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Background: Although gait patterns disturbances are known to be related to

cognitive decline, there is no consensus on the possibility of predicting one

from the other. It is necessary to find the optimal gait features, experimental

protocols, and computational algorithms to achieve this purpose.

Purposes: To assess the e�cacy of the Stable Sparse Classifiers procedure

(SSC) for discriminating young and healthy older adults (YA vs. HE), as well as

healthy and cognitively impaired elderly groups (HE vs. MCI-E) from their gait

patterns. To identify the walking tasks or combinations of tasks and specific

spatio-temporal gait features (STGF) that allow the best prediction with SSC.

Methods: A sample of 125 participants (40 young- and 85 older-adults) was

studied. They underwent assessment with five neuropsychological tests that

explore di�erent cognitive domains. A summarized cognitive index (MDCog),

based on the Mahalanobis distance from normative data, was calculated. The

sample was divided into three groups (young adults, healthy and cognitively

impaired elderly adults) using k-means clustering of MDCog in addition to

Age. The participants executed four walking tasks (normal, fast, easy- and

hard-dual tasks) and their gait patterns, measured with a body-fixed Inertial

Measurement Unit, were used to calculate 16 STGF and dual-task costs. SSC

was then employed to predict which group the participants belonged to. The

classification’s performance was assessed using the area under the receiver

operating curves (AUC) and the stable biomarkers were identified.

Results: The discrimination HE vs. MCI-E revealed that the combination

of the easy dual-task and the fast walking task had the best prediction

performance (AUC = 0.86, sensitivity: 90.1%, specificity: 96.9%,

accuracy: 95.8%). The features related to gait variability and to the

amplitude of vertical acceleration had the largest predictive power.

SSC prediction accuracy was better than the accuracies obtained with

linear discriminant analysis and support vector machine classifiers.
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Conclusions: The study corroborated that the changes in gait patterns can

be used to discriminate between young and healthy older adults and more

importantly between healthy and cognitively impaired adults. A subset of gait

tasks and STGF optimal for achieving this goal with SSC were identified, with

the latter method superior to other classification techniques.
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Introduction

Human gait patterns naturally change across the lifetime,

adapting to changes in structural and muscular characteristics.

The decrease in muscle mass, and aging of the bones and joints,

among other musculoskeletal changes, produce a limited range

of motion, the avoidance of weight-bearing, asymmetry, and

limping in elderly persons (Pirker and Katzenschlager, 2017).

Thus elderly adults walk more slowly than the youths, with a

shorter step length and increased time in double limb support

(Menz et al., 2003; Lønseth, 2016), among other changes. Gait

disorders have a prevalence of 10% between 60 and 69 years,

this increases to 60% in adults over 80 years (Mahlknecht et al.,

2013). These impairments produce recurrent falls, depressed

mood, and diminished quality of life (Montero-Odasso et al.,

2012; Mahlknecht et al., 2013). The causes of gait disorders

include neurological conditions, where cognitive impairments

play a central role. Interestingly, gait disturbances in older adults

with apparently normal cognition could predict early cognitive

decline (Buracchio et al., 2010; Beauchet et al., 2013; Bahureksa

et al., 2016; Kikkert et al., 2017; Byun et al., 2018).

The performance of spatio-temporal gait features (STGF)

has been explored with different walking tasks in healthy

and cognitively impaired adults. Dual-task, fast, and normal

walking tasks, are the tasks most frequently reported in the

literature. The dual-task paradigm has become the preferred

test for assessing interactions between cognition and gait, in

addition to the risk of falls (Lundin-Olsson et al., 1997). In

this paradigm, the STGF obtained when the subject performs

an attention-demanding task and walks at the same time are

compared with normal walking (Pashler, 1994). The premises

are that two simultaneously performed tasks compete for brain

resources (Yogev-Seligmann et al., 2008; Montero-Odasso et al.,

2009), and thus interference is greater when these resources

are reduced (e.g., by brain damage). Some studies find that

dual-task paradigms are good predictors of cognitive decline

in healthy older adults (Beauchet et al., 2017; MacAulay et al.,

2017), and also predict well progression to dementia in patients

with Mild Cognitive Impairment (MCI) (Montero-Odasso et al.,

2017). Moreover, they allow discrimination between cases of

Parkinson’s disease (PD) that have and do not have MCI

(Ricciardi et al., 2020). However, other studies find that walking

at a fast pace is enough to increase sensitivity for MCI

diagnosis (Beauchet et al., 2013; Bahureksa et al., 2016). Lønseth

(2016) reports that walking at a preferred pace is sufficient for

predicting cognitive decline from STGF. In addition, Ricciardi

et al. (2020) propose that normal gait could be used for screening

MCI in PD due to its high sensitivity. As can be seen, there is no

agreement regarding the most appropriate walking condition to

assess the relationship between gait and cognitive impairment

(Bahureksa et al., 2016).

On the other hand, several methodological advances

facilitate the use of gait analysis in cognitive assessments.

First, inertial measurement units (IMU) enable gait analysis

outside laboratories and during long periods (Mannini et al.,

2015; Benson et al., 2018; Dasgupta et al., 2018; Gwak et al.,

2018; Chen et al., 2020). Second, machine learning techniques

(MLT) allow extracting more information from the data and

uncovering unforeseen relationships between variables (Graham

et al., 2020). A brief review illustrates these possibilities.

Gwak et al. (2018) applied a logistic regression classifier

to photoplethysmography and STGF and reported an 86%

identification accuracy of MCI. Chen et al. (2020) explored

several classifiers based on STGF for discriminating cases of

Parkinson’s disease with MCI and without MCI. They found

that feature selection, based on principal component analysis

(PCA), followed by classification with a support vector machine

(SVM) using a polynomial kernel was themost accurate classifier

(91.67%). Another study (Zhou et al., 2020) employed SVM

combined with PCA, random forests (RF), and Artificial Neural

Network (ANN) on the STGF of normal walking in samples

of young adults, healthy elderlies, and geriatric elderlies (with

many comorbidities, but without cognitive impairment). They

were able to classify the age accurately with AUC values of

0.91 (0.81–0.93), 0.86 (0.63–0.83), and 0.86 (0.72–0.87) for each

algorithm. Ghoraani et al. (2021) applied SVM classifiers based

on STGF and Montreal Cognitive Assessment (MoCA) for the

following discriminations: MCI vs. healthy, Alzheimer’s disease

(AD) vs. healthy, and AD vs. MCI. They obtained average

accuracies of 78% (77% F1-score) and 83% (84% F1-score) with

STGF and MoCA scores, respectively. Dasgupta et al. (2018)

were able to accurately predict small changes in gait patterns due
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to cognitive load in a small sample of healthy adults using either

logistic regression, RF, learning vector quantization, or SVM.

Unfortunately, most attempts to select the optimal

experimental/STGF paradigms have compared only a few

variants of walking tasks and STGF combinations, and only in

small subject samples. This entails slow progress in defining

the relative merits of the many potential combinations of

tasks/features that exist. Consequently, there are still no

standardized clinical tools for predicting the cognitive status

from STGF, with a great variety of experiments and variables

waiting to be explored. Solving this with traditional approaches

would imply many experiments, each ideally with a large

sample of subjects (with many more cases than the number of

STGF). The Stable Sparse Classifiers procedure (SSC) proposed

Bosch-Bayard et al. (2018) could help overcome this limitation

because it can work with samples of a size greater than or

similar to the number of STGF, allowing different combinations

of these features to be obtained without having to increase the

sample size.

SSC is applied to find more robust biomarkers by using

resampling techniques. SSC estimates a penalized regression

model and computes the precision and stability of the selected

biomarkers. The procedure uses the glmnet package ofMATLAB

for estimating the penalized regression (Hastie et al., 2016).

It then applies nested cross-validation to the data. Glmnet

has been previously used for the development of a graphical

representation of a mathematical function, called a nomogram,

that predicts cognitive impairment in healthy older adults from

different risk factors (including mobility) (Liu et al., 2021). SSC

helps to deal with the fact of having similar numbers of features

and subjects (Bosch-Bayard et al., 2018), and thus it is an ideal

candidate to apply to our study.

Here we tested if SSC based on STGF could discriminate

between young adults and healthy elderly adults (as a

proof of concept) and more importantly if this approach

could discriminate between healthy and minimally cognitively

impaired older adults. We recorded gait patterns using IMU

with a moderate-sized sample of participants. Participants

were assessed with five tests from different cognitive domains.

A summarized cognitive index (MDCog), based on the

Mahalanobis distance from normative data, was calculated.

In another study (Aznielle-Rodríguez et al., 2022), we have

demonstrated that MDCog has a closer relationship with STGF

than other cognitivemeasures. An additional goal was to use SSC

to identify the best combination of walking tasks and associated

STGF to predict cognitive status.

Materials and methods

Participants

Participants were selected from different places of Havana

city: the Cuban Center for Neuroscience (CNEURO), three

nursing homes, several grandparent homes, and primary

health care areas. The inclusion criteria were the participant’s

agreement, with ages between 20 and 40 years for young

adults and above 60 years for older adults, and a Katz Index

of independence ≥4 (Shelkey and Wallace, 2001). This index

measures functional independence, based on the need for

supervision or external help in performing basic activities of

daily life (Katz et al., 1963). Participants were excluded if they

could not walk or had to use walking aids, presented major

neurological disorders, diseases of the musculoskeletal system,

or severe cognitive impairment that prevented complying with

instructions. Before gait evaluation, all participants underwent

a neurological examination, filled out a questionnaire designed

to explore the participant’s habits, and underwent a cognitive

assessment explained in the following section. Ultimately, 125

participants completed all the requirements and participated

in the study, divided into 40 young adults (mean age 27.65 ±

4.14, 50% women) and 85 older adults (mean age: 73.25 ± 6.99,

62.3% women). Written informed consent was obtained from

the participants or caregivers and the study was approved by the

ethics committee of CNEURO, which verified compliance with

the Helsinki declaration.

Cognitive assessment

Five neuropsychological tests were applied for assessing

the participant’s cognitive trait: Mini-Mental State Examination

(MMSE), Attentional Span or Brief Test of Attention (BTA),

Trail Making Test (TMT), Hopkins Verbal Learning Test

(HLVT), and Digit Symbol Substitution Test (DS). Global

cognition was assessed by using theMMSE (Folstein et al., 1975).

BTA is a measure of auditory divided attention (Schretlen et al.,

1996). Attention, visuospatial abilities, mental flexibility, and

executive functions were assessed by the TMT, parts A and B

(Rabin et al., 2005). Memory was evaluated by HLVT, including

immediate recognition and delayed recall (Brandt, 1991). The

DS evaluated the focused, selective, and sustained attention as

well as visual perception (Shum et al., 1990). Twelve cognitive

measures were extracted. Normative data for these tests had been

obtained for the Cuban adult population in an international

collaborative study (Arango-Lasprilla et al., 2015a,b,c; Rivera

et al., 2015).

Group definition

The cognitive index MDCog was calculated for each

participant (Aznielle-Rodríguez et al., 2022). This cognitive

index is an objective and continuous measure of the subject’s

cognitive status. It takes into account the results in each

neuropsychological test, adjusted by age and educational

level, and compensated for the correlation between them. It

summarizes the overall deviation of the subject’s cognitive
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performance from the normative data. The participants were

classified into two groups (healthy and impaired), using k-means

clustering of MDCog (1,000 repeats). The healthy group was

split based on age. Thus three groups were defined: young adults

(YA), healthy older adults (HE), and cognitively impaired older

adults (MCI-E).

Walking tasks

Participants executed four walking tasks in an obstacle-

free and flat environment. They covered 40m (20m in one

direction and 20m in the opposite direction). The walking

tasks were: (1) walking freely at a comfortable self-chosen speed

(NormalW); (2) walking at a comfortable self-chosen speed

while simultaneously counting their steps, an easy cognitive task

(EasyD); (3) walking at a comfortable self-chosen speed while

simultaneously counting backward from 100, a hard cognitive

task (HardD); and (4) walking as fast as possible without

running (FastW). Counting backward is hard because it requires

both working memory and attention (Montero-Odasso et al.,

2009). Participants were not instructed to prioritize walking

or counting.

Gait assessment

Data were collected with the Bitalino RIoT (Plux Wireless

Biosignals, Portugal) IMU, attached to a velcro band, and worn

firmly near the body’s center of mass, on the lower back at L3

spinal level. The software OpenSignals (PluxWireless Biosignals,

Portugal) was used to record the data. The IMU data axes

were transformed to comply with the International Society

of Biomechanics (ISB) recommendations (Wu and Cavanagh,

1995).

The recorded gait patterns were split into two segments,

one for each direction of the walk. The strides corresponding

to the first and last 3 s of each segment were removed. Dynamic

tilt correction (Moe-Nilssen, 1998; Millecamps et al., 2015) was

applied to compensate for the imprecise position of the IMU and

the effects of gravity on the measured accelerations. Acceleration

signals were low-pass filtered (4th order zero-lag Butterworth

filter at 3Hz). The vertical acceleration signal was used since it is

more robust and greater reliable than the two other axes (Alvarez

et al., 2006; Kavanagh et al., 2006; Maquet et al., 2010).

The initial contacts (IC) and final contacts (FC) instants

of the gait cycle were estimated with the method proposed

by McCamley et al. (2012). This method smooths the vertical

acceleration signal by integration (Zok et al., 2004), and then

obtain two derivatives using a Gaussian continuous wavelet

transform (Luo et al., 2006). The IC corresponded to the

minima of the first derivative. The FC correspond to peaks

in the second derivative. Then sixteen STGF were estimated:

(1) step time (StpT); (2) step time variability or step time

coefficient of variation (StpTCoV); (3) stride time (StrT); (4)

stride time variability or stride time coefficient of variation

(StrTCoV); (5) cadence (Cd); (6) root mean square amplitude

of the vertical acceleration (RMS); (7) double support duration

or double support time (DSD); (8) single support duration or

single support time (SSD); (9) swing duration feed 1 (SwDurF1);

(10) swing duration feed 2 (SwDurF2); (11) stance duration

feed 1 (StDurF1); (12) stance duration feed 2 (StDurF2); (13)

step duration feed 1 (StepDurF1); (14) step duration feed 2

(StepDurF2); (15) step length (StepLg); and (16) speed (GS).

Almost all STGF are expressed in seconds (s), except Cd

(steps/min), RMS (g), StepLg (m) and GS (m/s). STGF were

computed using algorithms described in literature (Zijlstra and

Hof, 2003; Zijlstra, 2004; Montero-Odasso et al., 2011; Bugané

et al., 2012; Yang et al., 2012; Del Din et al., 2016a,b; Jarchi et al.,

2018).

Thus 64 STGF were computed. Dual-task costs (DTC) for

the STGF in the two dual-tasks were also calculated (32 costs).

These costs (expressed as percentages) were calculated using as

follows (Montero-Odasso et al., 2017):

DTC=

(

single_task_value− dual_task_value

single_task_value

)

∗100 (1)

Finally, 96 measures (STGF and DTC) were obtained for each

walking direction.

Stable Sparse Classifiers procedure

SSC consists of the following steps (Bosch-Bayard et al.,

2018):

1. Biomarkers selection: Initially data is perturbed (70% of

subjects and 70% of variables are randomly selected by

resampling method), followed by a screening step for

eliminating variables with a minimal contribution. Later, a

smaller set of biomarkers is selected using glmnet (see Model

formulation below) with cross-validation. These steps are

repeated iteratively (n = 500) to identify the variables that

have a frequency of selection above a consistency threshold

(50%). The parameters of the models were calculated

intrinsically by the procedure.

2. Model validation (using the variables selected previously)

based on ROC and stability assessments: A random

subsample with the 70% of the subjects is used to classify

using glmnet, and the rest of the sample is used to calculate

the ROC values. This procedure is executed in several

iterations (n = 500) to estimate the distribution of ROC

values. The AUC at 50 percentile of the distribution is used to

measure classification accuracy, and the model with highest

accuracy is then selected as the best model.
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FIGURE 1

Analysis flow aimed to address the objectives of the work. (A) Questions derived from the goals of the study: Q1. Can SSC on STGF predict the

mild cognitive changes present in healthy older adults compared to young adults? Q2. Can SSC on STGF predict the cognitive changes present

in cognitive impaired older adults compared to healthy older adults? and Q3. Can SSC on STGF identify the best combination of walking tasks

and associated STGF to predict cognitive status? (B) General description of the methods used to answer the questions and their interrelations.

Model formulation: Glmnet

The elastic-net model, used to select the biomarkers, is

formulated as a weighted multivariate linear regression model,

described by the equation (Zou andHastie, 2005; Friedman et al.,

2010):

min
β0 ∈ R, β ∈ R

p





1

2N

N
∑

i=1

(

yi−ϕ0−xTi ϕ

)2
+ λ Pγ (ϕ)



 (2)

Where: N is the number of subjects, xi ∈ R
p observations of

subject i, and yi ∈ R is the label group of subject i; ϕ0 ∈ R,

ϕ ∈ R
p are the model parameters; γ is the regularization

parameter; p is the number of variables in the model; and:

Py(ϕ) = (1− γ )
1

2
‖ϕ‖2l2

+ γ ‖ϕ‖l1 (3)

is the penalty equation known as elastic-net norm (Zou

and Hastie, 2005). The use of L2 norm ‖ϕ‖2
l2

induces a

regression (known as ridge regression) that behaves well for

high dimensional data but tends to spread out coefficient

weights among highly correlated variables, and L1 norm

‖ϕ‖l1 produces the “lasso regression”, indifferent to highly-

correlated predictors, which tries to estimate only a few non-

zero coefficients (i.e., performs variable selection), thus inducing

sparsity in the vector of coefficients. γ and λ are the parameters

of the relative contributions of the ridge and the lasso to the

elastic net.

The characteristics of the elastic net allow SSC to deal with

highly correlated features. In addition, the glmnet classification

algorithm can solve the problems related to the high number of

features and the low number of subjects. Both advantages are

useful for this study.

Analysis

The analysis flowchart of this work is shown in Figure 1. The

goals of this work are presented in section A of the Figure 1,

and the corresponding analyses to achieve them are shown in
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section B. Since the 96 STGF from the two walking directions

were highly correlated only their average was used.

SSC was applied for discriminating between: (a) YA and HE

(used as a sanity check), and (b) HE and MCI-E (the main

purpose of this study). In both cases, the following subsets of

features (models) were explored: (i) the STGF from all walking

tasks lumped together (All-tasks); (ii) the STFG for each walking

task separately (e.g., NormalW); (iii) the six combinations of

STFG from pairs of walking tasks (e.g., NormalW+ EasyD).

After applying SSC for the discrimination between HE

vs. MCI-E, the Bonferroni pairwise comparisons test were

performed to carry out post-hoc comparisons between the

AUC of all models. Accuracy, sensitivity and specificity were

calculated such that we do not fail in detecting more than 10% of

MCI subjects (i.e., sensitivity was fixed at 90%). SSC was applied

also to identify the most stable variables in the two models with

the highest accuracies.

The prediction accuracy of SSC was compared with two

other classifiers: SVM and a regularized linear discriminant

analysis (LDA). The same training and test sets, selected through

FIGURE 2

Division by groups using age variable and k-means clustering

based on MDCog.

10-fold cross-validation with 500 repetitions, were used for these

two classifiers.

Results

Clustering of subjects

The cognitive index MDCog ranged from 1.57 (the

best performance) to 12.15 (the worst performance). The

three clusters or groups obtained are presented in Figure 2

and their demographic characterization is presented in

Table 1. Note in the figure a slight overlap between the

values of MDCog between the HE and MCI-E, with the

cut-off at about six. No differences in weight and height

(which are known to affect gait) were found between

the two elderly groups in a Kruskal-Wallis test. The

elderly groups differed significantly from the YA group in

these variables.

Di�erences in STGF between groups

Supplementary Figures 1–4 show the normalized values in

regarding to mean and standard deviation (Z-scores) for each

walking task in the three groups.

The features related to the gait cycle phases and periods (i.e.,

gait variability and gait symmetry) were larger in the MCI-E

group, somewhat smaller in the HE group, and even smaller in

the YA. On the contrary, Cd, RMS, StepLg, and GS had larger

values in the YA than in HE and MCI-E.

A non-parametric permutation two-way analysis of variance

(ANOVA) test, with GROUP and TASK as main effects,

was performed individually on each STGF. The interaction

between these main effects was also tested. The results

from this ANOVA are shown in Supplementary Table 1.

For all STGF and all analyses, there were significant

effects of GROUP and TASK (p < 0.001) in almost all

cases. The only significant interaction effect found was for

StepTimeVar (p < 0.02).

TABLE 1 Demographic characterization of the groups obtained by k-means clustering based on MDCog.

Young-adult (40) Healthy-elderly (62) MCI-elderly (23)

Age (years) 27.65± 4.14 [22–38] 72.23± 6.59 [60–88] 76.00± 7.43 [61–87]

Sex (% females) 20 (50) 37 (59.7) 16 (69.5)

MDCog 2.91± 0.97 [1.57–5.13] 3.81± 1.08 [2.00–6.16] 9.30± 1.65 [6.50–12.15]

Height (cm) 167.97± 8.19 [154–185] 161.57± 9.92 [142–183] 159.69± 8.95 [146–175]

Weight (kg) 70.20± 14.69 [41–98] 68.47± 16.59 [37–117] 64.13± 14.63 [38–92]

Values are presented as mean± STD.

The range is given in square brackets.
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FIGURE 3

ROC curves with 95% confidence bands and model AUC values

for predicting the cognitive status between YA and HE groups

using (A) the individual walking tasks and the all-tasks, and (B)

the walking task pairs.

Discrimination between YA and HE

This comparison was included as a basic and trivial test

of our analyses. Figure 3 shows the results of classification

procedure for all defined models. The ROC curves on the

individual walking tasks models and the All-tasks are shown in

Figure 3A. The same curves for walking task pairs are shown in

Figure 3B. The AUC values ranged between 0.77 and 0.64. The

models with the largest AUC were EasyD + FastW and All-

tasks (both with 0.77), while the model with the smallest one

was NormalW.

Discrimination between HE and MCI-E

The ROC curves for SSC between HE and MCI-E based

on the individual walking tasks and the All-tasks are shown

in Figure 4A. The largest AUC was obtained with All-tasks,

FIGURE 4

ROC curves with 95% confidence bands and model AUC values

for predicting the cognitive status between HE and MCI-E

groups using (A) the individual tasks and the complete set, and

(B) the combined tasks sets.

followed by FastW and EasyD tasks. Interestingly, the lowest

AUC was obtained for NormalW and HardD tasks. Figure 4B

shows the ROC curves for SSC between HE and MCI-E based

on pairs of tasks. The task-pairs including FastW yielded the

largest AUCs. The most accurate combination was SSC based

on the EasyD + FastW combination (AUC = 0.86, sensitivity:

90.1%, specificity: 96.9%, accuracy: 95.8%), which was close to

that obtained with all the features together (All-tasks).

Figure 5 shows the results of a multiple-comparison

procedure for discriminating between HE and MCI-E, using

NormalW model as a reference. The AUC mean ranks and the

confidence interval for each model are presented. The AUC

mean ranks differences between NormalW and the rest of the

individual tasks and combinations were assessed The differences

for NormalW + HardD and EasyD + HardD models were

not significantly different from NormalW (est = 89.58, p <

1.000 and est = −107.79, p < 0.904, respectively). The rest
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FIGURE 5

AUC mean ranks and 95% confidence intervals (using

Bonferroni) for individual and combined by pair tasks for

discriminating between HE and MCI-E groups, calculated by the

multcompare function of Matlab. The blue marker is the

reference task, black dot indicates no significant di�erences

regarding to the reference, red dots mean more significant

di�erences from the reference, and green ones, less significant

di�erences.

of the combinations were significantly different. The models

with larger performance were NormalW + FastW and EasyD

+ FastW (est = −658.25, p < 0.0001 and est = −771.32, p <

0.0001, respectively). The only model that underperformed with

respect to the reference was HardD (est= 208.00, p < 0.0002).

Contribution of selected stable
biomarkers to the two best models

The selected biomarkers in the best models for

discriminating between HE and MCI-E (NormalW + FastW

and EasyD + FastW tasks) were analyzed. Figure 6 shows a

plot with the proportions of time that each STGF was retained

in SSC.

The best predictors in both models belonged to the FastW

task. Specifically, they were the gait variability in step and stride

times (StpTCoV and StrTCoV) and the RMS value. Also, the

same features in NormalW and EasyD tasks were selected in

each model, respectively.

Other features related to the description of the gait cycle

(NormalW: StDurF2 and StepDurF1; EasyD: SSD and SwDurF2;

HardD: SwDurF1) were also selected with high predictor power.

In correspondence to what was explained in section Differences

in STGF between groups, the features related to gait variability

and gait cycle had higher means in the MCI-E group than in HE

group. Contrary, the RMS values were higher in the HE group as

expected result (see Supplementary Figures 1–4).

Comparison of SSC performance with
other classifiers for discriminating HE and
MCI-E

The means and standard deviations of AUC values for

classifications between HE and MCI-E with SSC, LDA and SVM

are presented in Table 2. As shown in this table, the best results

were achieved with SSC. The other two classifiers had lower

performances in all models. There were significant differences

between the AUC of the three classifiers. Interestingly, the EasyD

+ FastW SCC with AUC of 0.86 was more accurate than SVM

(AUC= 0.76) and LDA (AUC= 0.83).

Discussion

The relationship between STGF (measured in four walking

tasks with IMU sensors) and the cognitive status of elderly

and young participants was studied here. All the STGF

differed significantly between groups and walking tasks, with no

interactions between these effects. Accurate classification of the

participants into our experimental groups was found with SSC.

The best SSCs discriminating between healthy and cognitively-

impaired adults were obtained with a combination of EasyD and

FastW tasks. Contrary to our expectations, classification based

on the HardD task was poor. Variability of step and stride time,

and the RMS value of vertical acceleration were the features that

contributedmost to classification power. Compared to SVM and

LDA, the SSC was more accurate in classifying the participants

into their groups.

We do not need sophisticated gait measurements to

distinguish YA from HE. However this comparison serves as a

proof of concept for our methods. Similar to many other studies

we found statistically significant differences in STGF between

YA and HE results (Menz et al., 2003; Zijlstra, 2004; Kobsar

et al., 2014). Part of these effects related to aging could be due to

impairments in skeletal-muscular function, but small alterations

in brain function could also be playing a role. Previous work

has been able to adequately discriminate YA and HE with other

classifier algorithms. Previously, Begg and Kamruzzaman (2005)

were able to discriminate between YA and HE, based on STGF

extracted from normal walk, using SVM with different kernel

functions. The got accuracies between 0.58 and 0.62 for the

different kernels, similar values to our accuracy with the STGF

from NormalW (0.61).

More relevant was the comparison between HE and MCI-

E since the latter condition may not be so obvious to detect. We

found statistically significant differences in all STGF between the

HE and MCI-E groups. Previous articles (using smaller sets of

STGF than ours) describe similar results to this when comparing

older adults that are healthy and those with different degrees

of cognitive impairment (Zijlstra, 2004; Buracchio et al., 2010;

Beauchet et al., 2017; Kikkert et al., 2017; MacAulay et al., 2017;
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FIGURE 6

The proportion of time (%) each measure appeared as significantly for two estimated models across iterations: (A) NormalW + FastW and (B)

EasyD + FastW.

TABLE 2 AUC values for the three classifiers using the eleven models

for HE and MCI-E groups.

Model SSC SVM LDA

NormalW 0.78± 0.08* 0.67± 0.04* 0.62± 0.06*

EasyD 0.80± 0.09* 0.75± 0.01* 0.69± 0.06*

HardD 0.70± 0.1* 0.52± 0.04* 0.59± 0.03*

FastW 0.83± 0.09* 0.72± 0.03* 0.79± 0.03*

All-STGF 0.84± 0.08* 0.59± 0.04 0.65± 0.05

NormalW+ EasyD 0.81± 0.08* 0.74± 0.02* 0.65± 0.07*

NormalW+HardD 0.77± 0.09* 0.64± 0.04* 0.53± 0.03*

NormalW+ FastW 0.84± 0.08* 0.69± 0.03* 0.73± 0.04*

EasyD+HardD 0.80± 0.08* 0.70± 0.08* 0.60± 0.02*

EasyD+ FastW 0.86± 0.07* 0.76± 0.03* 0.83± 0.03*

HardD+ FastW 0.83± 0.07 0.62± 0.03* 0.82± 0.04

*Significant differences.

Montero-Odasso et al., 2017) or with neurological pathologies

(Fitzpatrick et al., 2007; Ren et al., 2017). The fact we did not

find interactions between GROUP and TASK in our ANOVAs

indicates that alterations in gait patterns were pervasive and

showed up in all tasks. Thus, we replicate previous findings while

extending them to a much larger number of STGF.

In partial agreement with previous studies, we found that

STGF from dual walking tasks improved discrimination of

SSC. The FastW and EasyD tasks, alone and in combination,

predicted cognitive status very well (although the HardD

did not). To our knowledge, the use of counting steps

aloud has not been previously reported as a walking

dual-task. Fast walking has been previously described as

more demanding than normal walking, and consistent

with this, subjects with cognitive impairment (even in its

early stages) perform it worse (Fitzpatrick et al., 2007;

Montero-Odasso et al., 2011; Bahureksa et al., 2016).

Reduced speed for fast walking is a sensitive predictor of

impaired cognitive function (Beauchet et al., 2013; Bahureksa

et al., 2016; Callisaya et al., 2017). Here we found that

combining both EasyD + FastW enhanced prediction of

cognitive impairments.

Gait quality should deteriorate with increased dual-tasks

difficulty, especially when there is cognitive impairment

(Montero-Odasso et al., 2009; MacAulay et al., 2017). However,

here STGF from the HardD task (count backward from

100) did not enable better discrimination between HE and

MCI-E compared to STFG from the EasyD task (count

steps). The opposite result was found. One explanation

for this is that perhaps not all of our MCI-E subjects

understood the HardD task well, or were unable to perform
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it consistently. This could have increased the variability

in STGF within the same subject, or between subjects, in

the MCI-E group. For example, gait could momentarily

improve if subjects abandon the HardD task for short

periods of time, something we informally observed in many

cases. Thus making the dual-task too hard may impair its

diagnostic utility.

Interestingly, other authors have also reported low

correlations between dual-task STGF (or dual-task costs) and

cognitive performance, both in older adults (Lønseth, 2016;

Kikkert et al., 2017) and in subjects with Parkinson’s disease

(Gaßner et al., 2017). The diversity in sample selection, the

lack of standard protocols for the dual-tasks (Montero-Odasso

et al., 2012), and the peculiarities of task structure (Halvorson,

2013) have advanced as explanations for these negative results.

The specification of the dual-task paradigm seems to be the

most important issue for detecting cognitive impairment with

gait measurements (Montero-Odasso et al., 2017). Thus failure

in task compliance due to an excessively high cognitive load

is the most probable explanation for the low classification

accuracy we found using HardD STGF. More naturalistic

tasks that would be easier to perform, such as listening to

conversations of increasing complexity, should be explored to

solve this problem.

Higher accuracies were found here for SSC compared

to SVM and LDA classifiers. However, this may not only

be due to the advantage of the glmnet over these other

algorithms in handling many features with few subjects. In SSC,

identification of stable sparse biomarkers is executed prior to

building the classifier in the prediction stage. In addition, the

methodology uses different cross-validation algorithms which

ensures prediction stability and techniques to avoid overfitting

(Bosch-Bayard et al., 2018). These additional steps should also

be combined with other algorithms (e.g., SVM) for a fairer

comparison. Also, only the default kernel was used with SVM.

Other kernels could improve its performance.

Similar to previous studies, we found that features related

to gait variability (StpTCoV and StrdTCov), and RMS, had

the best predictive power. Previous work has reported that

gait variability is larger in healthy older adults than young

adults at a normal pace (Kobsar et al., 2014). Increased

gait variability in the fast walk of older adults with mild

cognitive impairment and Alzheimer’s disease, compared to

healthy older adults, has also been reported (Beauchet et al.,

2013). The reduction of walking speed in older adults has

been associated with the reduced magnitude of their RMS

(Menz et al., 2003; Kikkert et al., 2017; Zhong et al.,

2018).

This study has several limitations. One is that the

sample of older adults with cognitive impairment is smaller

than the sample of healthy older adults, which could

affect the reliability of our findings. Moreover, the sample

of healthy and cognitively impaired older adults was not

completely paired by sex and age. This disbalance in the

sample could affect any classifier used, not only SSC.

Further work should examine the possibility of predicting

cognitive scores (not only classifying into groups) through

regression analysis, a goal for which preliminary results are

presented in Aznielle-Rodríguez et al. (2022). Also, SSC

should be compared with other classifiers, not only SVM

and LDA.

Conclusions

This study confirms that the changes in gait patterns can be

used to discriminate between healthy and cognitively impaired

adults. The use of SSC improves classification accuracy over

traditional approaches with classifiers like SVM and LDA. The

SSCs using STGF from combinations of EasyD and FastW tasks

produced the most accurate results, and were equivalent to

using all the features. Hence, it is possible to use a reduced

battery of walking tasks resulting in lower testing times (which

is important with elderly patients). Since this study was carried

out with IMU in naturalistic environments, our results suggest

that applications of the methods in clinical settings should

be explored.
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