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Micro-expressions (MEs) can reflect an individual’s subjective emotions and 

true mental state, and they are widely used in the fields of mental health, 

justice, law enforcement, intelligence, and security. However, one of the 

major challenges of working with MEs is that their neural mechanism is not 

entirely understood. To the best of our knowledge, the present study is the 

first to use electroencephalography (EEG) to investigate the reorganizations of 

functional brain networks involved in MEs. We aimed to reveal the underlying 

neural mechanisms that can provide electrophysiological indicators for ME 

recognition. A real-time supervision and emotional expression suppression 

experimental paradigm was designed to collect video and EEG data of MEs and 

no expressions (NEs) of 70 participants expressing positive emotions. Based 

on the graph theory, we analyzed the efficiency of functional brain network 

at the scalp level on both macro and micro scales. The results revealed that 

in the presence of MEs compared with NEs, the participants exhibited higher 

global efficiency and nodal efficiency in the frontal, occipital, and temporal 

regions. Additionally, using the random forest algorithm to select a subset of 

functional connectivity features as input, the support vector machine classifier 

achieved a classification accuracy for MEs and NEs of 0.81, with an area under 

the curve of 0.85. This finding demonstrates the possibility of using EEG to 

recognize MEs, with a wide range of application scenarios, such as persons 

wearing face masks or patients with expression disorders.
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Introduction

A micro-expression (ME) represents the facial leakage of a true emotion when an 
individual attempts to conceal that emotion; it provides a reliable indication of a person’s 
true intentions (Johnson et al., 1975). As instantaneous expressions, MEs are faint and 
difficult to recognize by the naked eye; however, they are believed to reflect a person’s true 
intent, especially one of a hostile nature (Dobson and Sherwood, 2010; Porter and ten 
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Brinke, 2010; Porter et  al., 2012). Therefore, ME research is 
important in several areas, such as mental health, justice, law 
enforcement, intelligence, and security. Currently, ME 
identification relies on image recognition technology focused on 
facial expression (Peng et al., 2017; Li et al., 2018; Ben et al., 2021). 
However, recording a person’s face is not always possible, for 
example when wearing a facemask or in low-visibility 
environments, or insufficient patients with expression disorders 
(Haenzi et  al., 2014; Xu et  al., 2022). In these circumstances, 
physiological measures, such as electroencephalography (EEG), 
represent a promising method that may address these issues, with 
a wide range of application scenarios. Therefore, this study 
explores for the first time the brain mechanisms of MEs from a 
neuroscience perspective and provides electrophysiological 
indicators for ME recognition.

The inhibition hypothesis proposed by Ekman (Malatesta, 
1985) suggests that the occurrence of MEs involves both emotional 
arousal and voluntary cognitive control processes. For instance, 
when a person tries to suppress or conceal the expression of their 
true emotions in social situations, the pyramidal and 
extrapyramidal motor systems are activated simultaneously. When 
an emotion is triggered, the subcortical brain regions send an 
involuntary strong signal to the facial nerve. The individual then 
recruits their voluntary motor cortex to conceal this response, 
sending a signal to suppress their expression in a socially and 
culturally acceptable manner. These contrasting signals create a 
conflict over face control, and when the subcortical impulse 
prevails, the expression appears on the face as a fleeting ME before 
the voluntary motor system regains control of the facial muscles 
(Frank and Svetieva, 2015). Therefore, the duration of MEs is 
minimal, approximately 0.04–0.5 s, and they are challenging to see 
(Yan et  al., 2013). In contrast, with millisecond temporal 
resolution, non-invasive and low risk, EEG has been widely used 
to study brain mechanisms of emotional arousal and cognitive 
control (Shahabi and Moghimi, 2016; Adelhofer et al., 2020).

Previous studies have shown that the interactions between 
multiple brain regions (e.g., areas controlling emotional arousal 
and cognition) can be  accurately represented by functional 
connectivity and interactions between the corresponding brain 
networks (Misic and Sporns, 2016; Bartholomew et  al., 2019; 
Cea-Canas et  al., 2020). However, the results from functional 
connectivity research have not yet described the characteristics of 
the affective functional network as a whole, the connectome of the 
brain (Bullmore and Sporns, 2009). Graph theory metrics is an 
advanced research tool used to quantify the properties of all 
connections between a set of brain regions or nodes using the 
concept of efficiency, measuring how efficiently information is 
exchanged within the network (Bullmore and Sporns, 2009; Zhang 
et al., 2015). Therefore, a growing number of studies have used 
network modeling and graph theoretical analysis (GTA) to 
elucidate the complex relationships between brain regions 
(Bartholomew et al., 2019). For example, Kilic and Aydin (2022) 
found that GTA metrics, especially global efficiency, can effectively 
measure brain networks related to different discrete emotions and 

have a classification accuracy of approximately 80% (Kilic and 
Aydin, 2022). Zhang et al. (2015) found that the efficiency of the 
emotional functioning network was higher when participants 
observed emotional pictures than neutral ones, implying that local 
connections increase during the viewing of pictures with an 
affective meaning (Zhang et al., 2015).

Currently, the suppression-elicitation and the lying-leakage 
paradigms are the approaches typically used for ME elicitation 
(ten Brinke et al., 2012; Yan et al., 2014). The lying-leakage method 
(Ekman and Friesen, 1974; Frank and Ekman, 1997), although 
more ecologically valid, has the problem that the ME occurrence 
rate is quite low, and EEG studies require a certain number of 
occurrences before analysis. In contrast, the suppression-
elicitation paradigm requires participants to maintain neutral 
facial expressions while watching a video eliciting strong 
emotions. Their performance is related to an experimental reward 
to increase the motivation to hide their true emotions in facial 
expressions (Yan et al., 2013, 2014). Video-induced high emotional 
intensity increases the occurrence of MEs; 109 MEs were detected 
among 1,000 facial expressions (approximately 11%). However, 
MEs mostly occur in interpersonal situations; thus, we added a 
real-time supervision module to the suppression-elicitation 
paradigm to improve the ecological validity of this method. 
Consequently, the participants and supervisors participated 
simultaneously in the experiments, providing a simulated social 
supervision situation. We named this improved paradigm real-
time supervision and emotional expression suppression (SEES) 
experimental paradigm.

This study aimed to measure changes in brain networks 
during ME manifestation via the SEES paradigm and EEG 
techniques, enabling us to understand the neural mechanisms of 
MEs and provide electrophysiological indicators for ME 
recognition. Specifically, we  combined a complex network 
analysis and machine learning algorithms to measure and classify 
the functional connectivity reorganizations of ME and NE signals 
in the presence of emotional stimuli. We hypothesized that MEs 
and NEs would be  associated with different brain network  
patterns.

Materials and methods

Participants

A total of 70 self-reported right-handed participants were 
included in the present study. The participants were healthy and 
did not consume psychoactive substances. Participants at risk of 
depression (Beck Depression Inventory score >18) were excluded. 
Among these 70 participants, 65 exhibited at least one ME 
instance while watching the videos. Thus, the final sample 
comprised 65 participants (age range: 17–26 years; 23 men, 42 
women). All participants provided written informed consent, and 
the study was approved by the ethics committee of Southwest  
University.
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Materials

We selected videos containing both visual and auditory 
emotional materials to elicit high-intensity emotions and 
physiological changes. We chose laughter as the target emotional 
expression. Highly amusing videos were used for SEES. Excerpts 
from Chinese comedy films and a variety of shows were used, as 
native culture factors may affect elicitation in emotion 
experiments. The criteria for selecting the video materials were as 
follows: (a) duration <3 min to avoid visual fatigue; (b) content 
that could be easily understood and did not require excessive 
thinking; and (c) content that elicited the expression of a single 
desired target emotion (i.e., urge to laugh). Based on these criteria, 
we manually selected 15 online videos as emotional materials. 
Twenty participants were asked to assess the valence of the videos, 
and they rated their emotional intensity on a 7-point Likert scale; 
6 points and above was the criterion for selection. Finally, three 
videos were selected as elicitation material for the experiment and 
were carefully edited to ensure continuous emotional elicitation.

Experimental design

We increased the psychological pressure of the classic ME 
paradigm to provide a situation with high emotional arousal and 
strong motivation to inhibit facial expressions. The participants 
and supervisors participated simultaneously in the experiments. 
Participants were seated approximately 1 m from a 23-inch screen; 
two cameras were placed behind the screen, a high-speed 
recording camera (90 frames/s) and a real-time surveillance 
camera on a tripod. The supervisor was seated approximately 1 
meter to the left of the participant to observe the facial MEs 
through a monitor in real-time, and the participant was aware of 
the presence of the supervisor. Participants and supervisors were 
divided by a curtain to ensure that the movement of supervisors 
did not affect the participant’s attention. EEG signals were 
recorded from 128 active electrodes at a sampling rate of 1,024 Hz 
using a BioSemi Active system (BioSemi, Amsterdam, The 
Netherlands). A LabVIEW-based (National Instruments, Austin, 
TX, United States) synchronization system was then developed to 
synchronize accurately the EEG acquisition device and the high-
speed camera. We ensured that the EEG signal was accurately 
synchronized with the acquisition of facial images using the same 
trigger simultaneously to generate time stamps on the camera 
recording and the BioSemi Active system.

The participants were instructed to remain relaxed and 
concentrate on the videos. They were also asked to maintain 
neutral facial expressions and avoid exaggerated expressions to 
conceal their true emotions. Additionally, they were told that their 
payment would be directly proportional to their performance. The 
supervisor assessed and judged the responses while the 
participants watched the three videos; if the supervisor could 
identify amused facial expressions, two yuan for each expression 
would have been subtracted from their payment. In contrast, if the 
supervisor did not observe any facial expressions, ten yuan would 

have been added as an extra reward. These strategies were 
employed to create a compelling stress situation and increase the 
motivation to hide genuine facial expressions.

Facial expression identification

Complete MEs are difficult to elicit in the laboratory, and only 
partial facial expressions, such as movements from the lower or 
upper face, are typically observed (Porter et al., 2012; Yan et al., 
2013). Nonetheless, partial MEs tend to be subtle manifestations 
of an underlying emotion, and observations of rapid facial 
expressions in various social situations indicate that MEs are more 
often partial than involving the full face (Porter et al., 2012). In 
this study, partial or full facial expressions with durations ≤500 ms 
were considered MEs. We first used action units (AUs) from a 
facial action-coding system (Yan et al., 2014) to detect MEs among 
participants at the same stimuli time points, based on a 
discriminative response map-fitting method (Asthana et al., 2013) 
tracking 66 facial landmarks of facial expressions (Liu et al., 2016). 
Two coders were involved in the analysis of the MEs (Yan et al., 
2014). The procedure comprised the following three steps:

1.   Counting the time points of all MEs among all participants. 
This step was used to detect all the time points of ME 
appearance throughout the video viewing. We determined 
the approximate time points of the onset, apex, and offset 
frames by playing the recording at 1/3 speed.

2.   Frame-by-frame coding. This step was utilized to determine 
the ME onset, apex, and offset frames based on the time 
points previously selected. The first frame that showed 
activation of AU6, AU12, or both was considered the onset 
frame. The apex frame was defined as the one recording the 
entire expression with the maximum intensity. The offset 
frame was the last before the face returned to its original 
neutral expression (Hess and Kleck, 1990; Hoffmann, 2010; 
Yan et al., 2013). The coders examined the minute changes 
between adjacent frames surrounding the ME onset, apex, 
and offset repeatedly to properly identify these frames. The 
ME durations were then calculated.

3.   Determining the time points. Based on the apex frame, 
we selected the time points when 20 or more participants 
showed MEs. We determined the global time points by 
averaging the times of the apex frames. Based on these 
reference points, 2-s blocks of the corresponding EEG 
signals were extracted for each participant to perform the 
analysis. Participants with MEs occurring within those 
time points were included in the ME group and those who 
maintained neutral expressions in the NE group.

EEG preprocessing

The BioSemi Active electrodes recorded EEG signals 
referencing a common mode sense electrode as part of its feedback 
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loop. An open-source toolbox was used in the MATLAB 
environment (MathWorks, Natick, MA, United States) using BESA 
research software (BESA GmbH, Gräfelfing, Germany). Drift and 
noise reduction were performed by applying a 0.5–60 Hz band-pass 
filter. The EEG signals were compared to the average reference to 
maximize the signal-to-noise ratio, and those contaminated by eye 
blinks and facial artifacts were corrected using the BESA research 
software. For further analyzes, we  selected 128 electrodes and 
divided them into four regions: frontal, parietal, temporal, and 
occipital. The allocation scheme is shown in Figure 1.

Brain network construction

Considering that the alpha, beta, and gamma bands are more 
sensitive to the emotion and cognition, we chose these three bands 
as the target bands for analysis. We constructed the brain networks 
in three classical frequency bands for each participant: alpha 
(8–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz). The brain 
networks were constructed according to the following steps:

Step 1: Trimming the 2-s segments from the pre-processed 
EEG signals into 1-s blocks using the global field power (GFP) 
(Khanna et al., 2015). GFP is the root of the mean of the squared 
potential differences of all K channels (Vi(t)) from the mean of the 
instantaneous potentials across channels (Vmean(t)), according to 
the following formula:

 

GFP V t V t K
i

K
i mean= ( ) − ( )( )









∑ 2
/

The 1-s block of data was selected with the maximum peak of 
GFP as the midpoint.

Step  2: Calculating the phase-locking value (PLV) matrix 
(Schmidt et al., 2014), which comprises the functional connectivity 
between all possible pairs of 128 nodes.

Step 3: Converting the PLV matrix into a brain network or a 
binary graph representation of the brain network by considering 
a threshold T.

Phase locking value.
We used the PLV to measure the long-term synchronous 

changes in neural activity. It was computed as follows:
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where ϕwi f t,( )  and ϕwj f t,( )  are wavelet-decomposed 
time-frequency representations of the difference between the 
instantaneous phase of the two pairs of channel nodes i and j 
at time t.

Brain network analysis

For this analysis, we mainly focused on the efficiencies on 
two scales: (1) on a macro-scale, the global efficiency referred 
to the entire network; (2) on a micro-scale, the nodal 
efficiency measured the mean efficiency of a single 
network node.

Macro-scale: Global efficiency

The global efficiency is a measure used to assess parallel 
exchanging and integrated information processing in a functional 
brain network. It is calculated as follows:

 

E G
N N dglobal

j k V j k
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where dj,k is the shortest path length between nodes j and k. 
For an unweighted binary graph, dj,k is equal to infinity if there is 
no path between j and k; otherwise, it equals the minimum 
number of edges from j to k. The global efficiency ranges from 0 
to 1, and a higher global efficiency means a higher network 
capability of performing parallel exchanging or integrated 
information processing.

Micro-scale: Nodal efficiency

The nodal efficiency is a measure of the integration of a given 
node with all other nodes. Given a node j, its nodal efficiency is 
defined as:

 

E j
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k j V j k
( ) =
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,

FIGURE 1

The positions of the EEG electrodes are divided into four regions.
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where dj,k is the shortest path length between nodes j and k. 
The nodal efficiency ranges from 0 to 1, and a higher nodal 
efficiency reflects a higher ability for information transmission or 
integrated processing with other nodes.

Feature selection and classification

Based on our hypothesis that MEs and NEs may be associated 
with different brain network patterns, we aimed to distinguish the 
brain activities associated with MEs and NEs. We  used the 
functional connectivity matrices of the alpha, beta, and gamma 
bands as classification features. Furthermore, we divided every 1-s 
segment of EEG recordings into smaller segments using a 400-ms 
sliding window with 50% overlap and constructed functional 
connectivity matrices for each segment.

Feature selection
The features were selected using a random forest model. 

Specifically, the Gini importance of each feature was calculated 
while fitting the random forest. The Gini importance ranges from 
0 to 1, with a larger value representing a more important feature 
in the classification. We split the dataset into a training set (80% 
of data) and a test set (20%). The subset of features selected in the 
training set was reused to train the classification model; ten-fold 
cross-validation was used to select the optimal feature subset, and 
the model performance was evaluated using the test set.

Brain state classification
A support vector machine (SVM) classifier was used to 

classify the brain states of the MEs and NEs. Based on the Gini 
importance, we selected the top 5, 10, 15, 20, 25, and 30 features 
to fit the classifier. Each time the features were selected, 
we retrained the classifier using the feature subset of the training 
set and evaluated the model performance using the test set.

Statistical tests

For the global efficiency on the macro-scale, Welch’s t-test was 
used to measure the group difference, and a value of p < 0.05 was 
considered statistically significant. For the micro-scale analysis, 
we  first calculated the nodal efficiency for each node. Then, 

we divided the brain into four regions to lower the influence of 
multiple comparisons and then measured the differences between 
regional efficiencies using Welch’s t-test, with the false discovery 
rate (FDR) correction for a low proportion of false positives. Each 
regional efficiency was calculated by averaging all the nodal 
efficiencies within the region, and a FDR-corrected value of 
p < 0.05 was considered statistically significant.

Results

Macro-scale: Global efficiency

We observed similar global efficiency in the alpha, beta, and 
gamma bands; in the MEs, it was significantly higher than in the 
NEs, with p-values <0.01 at thresholds of 0.64 and 0.67 in the 
alpha band, and ≤0.002 at all thresholds in the beta and gamma 
bands (Table  1). It should be  noted from Table  1 that, as the 
threshold increased from 0.64 to 0.76, the edges of the network 
became sparse, resulting in a decrease in global efficiency.

Micro-scale: Nodal efficiency

At the micro-scale, we  first calculated the group-averaged 
nodal efficiency for each network node. Thereafter, we divided the 
128 nodes into four regions (as shown in Figure 1) and calculated 
each regional efficiency by averaging all the nodal efficiencies in 
the same region. For the alpha network, the averaged nodal 
efficiencies are shown in Figure 2. The nodal efficiency in the MEs 
was significantly higher than in the NEs in the frontal, occipital, 
and temporal regions at all thresholds, and in the parietal region 
at thresholds of 0.64 (Figure 2; Table 2).

For the beta network, the averaged nodal efficiencies are 
shown in Figure 3. The nodal efficiency in the frontal, parietal, 
temporal, and occipital regions in the MEs was significantly 
higher than in the NEs at all thresholds (Table 3).

For the gamma network, the averaged nodal efficiencies are 
shown in Figure 4. The nodal efficiency of the frontal, parietal, and 
occipital regions in the MEs was significantly higher than in the 
NEs at all thresholds (Table 4). However, there was no significant 
difference in nodal efficiency in the temporal region at a threshold 
of 0.76.

TABLE 1 Differences in global efficiency in the alpha, beta, and gamma bands.

Threshold
Alpha Beta Gamma

MEs NEs p-value MEs NEs p-value MEs NEs p-value

0.64 0.26 (0.11) 0.21 (0.12) <0.001 0.21 (0.10) 0.15 (0.07) <0.001 0.18 (0.11) 0.15 (0.07) 0.002

0.67 0.21 (0.10) 0.18 (0.11) 0.007 0.17 (0.09) 0.12 (0.05) <0.001 0.15 (0.10) 0.12 (0.05) 0.001

0.70 0.17 (0.09) 0.15 (0.10) 0.077 0.14 (0.08) 0.10 (0.04) <0.001 0.13 (0.08) 0.10 (0.04) <0.001

0.73 0.14 (0.08) 0.13 (0.07) 0.236 0.12 (0.06) 0.09 (0.03) <0.001 0.11 (0.07) 0.09 (0.03) <0.001

0.76 0.12 (0.06) 0.11 (0.16) 0.422 0.11 (0.05) 0.08 (0.03) <0.001 0.10 (0.07) 0.08 (0.03) <0.001

The values are shown as mean (SD).
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TABLE 2 Differences in nodal efficiency in the alpha band.

Threshold
Frontal region Parietal region Occipital region Temporal region

MEs NEs p-value MEs NEs p-value MEs NEs p-
value MEs NEs p-value

0.64 0.27 (0.12) 0.21 (0.13) 0.002 0.22 (0.08) 0.19 (0.12) 0.009 0.31 (0.16) 0.24 (0.15) 0.002 0.17 (0.08) 0.11 (0.08) <0.001

0.67 0.21 (0.11) 0.17 (0.11) 0.002 0.17 (0.07) 0.15 (0.11) ns 0.25 (0.15) 0.19 (0.14) 0.008 0.12 (0.07) 0.08 (0.07) <0.001

0.70 0.17 (0.09) 0.14 (0.11) 0.010 0.13 (0.06) 0.12 (0.08) ns 0.21 (0.13) 0.16 (0.12) 0.005 0.09 (0.06) 0.05 (0.05) <0.001

0.73 0.13 (0.08) 0.11 (0.08) 0.022 0.11 (0.05) 0.09 (0.07) ns 0.16 (0.12) 0.13 (0.11) 0.009 0.06 (0.05) 0.04 (0.04) <0.001

0.76 0.11 (0.07) 0.09 (0.07) 0.033 0.07 (0.04) 0.07 (0.06) ns 0.13 (0.11) 0.11 (0.09) 0.012 0.04 (0.04) 0.02 (0.03) <0.001

The values are shown as mean (SD). ns, non-significant.

FIGURE 3

Network topological graphs of the nodal efficiencies in the beta network. The first row represents the MEs, and the second row the NEs.

FIGURE 2

Network topological graphs of the nodal efficiencies in the alpha network. The first row represents the MEs, and the second row the NEs.
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Feature selection and classification

Feature selection and brain state classification were performed 
based on the functional connectivity matrices of the alpha, beta, 
and gamma bands. Since the beta band classification accuracy was 
higher, we used that band as a sample to illustrate both the feature 
selection and classification procedures. According to the Gini 
importance, we sorted the features in ascending order and selected 
the top-n features (from 5 to 30, with a step size of 5) to classify 
the different brain states between MEs and NEs. The top-5 features 

were the four functional connectivities within the occipital and 
frontal regions, as shown in Figure 5A, which were previously 
used as classification features. With the selected top-5 features, 
we fitted an SVM classifier on the training set and then measured 
its generalization performance using the test set with ten-fold 
cross-validation. The prediction accuracy obtained on the test 
dataset was 0.681, with an area under the receiver operating 
characteristic curve (AUC) of 0.75, as shown in 
Figures 5G,H. Subsequently, we expanded the features from the 
top  5 to the top  10. The top-10 features were the functional 

TABLE 3 Differences in nodal efficiency in the beta band.

Threshold Frontal region Parietal region Occipital region Temporal region

MEs NEs p-
value MEs NEs p-

value MEs NEs p-
value MEs NEs p-

value

0.64 0.22 (0.12) 0.15 (0.08) <0.001 0.18 (0.08) 0.13 (0.07) <0.001 0.25 (0.15) 0.17 (0.09) <0.001 0.09 (0.06) 0.06 (0.04) <0.001

0.67 0.17 (0.11) 0.11 (0.06) <0.001 0.14 (0.07) 0.11 (0.05) <0.001 0.21 (0.13) 0.13 (0.07) <0.001 0.06 (0.05) 0.04 (0.03) <0.001

0.70 0.14 (0.09) 0.08 (0.05) <0.001 0.11 (0.06) 0.08 (0.04) <0.001 0.16 (0.11) 0.11 (0.06) <0.001 0.04 (0.04) 0.03 (0.02) 0.002

0.73 0.11 (0.08) 0.06 (0.04) <0.001 0.08 (0.05) 0.06 (0.03) <0.001 0.13 (0.09) 0.07 (0.04) <0.001 0.03 (0.03) 0.02 (0.02) 0.002

0.76 0.09 (0.06) 0.05 (0.03) <0.001 0.06 (0.04) 0.04 (0.02) <0.001 0.11 (0.08) 0.06 (0.03) <0.001 0.02 (0.03) 0.01 (0.01) 0.008

The values are shown as mean (SD).

FIGURE 4

Network topological graphs of the nodal efficiencies in the gamma network. The first row represents the MEs, and the second row the NEs.

TABLE 4 Differences in nodal efficiency in the gamma band.

Threshold
Frontal region Parietal region Occipital region Temporal region

MEs NEs p-value MEs NEs p-value MEs NEs p-value MEs NEs p-value

0.64 0.19 (0.13) 0.10 (0.06) <0.001 0.16 (0.09) 0.10 (0.06) <0.001 0.22 (0.15) 0.13 (0.07) <0.001 0.08 (0.08) 0.06 (0.05) <0.001

0.67 0.16 (0.12) 0.08 (0.05) <0.001 0.12 (0.08) 0.07 (0.05) <0.001 0.17 (0.13) 0.10 (0.06) <0.001 0.06 (0.08) 0.04 (0.04) 0.003

0.70 0.12 (0.10) 0.06 (0.04) <0.001 0.10 (0.07) 0.06 (0.04) <0.001 0.14 (0.12) 0.08 (0.05) <0.001 0.05 (0.07) 0.03 (0.03) 0.015

0.73 0.10 (0.09) 0.05 (0.03) <0.001 0.07 (0.06) 0.04 (0.03) <0.001 0.11 (0.10) 0.07 (0.04) <0.001 0.03 (0.06) 0.02 (0.02) 0.037

0.76 0.08 (0.08) 0.04 (0.03) <0.001 0.06 (0.05) 0.03 (0.03) <0.001 0.09 (0.09) 0.06 (0.03) 0.001 0.03 (0.05) 0.02 (0.02) ns

The values are shown as mean (SD). ns, non-significant.
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FIGURE 5

Feature selection and classification accuracy on the beta band. (A–F): Top n features (from 5 to 30 with a step size of 5); (G,H): Classification 
accuracies and receiver operating characteristic (ROC) curves with SVM classifier using the top n features. The highest classification accuracy was 
0.811 with an AUC of 0.87, obtained using the top-25 features.

connectivities that increased in the channels in the frontal and 
parietal regions, as shown in Figure 5B. The prediction accuracy 
obtained on the test dataset increased to 0.713 with an AUC of 
0.79. Each time the number of features increased, we retrained the 
classifier using the training set and measured its generalization 
performance with the test set with 10-fold cross-validation. The 
top 15, 20, 25, and 30 features are shown in Figures 5C–F, and the 
classification performances are shown in Figures 5G,H. Using the 
top  25 features, we  achieved a relatively high classification 
accuracy of 0.811 with an AUC of 0.87.

Similar feature selection and classification processes were 
performed using the functional connectivity matrices in the 
alpha and gamma bands as the classification features. The 
results of the feature selection on the alpha band are shown in 
Figure 6. The top-5 features were the functional connectivities 
within the parietal, occipital, and frontal regions, as shown in 
Figure 6A. The top 10, 15, 20, 25, and 30 features are shown in 
Figures  6B–F, and the corresponding classification 
performances are shown in Figures  6G,H. We  obtained a 
relatively high classification accuracy of 0.795 with an AUC of 
0.86, using the top 30 features.

For the gamma band, the results of the feature selection are 
shown in Figure  7. The top-5 features were the functional 
connectivities within the parietal, occipital, and frontal regions, as 
shown in Figure 7A. The top 10, 15, 20, 25, and 30 features are 
shown in Figures  7B–F, and the corresponding classification 
performances are shown in Figures  7G,H. The highest 
classification accuracy for the gamma band was 0.773 with an 
AUC of 0.85, obtained using the top 30 features.

Discussion

This study uses the SEES paradigm and EEG to measure the 
brain network changes during ME occurrence, exploring the brain 
mechanisms of ME from a neural perspective for the first time. 
Additionally, we used complex network analysis and machine 
learning algorithms to distinguish the functional connectivity 
between MEs and NEs and provide electrophysiological indicators 
for ME recognition. The main findings of our study are as follows: 
(1) on the macro-scale, the global efficiency related to MEs was 
higher than that related to NEs in the alpha, beta, and gamma 
bands; (2) on the micro-scale, the nodal efficiencies related to MEs 
were higher than those of NEs in the frontal, temporal and 
occipital regions; (3) the classification accuracy of the SVM 
reached 0.81 with an AUC of 0.85 in a beta band based on the 
difference between MEs and NEs in the brain network with only 
a small number of functional connection features (N = 25) selected 
using the random forest algorithm.

The MEs were related to higher global efficiency in the alpha, 
beta, and gamma networks compared with NEs. Previous research 
has found that a higher global efficiency is associated with greater 
cognitive load (Kitzbichler et al., 2011; Yu et al., 2021). For example, 
Kitzbichler et  al. (2011), using the N-back task, found that the 
cognitive load of the participants increased in relation to the increased 
difficulty of the task and the higher global efficiency of the brain 
network (Kitzbichler et al., 2011). Yu et al. (2021) also found that the 
brain is higher globally efficient when processing 3D videos with a 
greater cognitive load than 2D videos as they require the processing 
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of more information, such as the depth structure (Yu et al., 2021). 
Therefore, the generation of MEs may require a greater cognitive load 
than the NEs, as shown by higher global efficiency. Frank and Svetieva 

(2015) indicated that the generation of MEs involves a dual system of 
expression processing (the interaction of the pyramidal and 
extrapyramidal motor systems) and also involves emotion arousal 
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B C D E F

FIGURE 6

Feature selection and classification accuracy on the alpha band. (A–F): The top n features (from 5 to 30 with a step size of 5); (G,H): Classification 
accuracies and receiver operating characteristic (ROC) curves with SVM classifier using the top n features. The highest classification accuracy was 
0.795 with an AUC of 0.86, obtained using the top-30 features.
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FIGURE 7

Feature selection and classification accuracy on the gamma band. (A–F): The top n features (from 5 to 30 with a step size of 5) on the gamma 
band; (G,H): Classification accuracies and receiver operating characteristic (ROC) curves with SVM classifier using the top n features. The highest 
classification accuracy was 0.773 with an AUC of 0.85, obtained using the top-30 features.
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and inhibitory processes (Frank and Svetieva, 2015). It is not 
surprising that these complex tasks require a greater cognitive load 
and higher global efficiency.

Combining the topographic and difference analyzes of nodal 
efficiency, we found that participants showed higher efficiency in 
micro-expressions in both alpha, beta, and gamma networks, mainly 
in the frontal, temporal, and occipital regions. This finding may 
be related to the fact that MEs production involves higher emotional 
arousal and stronger cognitive control than NEs (Bartholomew et al., 
2019, 2021). Emotional arousal relies on the emotional network, 
which mainly includes the occipital and temporal lobes, and 
increased network efficiency in occipital and temporal lobes may 
be associated with increased intensity of emotional arousal (Dolan, 
2002; Bartholomew et al., 2021; Zhuang et al., 2021). Previous studies 
have found that an increased network efficiency of the emotional 
network correlates with the intensity of emotional arousal (Zhang 
et al., 2015). Comparative studies also found that positive emotional 
stimuli induced higher network efficiency compared with neutral 
stimuli (Sun et  al., 2020). In general, emotion-related cognitive 
control mainly involves the frontal regions, and increased network 
efficiency in these regions is often associated with an increased 
requirement for cognitive control (Bartholomew et al., 2021). For 
instance, in classical tasks, such as the color-word Stroop, high 
inhibitory demand in the inconsistent condition increased the 
efficiency of the frontal area network (Bartholomew et al., 2021). 
Another study using the emotion-word Stroop task found that 
emotional inhibition is associated with increased efficiency in the 
frontal region (Bartholomew et al., 2021). Thus, the higher efficiency 
related to MEs in the occipital, temporal, and frontal lobes compared 
with NEs may be associated with higher emotional arousal levels and 
stronger cognitive control processing.

In this study, different brain activities associated with MEs and 
NEs were classified according to the functional connectivity 
matrix of the alpha, beta, and gamma bands. We used a random 
forest-based feature selection model to identify key features with 
high Gini importance to improve the classification performance 
and avoid possible overfitting. Random forest is an integrated 
machine learning algorithm based on bootstrap aggregation. 
Random forest is suitable for high-dimensional feature spaces, 
such as in bioinformatics, thanks to their ease of computation and 
parallelization. Using selected features, we successfully classified 
different brain activities using an SVM classifier. With only a small 
number of functional connection features (N = 25) selected using 
the random forest, the SVM achieved a classification accuracy of 
0.81 and an AUC of 0.85. This study provides the first 
electrophysiological metrics for ME recognition from a 
neuroscience perspective. This result illustrates the possibility of 
using physiological measures for ME identification instead of 
image recognition, with a wider range of application scenarios, 
such as for persons wearing face masks, or in low visibility 
environments, or for patients with expression disorders.

Only MEs arising with a positive emotion were examined in 
this study because Johnston et al. argue that smiling requires little 
preparation, and smiling is usually used more frequently than 
other emotional expressions (Johnston et al., 2010). Also, in social 

interactions, smiling is usually encouraging and has a 
communicative function; therefore, MEs under positive emotions 
are more common. Future research should examine the brain 
mechanisms related to MEs under negative emotions.

Conclusion

This study explores for the first time the brain mechanisms 
underlying micro-expressions. Compared with the NEs, occurrence 
of MEs is characterized by higher global efficiency, and higher nodal 
efficiency in the frontal, occipital, and temporal regions. It 
demonstrated that MEs had a greater cognitive load compared with 
the NEs, associated with higher emotional arousal levels and stronger 
cognitive control processing. Our SVM classifier based on EEG 
signals achieved a classification accuracy for MEs and NEs of 0.81 
with an AUC of 0.85. This result demonstrated the possibility of using 
EEG to recognize MEs, which could have a wider range of application 
scenarios than image recognition, such as for persons wearing face 
masks or patients with expression disorders.
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