural differences in regions related to cognitive control, reward-related 
decision-making, and regulation of eating behaviors.
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1 Introduction

One in four children report experiencing loss of control (LOC)-eating, which is the 
perceived inability to stop eating, regardless of the amount consumed (Tanofsky-Kraff 
et al., 2020). LOC-eating was first conceptualized as a way to capture eating behaviors that 
precede the development of binge eating disorder (BED; Tanofsky-Kraff et al., 2007) and 
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it is an important risk factor for the development of BED in early 
adolescence (Tanofsky-Kraff et al., 2011; Hilbert et al., 2013). In 
children, LOC-eating increases risk for adverse outcomes such as 
greater adiposity (Shomaker et al., 2010) and obesity (Tanofsky-
Kraff et al., 2009b). However, independent of child weight status, 
LOC-eating has been associated with metabolic dysfunction 
(Tanofsky-Kraff et  al., 2012; Byrne et  al., 2019) and systemic 
inflammation (Shank et al., 2016). LOC-eating in adolescence has 
also been associated with disordered eating attitudes, BED, 
depression, and anxiety, and again, these relationships are 
independent of the effects body weight (Shomaker et  al., 2010; 
Byrne et al., 2019; Tanofsky-Kraff et al., 2020). Given the broad 
impacts of LOC-eating across development, it is critical to clarify 
the neurobiological systems that are associated with this behavior. 
Therefore, this study examined differences in gray matter volume 
and surface morphology between children who reported 
LOC-eating and those that did not.

To our knowledge, there have been no prior studies examining 
whether LOC-eating is associated with alterations in brain structure. 
In general, higher transdiagnostic levels of psychopathology have been 
associated with lower global gray matter volume and surface area in 
children (Mewton et al., 2022; Bashford-Largo et al., 2023; Romer 
et  al., 2023). More closely related to LOC-eating, there is initial 
evidence for structural differences associated with BED. Among 
children with healthy weight, higher levels of binge eating have been 
associated with greater gray matter volume in the insula (Chen et al., 
2022), a region implicated in gustation, visceral interoception, and 
reward processing (Frank et al., 2013; Uddin et al., 2017; Centanni 
et al., 2021). Recent evidence from the Adolescent Brain Cognitive 
Development (ABCD) ® study also found that children with BED had 
greater gray matter density in regions that support top-down cognitive 
control (e.g., dorsolateral prefrontal cortex—dlPFC, middle frontal 
gyrus, superior frontal gyrus) and reward-related decision making 
(anterior cingulate, orbital frontal cortex—OFC) compared to body 
mass index (BMI) matched controls (Murray et al., 2022). Similarly, 
adolescents with co-morbid obesity and BED have greater gray matter 
volume in OFC compared to adolescents without BED, regardless of 
weight status (Turan et al., 2021). Therefore, initial evidence suggests 
that, independent of weight status, BED in youth may be associated 
with structural brain differences in regions critical for appetite 
regulation. However, it remains unclear whether observed structural 
differences precede the development of BED. Developmentally, gray 
matter volume peaks in pre-adolescence and then declines though 
adolescence and adulthood (Giedd and Rapoport, 2010). Examining 
brain structure in children with LOC-eating will help elucidate neural 
systems associated with the subjective experience of loss of control 
and may help elucidate whether structural differences are cause or 
consequence of binging and BED.

Although it is not known if children with LOC-eating show 
altered brain structure, there is some initial evidence that 
LOC-eating may be  related to alterations in brain function. 
Pre-adolescents (9-12-years-old) with LOC-eating and overweight 
showed greater activation in response to milkshake receipt in 
regions that support cognitive control (e.g., inferior frontal gyrus, 
middle frontal gyrus) and reward (e.g., caudate) compared to 
pre-adolescents with overweight or healthy weight but no 
LOC-eating (Goldschmidt et al., 2018). Additionally, 7–10-year-
old children who reported LOC had reduced activation in the 

cerebellum in response to images of larger compared to smaller 
portions of food (English et al., 2019). While the cerebellum has 
long been known to play a role in motor control, more recent work 
has identified the importance of cerebellar function in satiety 
signaling, meal cessation, food reward, and eating-related affective 
processes (Low et  al., 2021; Iosif et  al., 2023). Further, among 
adolescents with overweight or obesity, those who reported 
LOC-eating showed lower PFC engagement during social distress/
rejection compared to those without LOC-eating (Jarcho et al., 
2015). Together, these studies suggest differences in neural 
function associated with LOC-eating that partially overlap with the 
pattern of structural differences seen in children and adolescents 
with BED.

Given that LOC-eating in children increases risk for the 
development of BED in adolescence, it is critically important to gain 
a better understanding of the neural antecedents associated with this 
form of disordered eating. Initial evidence suggests that BED is 
associated with gray matter differences in regions implicated in 
cognitive control, appetite regulation, and reward (Turan et al., 2021; 
Chen et  al., 2022; Murray et  al., 2022). Therefore, the current 
secondary analysis examined variations in brain structure between 
children with and without self-reported LOC eating. Estimates of 
brain structure were derived from gray matter volume and surface 
morphology (e.g., cortical thickness, gyrification). It was hypothesized 
that children with LOC-eating would show greater gray matter volume 
in regions associated with cognitive control (e.g., PFC), reward (e.g., 
nucleus accumbens), and interoceptive processing and satiety 
signaling (e.g., insula, cerebellum). This study also explored potential 
differences in surface morphology associated with LOC-eating 
in children.

2 Methods

2.1 Participants

This secondary analysis included 143 (73 female, 51%) children 
aged 7- to 12-years-old (Mean = 8.9, SD = 1.3) from five prior studies 
designed to assess child eating behavior and neural responses to food 
cues (English et al., 2017; Adise et al., 2018, 2019; Masterson et al., 
2019; Keller et al., 2023). All studies were approved by the Institutional 
Review Board at The Pennsylvania State University. Exclusion criteria 
across the five prior studies included any parent-reported 
contraindications for magnetic resonance imaging (MRI) (e.g., metal 
implants, claustrophobia), medications that influence taste, 
psychological/learning disorders (e.g., attention-deficit hyperactivity 
disorder), food allergies, and parents reporting that the child disliked 
the food served in the primary studies.

2.2 Measures

2.2.1 Demographics
Yearly family income and parental education were used as proxies 

for socioeconomic status (Bradley and Corwyn, 2002). The parent 
who accompanied the child to the visit was predominately responsible 
for feeding-related decisions in the home, which was the mother 87% 
of the time (n = 125).
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2.2.2 Anthropometrics
Child height and weight were measured twice using a stadiometer 

(Detecto model 437, Webb City, MO) and electronic scale (Seca model 
202, Chino, CA). Body mass index (BMI; kg/m2) was calculated from 
the averaged height and weight and BMI-for-age-and-sex percentile 
(BMI percentile) was determined using the age and sex adjusted 
cut-offs from the Centers for Disease Control (Kuczmarski 
et al., 2002).

2.2.3 LOC-eating
The Loss of Control-Eating Disorders (LOC-ED) screening form 

is a semi-structured interview used to assess LOC-eating (Tanofsky-
Kraff et al., 2008; Altman et al., 2020) which has been shown to have 
both internal and external validity in pediatric samples (Goldschmidt, 
2017). Children were asked: “During the past 3 months have you ever 
felt that you were not able to stop eating, or not able to control the type 
of food or amount of food that you ate?.” Children were allowed to 
skip or decline to answer, therefore, this sample only included children 
who responded as ‘yes’ or ‘no’ during the interview.

2.2.4 Mock training for magnetic resonance 
imaging

A training session used a mock MRI scanner to familiarize 
children with the MRI environment and to help them practice being 
still. Children entered the mock scanner and were instructed to lie still 
while they heard sounds similar to those heard in the MRI scanner. 
For full protocol details, see previous functional MRI publications 
(English et al., 2017; Adise et al., 2018, 2019; Masterson et al., 2019).

2.2.5 MRI acquisition
Motion was restricted by using padding around the head, arms, 

and body. While all data were acquired using the same Siemens 
Prisma Fit 3 T scanner, the exact parameters used for MPRAGE 
acquisition varied between studies (see Supplementary Table S1). Scan 
variability can be mitigated with inclusion of study as a covariate 
(Fennema-notestine et al., 2007; Pardoe et al., 2008; Chen et al., 2014; 
Takao et al., 2014), therefore, study number was included as a control 
variable in all statistical models.

2.3 Analytic approach

2.3.1 Descriptive statistics
Participant characteristics were analyzed in R. Differences 

between children with and without LOC-eating were tested using χ 2 
and Fisher exact tests for categorical variables (e.g., sex, weight status) 
and 2-sample t-tests for continuous variables (e.g., age, 
BMI percentile).

2.3.2 MRI pre-processing
All scans were analyzed using the SPM12 software1 (version 7,771) 

and the Computational Anatomy Toolbox (CAT122; version 12.8.2) in 
Matlab R2021b. CAT12 has been validated against FreeSurfer and 

1 https://www.fil.ion.ucl.ac.uk/spm

2 http://www.neuro.uni-jena.de/cat/

does not require manual annotation of scans (Singh, 2023). A study-
specific tissue probability map was generated using the CerebroMatic 
toolbox using age and sex as covariates (Wilke et al., 2017) because 
children differ anatomically from the adult-based standard tissue 
probability maps (Yoon et  al., 2009). Scans were bias- and noise-
corrected, skull stripped, and segmented into gray matter, white 
matter, and cerebrospinal fluid. Total intercranial volume (TIV) was 
computed for each child. Image quality was assessed via a weighted 
measure of noise and bias. While scans with a quality above 70 are 
considered adequate, an image quality rating (IQR) ≥ 80 is preferred 
(Gaser et al., 2022). Therefore, the sample used in this study had scans 
with IQR ≥ 80.

2.3.3 Gray matter volume
Gray matter volume was extracted using CAT12’s 

Neuromorphometrics atlas (136 regions of interest—ROIs3). 
Additionally, to allow for better localization of sub-cortical differences 
(e.g., hippocampal CA1 versus CA4), gray matter volume was 
extracted using the Cobra atlas (Winterburn et al., 2013), which has 
detailed segmentation of the cerebellum and lobules, hippocampus 
and its subfields, the striatum, and globus pallidus (52 ROIs).

2.3.4 Surface morphology
Measures of surface morphology included cortical thickness, 

gyrification, sulci depth, and cortical complexity. CAT12 uses 
projection-based thickness (Dahnke et al., 2013) to estimate cortical 
thickness. This process is capable of handling voxels with partial-
volume and sulci blurring and asymmetries (Dahnke et al., 2013). 
Topological correction was performed using spherical harmonics 
(Yotter et al., 2011) and then a central surface mesh was created 
using surface refinement. Individual surfaces were spatially 
registered to the FreeSurfer template using spherical mapping with 
minimal distortions (Yotter et al., 2011). Cortical thickness surfaces 
were smoothed separately with a Gaussian kernel with a full width 
half-maximum (FWHM) of 15 mm. CAT12’s automatic calculation 
of cortical thickness has been shown to be valid and highly reliable 
with FreeSurfer estimates (Ay et  al., 2022). Gyrification is the 
absolute mean curvature at each vertex (Luders et al., 2006) while 
the gyrification index reflects the local degree of cortical folding 
using the ratio of pial surface and surface area if no folding were 
present (i.e., surface ratio) (Toro et al., 2008). Sulci depth is the 
Euclidean distance between central surface and the convex hull 
which is transformed with a square root function to make it 
conform to a normal distribution (Yun et al., 2013). Lastly, cortical 
complexity is indexed by fractal dimension (Yotter et al., 2011). 
Surfaces for gyrification, sulci depth, and cortical complexity were 
smoothed using a Gaussian kernel with a FWHM of 20 mm. Surface 
metrics were extracted using the Desikan-Killany-Tourville atlas 
(Desikan et al., 2006).

2.3.5 MRI analysis
Analyses of covariance (ANCOVA) was used to assess the 

difference in structure between those with and without LOC-eating 
as the model included both continuous and categorial control 

3 Neuromorphometrics.com
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variables. All models adjusted for sex, age, obesity status, and study 
as covariates. Both obesity status and study were dummy-coded as 
categorical variables. For models assessing differences in gray 
matter volume, TIV was also included to adjust for differences in 
overall head size. CAT12’s whole-brain ROI approach tests the 
ANCOVA for each ROI in an atlas and adjusts for multiple 
comparisons using the Holm-Bonferroni procedure to ensure an 
adjusted α  = 0.05. The same approach was applied to 52 ROIs from 
Cobra atlas (Winterburn et  al., 2013), which has detailed 
segmentation of the cerebellum and lobules, hippocampus, 
hippocampal subfields, striatum, and globus pallidus.

2.3.5.1 Matched samples sensitivity analyses.
As there were fewer children who reported experiencing 

LOC-eating (n = 37) than those who did not experience 
LOC-eating (n = 106; see Table 1), we identified a sub-sample of 
children (n = 37) without LOC-eating that were matched to those 
with LOC-eating on key demographic characteristics including 
age, sex, and weight status. This was done using the MatchIt 
package in R (Ho et  al., 2011) which uses a non-parametric 
approach (Ho et al., 2007) based on the propensity score nearest 
neighbor measure (Ho et  al., 2011). To confirm differences 
observed with the larger sample, differences in brain structure 
were tested between children with LOC-eating (same as full 
analyses) and the matched sub-sample without LOC-eating 
(n = 37) using general linear models. Demographics for the 
matched sub-sample are in Supplementary Table S2.

3 Results

3.1 Participant characteristics

Based on BMI percentile, the majority of the sample had healthy 
weight (BMI < 85th percentile, n = 113; 79%) with almost equal 
numbers of children with overweight (BMI 85th–94.9th percentile, 
n = 16, 11%) and obesity (BMI > 95th percentile, n = 14, 10%). Full 
participant demographics are presented in Table 1. Children with 
(n = 37) and without LOC-eating (n = 106) did not differ in age, sex, 
income, or maternal education (ps > 0.062). While BMI and 
distribution of weight status did not differ between groups (ps > 0.054), 
BMI percentile [t(65) = −2.86, p = 0.006] and BMI Z-score 
[t(60) = −2.90, p = 0.005] were higher in children who reported LOC 
(Table 1).

3.2 Structural results (Table 2)

3.2.1 Gray matter volume
Children with LOC-eating had greater gray matter volume 

in right gyrus rectus within orbital frontal cortex but lower gray 
matter volume in right parahippocampal gyrus (Figure  1A; 
uncorrected results in Supplementary Table S3). Additional 
models examining more localized sub-cortical regions found 
that children with LOC-eating had lower gray matter volume in 
left CA4/dentate gyrus subfield of the hippocampus and left 
cerebellar lobule VI (Figure  1B; uncorrected results in 
Supplementary Table S4).

3.2.1.1 Matched sub-sample sensitivity test
Additional sensitivity tests were conducted to determine whether 

results were driven by the difference in number of children with 
(n = 37) and without LOC-eating (n = 106). These analyses used a 
sub-sample of children without LOC-eating that was matched to those 
with LOC-eating on key demographic variables (see 2.3.5.1 Matched 
Samples Sensitivity Analyses). Sensitivity tests showed consistent 
results as observed in the full sample apart from the gray matter 
differences observed in the cerebellum, potentially due to reduced 
power (see Supplementary materials).

TABLE 1 Demographic characteristics.

Total
N =  143

LOC-eating
N =  37

No LOC-
eating
N  =  106

Mean (SD) Mean (SD) Mean (SD)

Age, yr 8.9 (1.3) 8.7 (1.3) 9.0 (1.3)

BMI Percentile 55.3 (28.2) 66.3 (27.0)* 51.4 (27.8)*

BMI Z-score 0.2 (1.0) 0.6 (1.0)* 0.1 (0.9)*

TIV, ml 1,518 (118) 1,504 (120) 1,522 (117)

IQR 82.1 (1.1) 82.1 (1.3) 82.1 (1.0)

N (%) N (%) N (%)

Sex

Female 73 (51%) 21 (57%) 52 (49%)

Male 70 (49%) 16 (43%) 54 (51%)

Weight status

Obesity 14 (9.8%) 6 (16%) 8 (7.5%)

Overweight 16 (11%) 5 (14%) 11 (10%)

Healthy weight 113 (79%) 26 (70%) 87 (82%)

Ethnicity

Hispanic/Latinx 2 (1%) 1 (3%) 1 (1%)

Not hispanic/

Latinx
123 (86%) 34 (92%) 89 (84%)

Unknown/PNA 18 (13%) 2 (5%) 16 (15%)

Race

Asian 4 (3%) 0 (0%) 4 (3.8%)

Black 4 (3%) 3 (8.1%) 1 (0.9%)

White 135 (94%) 34 (92%) 101 (95%)

Mother’s education

>BA degree 48 (34%) 11 (30%) 37 (37%)

BA degree 51 (36%) 13 (35%) 38 (38%)

<BA degree 38 (27%) 13 (35%) 25 (25%)

Unknown/PNA 6 (4%) 0 (0%) 6 (6%)

Income

>$100,000 51 (36%) 8 (22%) 43 (41%)

$51,000–$100,000 64 (45%) 18 (49%) 46 (43%)

<$51,000 25 (17%) 10 (27%) 15 (14%)

Unknown/PNA 3 (2%) 1 (3%) 2 (2%)

BMI, body mass index; IQR, image quality rating; PNA, prefer not to answer; TIV, total 
intracranial volume. *p < 0.05 for difference between LOC-eating and No LOC-eating.
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3.2.2 Surface morphology
While there were no differences for cortical thickness, gyrification, 

or gyrification index, children with LOC-eating had greater sulci 
depth in left anterior cingulate cortex (ACC) and cuneus and greater 
cortical complexity in left insular cortex (Figure 2; uncorrected results 
in Supplementary Table S5).

3.2.2.1 Matched sub-sample sensitivity test
Additional sensitivity tests were conducted using a sub-sample of 

children without LOC-eating that was matched to those with 
LOC-eating on key demographic variables (see 2.3.5.1 Matched 
Samples Sensitivity Analyses). Sensitivity tests with the smaller, 
matched sub-sample without LOC-eating showed consistent results 

apart from differences in sulci depth of the cuneus, likely due to 
reduced power (see Supplementary materials).

4 Discussion

To our knowledge, this is the first study to investigate differences in 
brain structure associated with LOC-eating in children. We showed that 
children with LOC-eating had lower gray matter volume in subcortical 
regions associated with memory and regulation of eating behavior (i.e., 
parahippocampal gyrus, hippocampus, and cerebellum) and greater 
gray matter volume in regions associated with top-down control and 
reward (i.e., OFC) relative to children without LOC-eating. Compared 

TABLE 2 Structural differences between children with and without LOC-eating.

H T Ze-value Region

Grey Matter Volume – Neuromorphometrics Atlas

LOC < No LOC R −2.12 −2.30 Parahippocampal Gyrus

LOC > No LOC R 2.33 2.10 Orbital Frontal Gyrus (Gyrus Rectus)

Grey Matter Volume – Cobra Atlas

LOC < No LOC L −2.96 −2.91 Hippocampus – CA4

L −1.87 −1.85 Cerebellum – Lobule IV

Sulci Depth – Desikan-Killany-Tourville Atlas

LOC > No LOC L 3.19 3.12 Rostral Anterior Cingulate Gyrus

L 1.70 1.69 Cuneus

Cortical Complexity – Desikan-Killany-Tourville Atlas

LOC > No LOC L 3.08 3.02 Insula

LOC, loss of control; H, hemisphere; T, t-test statistic; Ze-value, equivalent Z value. Derived from analysis of covariance (ANCOVA) models adjusted for sex, age, obesity status, and study. All 
group differences were p < 0.05 after adjustment for multiple comparisons using the Holm–Bonferroni procedure. See section 2.3.5 MRI Analysis.

FIGURE 1

Gray matter volume differences between children with and without LOC-eating. (A) Whole-brain ROI-based results using the Neuromorphometrics 
atlas. (B) Subcortical results using the Cobra atlas.
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to children without LOC-eating, children with LOC-eating also had 
greater sulci depth in the ACC and greater cortical complexity in the 
insular cortex, two regions that are part of the cingulo-opercular network 
(Dosenbach et al., 2008). Together, these findings suggest that, prior to 
the development of BED, sub-clinical LOC-eating is independently 
associated with structural differences across a broad network of brain 
regions that have been associated with the regulation of eating behavior.

Similar to previous studies of BED in children (Murray et al., 
2022) and adolescents (Turan et al., 2021), children with LOC-eating 
showed greater gray matter volume the OFC. In the current study, 
structural differences were localized to right gyrus rectus, which has 
also been associated with rapid weight gain in children in the ABCD 
study (Adise et al., 2022). Gyrus rectus is part of the medial OFC (Zald 
et al., 2014; Liu et al., 2015), which is considered to be the secondary 
olfactory cortex (Lundström et al., 2011) and part of the gustatory 
cortex (Lundström et al., 2011; Veldhuizen et al., 2011). OFC not only 
integrates multiple sensory modalities, but it also contributes to 
reward-related valuation and decision-making (Rolls et  al., 2020; 
Seabrook and Borgland, 2020). Gyrus rectus is also considered to 
be  part of ventral medial PFC (vmPFC), which is more broadly 
implicated in reward-related decision-making (Mackey and Petrides, 
2014; Rolls et al., 2020). Together, this indicates that children with 
LOC-eating show structural differences in a region that may 
contribute to feeding behaviors through the integration of the 
rewarding properties of taste and smell with decision-making 
processes. That these effects were seen in children prior to the 
development of BED suggests that sub-clinical LOC-eating is 
associated with neural differences prior to the development of more 
serious and sustained binge eating. Although LOC-eating is a risk 
factor for the development of BED in adolescence, it is unclear with 
the observed structural alterations are related to future risk of BED. As 
this is the first study to show this, to our knowledge, larger, 
longitudinal studies are needed to replicate this finding and to 
examine the developmental trajectory of brain structure and eating 
behavior in those at risk for BED.

In addition to OFC, gray matter structural differences were 
observed in the medial temporal lobe (MTL). Children with 
LOC-eating showed lower gray matter volumes in both the 
parahippocampal gyrus and the CA4/dentate gyrus. Similarly, work 
in adults has shown that more restrained eating is associated with 
greater parahippocampal and hippocampal gray matter (Finch et al., 
2021). The dentate gyrus supports learning contextual taste-
postingestive associations (Chinnakkaruppan et al., 2014) and receives 
neuroendocrine (e.g., ghrelin) (Andrews, 2011) and gustatory signals 
(e.g., smell, taste) (Kanoski and Grill, 2017). Parahippocampal gyrus 
is also involved in hedonic (e.g., emotional memory) and inhibitory 
processes involved in feeding (Saruco and Pleger, 2021) while the 
hippocampus integrates external (e.g., taste, olfaction) and internal 
(e.g., interoceptive) signals with contextual information (e.g., place, 
time) (Kanoski and Grill, 2017; Kesner, 2018; Kitchigina et al., 2023). 
As rodent models have shown that high fat/high sugar diets and 
weight gain have negative impacts on hippocampal structure and 
function (Kanoski and Davidson, 2011), differences in eating patterns 
may contribute to structural differences associated with LOC-eating. 
Indeed, children with LOC-eating consume a greater proportion of 
energy from carbohydrates, specifically from snack and desert-type 
items (Theim et al., 2007; Tanofsky-Kraff et al., 2009a), and are more 
likely to snack throughout the day and in the evening (Matheson et al., 
2012) compared to children without LOC-eating. Therefore, it remains 
unclear if structural differences in these MTL regions are due to 
differences in diet or contribute to the development of dysregulated 
eating behaviors in children with LOC-eating.

Children with LOC-eating also had lower gray matter volume in 
the cerebellum. The posterior cerebellar lobule VI is part of the 
‘cognitive’ cerebellum and has connections with prefrontal, temporal, 
and cingulate regions (Siciliano et  al., 2022). Lobule VI has been 
implicated in the motor components of feeding such as swallowing 
and mastication and is sensitive to circulating leptin (Iosif et al., 2023). 
There is also evidence from fMRI that food-cue reactivity in left lobule 
VI is lower in children with LOC-eating when viewing larger 
compared to smaller food portions (English et al., 2019). Together 
with evidence from animal models suggesting that lobule VI may play 
a role in reward prediction and expectancy (Wagner et  al., 2017; 
Kostadinov et al., 2019), these findings suggest that lobule VI may play 
a role in meal cessation due to the integration of motor, satiety, and 
reward signals. While future studies are needed to better understand 
the role of cerebellum in the hedonic aspects of eating behavior, initial 
evidence suggests that cerebellum may play a role in LOC-eating.

In addition to gray matter volume differences, children with 
LOC-eating showed differences in surface morphometry. Children 
with LOC-eating had greater sulci depth in left ACC, which is 
similar to findings from the ABCD study showing altered ACC gray 
matter density in children with BED (Murray et  al., 2022). 
Additionally, children with LOC-eating showed greater cortical 
complexity in left insular cortex. Both the ACC and insula are part 
of the cingulo-opercular network, which supports cognitive control 
(Dosenbach et al., 2008; Menon and D’Esposito, 2021). In addition 
to its role the cingulo-opercular network, insula is part of the 
gustatory cortex and supports interception and emotional regulation 
(Frank et  al., 2013; Uddin et  al., 2017; Centanni et  al., 2021). 
Therefore, differences in cortical morphometry may impact neural 
systems that support cognitive control in addition to appetite and 
emotional regulation.

FIGURE 2

Cortical structure differences between children with and without 
LOC-eating using the Desikan-Killany-Tourville atlas. (A) Differences 
in sulci depth in the left hemisphere. (B) Differences in cortical 
complexity (i.e., fractal dimension) in the left hemisphere.
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This study provided novel evidence for structural alterations in 
children with LOC-eating in a network of regions implicated in 
cognitive control, reward processing, and appetite regulation. However, 
these findings must be interpreted in light of some limitations. First, the 
present study is a secondary analysis with a limited number of 
participants. Additionally, only a quarter of the sample reported 
LOC-eating. Therefore, results need to be replicated in a study powered 
a priori to detect structural alterations associated with LOC-eating. 
Additionally, future studies are needed to determine whether pubertal 
status may moderate the impact of LOC-eating on brain structure. Also, 
while the current sample reflects the population in central Pennsylvania, 
the limited racial and ethnic diversity limits generalizability to other 
samples. While the sample was predominately healthy weight and 
models adjusted for weight status, future studies are needed to 
determine the relative impact of weight status and LOC-eating on brain 
structure. Lastly, the current sample was restricted to children without 
anxiety, depression, or other psychopathological conditions. Since both 
LOC-eating and BED are associated with elevated internalizing 
symptomology and psychosocial stress, it is important for future studies 
to examine how psychopathology and psychosocial stress may moderate 
the association between LOC-eating and brain development. 
Importantly, this study was focused on the subjective experience of 
LOC during an eating episode, regardless of amount consumed. 
Objective binge eating may also independently influence brain structure 
and development and risk for later BED, therefore, future studies are 
needed to assess both subjective and objective binge eating in children 
and adolescence with and without BED.

To our knowledge, this is the first study to show altered gray matter 
volume and surface morphology in children with LOC-eating. Children 
who self-reported episodes of LOC-eating had altered brain structure in 
a broad network of regions that support processing of taste and olfactory 
stimuli, motor control of chewing, visceral interception, cognitive 
control, and reward. This pattern of structural differences partially 
overlaps with previous findings in children with BED, which suggests 
some structural alterations may precede the development of binge eating 
in children. It remains unclear, however, if differences in brain structure 
increase risk for LOC-eating or if they are the result of dietary differences 
between children with and without LOC-eating. Future studies a pirori 
powered with larger sample size and the ability to measure structure 
longitudinally are needed to empirically test the temporal associations 
between brain structure and LOC-eating and BED in children. 
Additionally, future studies are needed to determine the role of sex and 
puberty in the developmental trajectory of brain structure in children 
with LOC-eating who develop BED compared to those who do not.
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